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Executive Summary

Two randomforest classifiers were developed for the identification of whistles produced by five species
of delphinids (bottlenose dolphin;Tursiops truncatusAtlantic spotted dolphinStenellafrontalis; striped
dolphin, S. coeruleoalbashortbeaked common dolphinDelphinus delphjsshortfinned pilot whale,
Globicephala macrorhynchugecorded in the northwestrn Atlantic Ocean Acoustic @ta were
provided by theNational Marine FisherieService ENMFSNortheastand SoutheasFisheries Science
Centes (NEFSC and SEF&@) Duke UniversityOne classifier was trained and testedth whistles
detected and extractedvith manual basedmethods usingthe bio-acoustc analysis software ROCCA
(Reaktime Odontocete Call Classification Algorithrihe other classifier was trained and testedth
whistles detected and extracted using the fully automatétiistie andMoan Detector (WMD) Both
ROCCA and the WMD argegrated asmodules in the acoustianalysis software platform, PAMGuard
(www.pamguard.oryy Two classification approaches were tested: a shstpge randonforest
approach where whistles were classified directly to species, anava-stage randordorest approach,
where whistles were first classifigdto species group(i.e.,“large dolphiri  “@mall dolphiri) in stage

1 and thenclassified agairtp species within those groupi stage 2 Thetwo-stage approach prtuced

more accurate results wimethe classifier wasrdined andtested using manually detected/extracted
whistles and when the classifier was trained/tested using automatically detected/extracted whistles.
Individual vhistles within an acoustic encountewe r e c¢c | assi f i ends Shargpeaked ma | |
common dolphins, striped dolphins) or large dolphins (bottlenose dolpHitiantic spotted dolphing
shortfinned pilot whale} in stage 1 of the manual classifiemd asshortfinned pilot whales or
dolphins €hortbeaked common, strigd, Atlantic spotted, bottlenose) in stage 1 of the automated
classifier Both classifieravere used toidentify individual whistles to species arttien to identify
encounters ie., groups of whistles produceduring an acoustic encountgbased on thecombined
classification results for all of the whistles in each encour@erall correct classification scores for the
manual classifier were 7j8ercent(standard deviatior{sd = 1.2percen) for individualwhistles and 86
percent(sd=2.5perceni for encounters For the automated classifier, correct classification scores were
80percent (sd = 1.9percend for whistles and 9lpercent (sd = 2.4percend for encounters Both
classifiers have been incorpor at erdadiavaiale tiPusasGu ar d’
vi a PAMGuU ar dWwvsw.pameuiarsl.orl) en the next PAMGuardsoftware update
Recommendations for future research afdther development of ROCCA include testing the Atlantic
classifiers usingecordings containingvhistles from visually validated speciegs well as thosevith
varyingsignal to noise ratioand noise environments ROCCA should also tiested in realtime during
shipboard towedarray surveys Several recommendations are providedor future classifier
development, includinggroundtruthing ROCCAnNd adding species to the Atlantic classifier. Both of
these tasks could be accomplished usampustic recordings fodelphinidscollected during summer
2013 surveg conductedby NMFSNEFS@nd SEFSG addition,collaborations among research groups
are recommendedo explore methods for increasingassification success and creatinmlti-species
classifiers for tonakignals produced by baleen whaldsSinally we recommendusing a classifier
developed specifically for the northwest Atlantic Ocaanprocess archival towedrray and seafloar
mounted recorder data to examine questions related to occurrence and behavioral responses of animals
to naval activities.
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1. INTRODUCTION

In recent decadespassiveacoustic monitoring (PAM) has been adopted as an effective method for
obtaining information about the occurrence, distribution, and behavior of marine mamriveiiger

and Barlow 2003)The extensive usend adoptionof PAM for detecting and monitoring marine
mammas has generated huge volumes of data order for the data generated from PAM to be
effectively used, ey need to be efficiently analyzed aratcuratelyinterpreted. This, in turn, requires
acousticanalysis softwar¢hat iscomprehensive with respect to specigst occur ina givengeographic
region andthat alsoallowfor reliableautomated detection and classification of vocalizations.

Secies identificationfrom acoustic recordings of marine mammal vocalizatioas be challenging due

to the high variability iany ofthe characteristicof soundsthat can be easily measured or extracted
from spectrogramsboth within species and amongepes The development of classifiers fonarine
mammal vocalizations a rapidly advancing area of researgharly workon delphinid whistle classifiers
focused on timerequency characteristics measured from spectrograms and classification algorithms
suwch as discriminantunction analysis and classificatitree analysis (e.g., Steiner 19&ristrup and
Watkins 1993Wang et al. 1995Matthews et al. 1999Rendell et al. 199%0swald et al. 2003More
recently, other classification algorithms such asu@sian mixture models (Roch et al. 2007), Hidden
Markov models (Brown and Smaragdis 2009) and random forests (Oswald et al. 2013) hausduken
with varying degrees of success.

ROCCA (Refiine Odontocete Call Classification Algorithis ane of a few classifiers thaare readily
available forthe general marine mammal research, conservation and management comn{QOsityald
et al. 2013)At present,ROCCA isvailable as anodule withinthe programPAMGuard PAMGuard ian
opensourcesoftware plaform that isfreely availablgo the publicto record, process, and analyb&-
acoustic datawww.pamguard.org Gillespie et al. 2008Yurrently, ROCCA contains a randdarest
classifierthat was developedor whistles from eight different specie®f delphinids occurringn the
tropical Pacific Ocean (Oswald et al. 20X3)rrect classification scores fall species included ithis
classifier are significantly greater than the 1pd¥centexpected by chance alenand range from a low
of 35 percent (for short- and longbeakedcommon dolphin Delphinusspp., whistles}o a high of 90
percent(for false killer whalgPseudorca crassidenshistles;Oswald et al. 2013).

Although ROCCA is a useful tool for thessification of whistleBom delphinids occurringn the tropical
Pacific Ocean, geographic variation in whistiaracteristicgor delphinid species limits its application in
other geographic area$or example, Mayollado and Wartzok (2008) examinetistles produced by
bottlenose dolphins Tursiops truncatysin six regions in the westerNorth Atlantic and one in the
eastern North Atlantic and found that both frequency and duration parameters varied significantly
between regions Similarly, Ansmanret al. (2007)determined that shortbeaked common dolphins
(Delphinus delphjsn the English Channel produced whistileat were higherin frequencythan those in
the Celtic SeaGeographic variation haasobeen reported for other delphinid species,céuas spinner
dolphin Stenella longirostrisBazuaDuran and Au 2004), Ine@acific bottlenose dolphinT(rsiops
aduncusMorisaka et al. 2005pand Atlantic spotted dolphinStenella frontalisBaron et al. 2008)Given
that whistle structure has beendemonstrated to vary both between and within ocean basins
classification algorithms will be mo effective when specifically trained for the locations and
populations for which they will bapplied


http://www.pamguard.org/

In order to analyze the enormous volumes of degaordedduring PAMefforts, classifiers also need to

be efficient and usefriendly. Classification of a sounfirst requires that the sound is detected in a
recording andhen a set of features is measured from the detected sound. In the case of whistles and
other frequency modulated sounds, feature measurement generally requires the extraction of time
frequency contours from spectrograms. Detection, contour extraction and feature measurement can
require significant human efforand expertise In order to redue these requirementsthe entire
process shoulthe automatedto the greatest extenpossible Although automated methods can reduce
significantlythe time required to detectextract and measurepotential whistle contours, theyare
typicallyless accuratéghan manualdetection methodsin which an expert analyst makes the detection
decisionand processeshe detected contours False detectiongi.e., detections of sounds other than
whistles) inaccurate contour extractionand fragmentation of whistles (i.ewhere a single continuous
whistleisincorrectly labeled as several shorter, separate whistlesm)result in biases anthaccuracies

in the outputs of automated detectorsBecause of theserrors, the values obtained from whistle
contours extracted uag manual methods can be very different than those extracted usirigmated
methods Figure ). Therefore, the choice of method used to generate training data for classifiers is
crucial It is likely that tassifiers that are intended to be used on whistles detected and extracted
automaticallywill perform better if trainedusing autedetector output data, and classifiers to be used

on whistles detected and extracted manuaWyll perform better if trainedusing manuallyextracted
whistles.

Although fully automated methods require less time and usé&fraction,environmental electrical(i.e.
self) and other sources @iise in some datasets makedifficult or impossible to fully automate the
process Therefore, it is important to havelassifiers trained using whistles that have been manually
detected, extracted and measurefdr these noise conditionsIn this effort, we developed ROCCA
classifiers for whistles produced by delphinids in the westorth Atlantic OceanTwo different
classifierswere developed—one using whistles detected and extracted using manual methodsaand
secondusing whistles detected and extracted using an automateidctor.



a)

b)

0.0

Lo ) e ) [Reemt ) (35 ) C5% ) [0 ][5 ) vose e

<E]

00 -

Figurel. Example spectrograms of: (a)dolphinwhistle (without a
contour outline); (b) contour manuallytraced and extracted using
ROCCA,; (draced and extractedautomatically using theWhistle
and Moan Detector (WMD)n PAMGuard, where different colors
represent different individual whistles. In tls example, WMD has
labeled the sample whistle adour separate whistles, and false
detections are shown in yellow, pink, and green.



2. METHODS

2.1 Data

Acoustic recordings of delphinid encounters were made during-lshgedvisual and acoustidrie-
transect surveys conducted hyhe Southeast Fisheries Science Center (SEFSC) and the Northeast
Fisheries Science Center (NEF&Qhe National Marine Fisheries Seryi@and Duke UniversityThe
surveystook place off the Atlanticoastof the United &atesbetween central Florida anGeorges Bank

(in the Gulf of Maing (Figure 3. The NEFSC and SEFSC surveys were several months in duration and
covered large areas of the U.S. Atlantic coaBuring these surveys, a team oéxperienced marine
mammal observers searched for cetaceans usingx2650 binoculars, hantield binocularsand the

naked eye The DukeUniversitysurveys consisted of multiple orday trips out of Onslow Bay, North
Carolina and Cape Hatteras, North Carol{repdge 2011)For sighings during all cruisesspecies
identification and grougsize estimatios were recorded In addition, ahydrophonearray was towed
behind each of the research vesselduring daylight hoursAcoustic signals from the arrayere
monitored by acoustic techigians. Signals were monitorealrally using stereo headphonesnd
monitored visuallyfrom reaktime scrollingspectrogramsusing Ishmael (Mellinger 2000) and PAMGuard
(Gillespie et al. 2008) softwar@he frequency response characteristics of the arraysl recording
equipment used duringhese surveyare provided iPAppendix A

Duke Universityresearchersalso provided acoustic data recorded with DTAsdgital Acoustic
Recording Tags, Johnson and Tyack 2ati&¢hed to shorfinned pilot whalesRecordinggrom DTAGs
were usedonly if the tagged animal wagart of a singlespecies schoaif shortfinned pilot whalesand

if there were no other specighat whistle sighted within 3ami. Frequency response characteristics for
the DTAG hydrophoneseagiven imAppendix A.
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Figure 2. Western North Atlantic study area and location of recordings available for this work. E
species is represented bydifferent color.

2.2 Whistle Measurement

Only whistles produced by singépecies delphinidschools that had igsual confirmation of species

identity were included in the analysidt is possible that some recordingsat werel abel ed as * si
speci es’ may <contain whistles produced by other
performed to obtain exact locations of the dolphins being recorded; however the visual observers did

note the latitude and longitude of each school periodically throughout the sighting. To redeicskiof

measuing whistles produced by other species in #rea,encounterswere only analyzed if the school

was greater than 3nmi from sightings of any other whistling spe8iased on work done by Rankin et

al. (2008) weassumed that whistles produced by a school that was greater than 3nmi fronchioels

being recorded would not be detectedhe dstanceto the acoustic detectiomwvas calculated between

the previous sighting (or multiple sightings if they were close together) and the position of the school in



question at the beginning of the recordinghe dstance was also calculated between the next sighting
(or multiple sightings if they were close together) and the position of the school in question at the end
of the recording.Acoustic recordings from all acoustic encounters that met #w®ve criteria for
including in theanalysis were processdwice, onceusingmanual methods for whistle detection and
contour extraction and a second time using automataéthods for whistle detection and contour
extraction.

2.2.1 Manual Detection and Contour Extraction

Recordings from each acoustic encounter included in the analysis were examined aurally and visually
using Raven Pro: Interactive Sound Analysis Software (VersionCarBell Bioacoustics Research
Program 2008)Start timeswere notedfor all whistleswith a signato-noise ratio of 6dB or greater.
Overlapping whistle were included onlyif each contour could betraced unambiguously.Selected
whistles were saved as individumldiofilesi n  twhve f oforrarghival purposesA maximum of

50 whistleswasselected per encounter to avoid oveampling of groups or individuals.

Timefrequency contours were extracted from spectrograms using the ROCCA module in PAMGuard

First, he start and end points of thevhistle were manually selected by the operatby windowing it

usingwith a pointing device on the computeNext, ROCCA automatically extracted thhistle contour

by stepping through the spectrogram onene slice at a timeand searchindgor the peak frequency

within a userdefined frequencyband centered around the peak frequency in the previous time slice

(see Oswald et al. 2007 and Barkley et al. 2011 for det@isiea contourwas extracted, it was

displayed on the spectrogram artde accuracy of the extraction could be adjusted by applying-hig
passand/orlowpass filters, adjusting ROCCAnderusingthes i t i vit
cursor to manually drag contour points to the correct location on the spectrogram (Oswald et al. 2013).

2.2.2 Automated Detection and Contour Extraction

Automated whistle detection and contour extion was performed using th&Vhistle and Moan
Detector WMD) module within PAMGuardThe WMD automatically detects and extracts whistle
contours by searching for spectral peaks within a tsgcified frequency bad. In order to be
considereda true whistle detection, the spectral peakeeds to occur within certain uselefined
parameters relating to its amplitude anftequency in relationto other candidatespectral peaks
detected the timeslices directly beforerad after the peak in questior-or each acoustic encounter,
parameters within theWMD module were adjustednanuallyvia a GUI within the WMDR0 maximize
accuracy of contour extraction and minimize false positi#gufe3, see help files within PAMGuafar
details on changing WMD parametrs
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2.2.3 Feature Measurement

After whistle contours had been extréed they were saved asommaseparatedtext (.csy files and
then used asinputs to ROCCA for feature measuremgnFifty variables from each contour were
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automatically measuredncluding: duration, frequencies (e.g., minimum, maximum, beginning, ending,

and at various points along the whistle), slopes, and variables desgrithiape of the whistles (see
Appendix Band Barkley et al. 2011 for a compldist anddescription of variables measured).

2.2.4 Randord-orest Analysis

Classification algorithms were developed using randorest statistical classification methodsA
randomforest is a collection of decision trees grown using binary partitioning of the &aieh binary
partition of the data is based on the value of one feature (or in this case, a whistle variable; Breiman

2001) The goafor eachsplit is to divide the datato two nodes, each as homogeneous as possible (i.e.,

containing whistles from the smallest number of species possiBi@)jdomness is introduced into the
tree-growing process bgxamining a random subsample of all of the features at each riblie featue
that produces the most homogeneous split is chosen at each partitdiren whistle features are run
through a random forest, each of the trees in the forest produces a spelassification Each tree can
‘v o GificationfVotes arathergtalliedeaver all grees andhes
.rmoaddition ‘tovclagsityisg’ individual

be considered

whistle classification is based dahe speciesvi t h
whistles, entire acoustic encounters were classified based on the number oflassfiationsfor each

1

t he

species, summed over all of the whistteat wereanalyzed for that encounter.

cl

The number of treelassificationgor the predicted species was also used as a measure of the certainty

of the classificationlt was assumed that if a greatepercentage of treelassified the whistle as a

as



particularspecies, then that classification had a higher degree of certddgged on this assumption, a
‘“strong whi stwaes tdiethei panesdtage of treeshat classified the whistle aa

particular speciesvas greater than thistrong whistlethreshold, the whistle was considered strongly
classified, or si mpl.yfthe petcantage gf treethaDdassdieddhe whistlead . 201
a particular speciedid not exceed thestrong whistle threshold, then the classification was considered
unreliable and the whi s.tHigher strang whistiehtltedsimlds gansrally a mb i
resulted in higher correct classification scores, but also resulted in more whistles bb#lgdiaas
ambiguousbecause fewer classifications will meet the strong whistle threshbéldll of the whistles

within a single encounter were labeled as ambiguous, then that encounter was also classified as
ambiguous and could not be classifigstrongwhistle thresholds were chosen to maximize correct
classification scores while minimizing the number of encounters that were labeled as ambiljutiis

project, strong whistle thrgholds that allowed at least 90 percenit encounters to be classified we

chosen.

To test the randorfforest models,each dataset wagandomly subsampled so that there was a
maximum of 50 contours per encounter for the manual dataaatl 100 contours per encounter for the
auto-detector dataset Because othe higher overall ample size resulting from fragmented whistldts
was possiblgo use a greater number of contours per encounter for the adébector dataset (i.e.,
single whistles that were broken into multiple fragments) and false detectibiext, hese datasets
were subsampledo that each contained an equal number of contours per spetlas avoided any one
speciesdominatingthe data and skewing the result§he subsampled dataset was randomly divided in
two, with whistles from the same encounter kept togethertie same datasetOne dataset was used to
train the mode] while the other was used to test the modeThe datasets were then swapped so that
each was used bothsa training and a testing seThisprocedure was repeatedlO times in order to
produce meansnd standard deviations for the confusion matrices.

Two randomforest models were trained, one using manualtected whistles with contours extracted
by ROCCA and a second using whidtteh automaticallydetected and extracted using the WMBor
eachmodel, two different randorfforest modelswere explored In the first model, whistle contours
were classified directly to speciebhe secondnodel usedtwo-stages, in which whistle contours were
first classified to a broad specigsr o up ( s u-sizedd & $ p h $ madildnisizeadelphinid’) in
stageone and then classifiedto species within that speciegroup in stagetwo. For eachtwo-stage
model, several different sets of specigmups were explored for stagene. To preventwhistle
measuremats from any one species from dominating the data and skewing the classification results,
training datasetdirst were subsampled to give an equal number of whistles per spec@ms in stage
one, and subsampledagain to give an equal number of whistlesr species in stagievo. The manual
and automated classifiers that produced the most accurate results weesl forROCCA moduli
PAMGuard.

2.3 Variable Importance

One of the outputs of a randotforest analysis ign estimate of variable importanceand provides a

relative measure of the degree to which each variable contributes to the random forest model
predictions This measure of variable importance uses theGini Index whichis a measure of the
“purity’ of each noBreman et al.al984)lh aus casef prity eefers orthe t r e e (
number of species represented g node. Smaller Gini Index values represent increases in purity.



Splitting variables are chosen at each node so thatrésilting subsetsminimize thecombined Gini

Index as possible (Oh et al. 2003). To evaluate variable importance, decreases in the Ginbimaere

node to the nextar e summed for each variable over all/l of
|l mportance’ . Var i abl e waluasicontribute mgrérte the raBdomorest inodgd o r t an ¢
predictions than do those with lower Gini Importance valusthis project, Ginimportance values

were averaged over th&0 randomforest runs describegreviously(in Section 2.2.4) to evaluatewhich

features were most importanto the classification models.
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3. RESULTS

3.1 Acoustic Recordings

Acoustic recordings of singipecies schools thahet the criteria for analysis were available foine
delphinid speciesThe numbes of acoustic encounters anthe numbers of whistle contours detected
manually and automatically for each specie compiled inTable 1 For the shorifinned pilot whale, 6
of the 15 encounters were recorded using DTAGgeneral, the number of contourauch greaterfor
the auto-detector (n = 5,027) than for the manual method (n = 3,5P&rause the autaletector
fragmerted some whistles, causing those whistles to be counted more than.drfee autedetector
also produced false detections that were used as whistle contours irpthject Only species with at
least four encounters and 200 manuatigtected whistlecontours were included in the analysiBhis
was the minimum amount of dathat we consideredo be adequate forreliabletraining and testingf
classifiersBecause of thesstrict criteria, data from only the following five species were used: short
beaked common dolphin, striped dolphitsienella coeruleoallaAtlantic spotted dolphin, bottlenose
dolphin, and shokfinned pilot whale Globicephala macrorhynchus

Table 1 Numbers of acoustic encounterper speciesandtotal numbers ofwhistle
contoursfor each speciesletectedusing ROCCA (Manually Detecte)d using
PAMGuard's WMD (Autaletected).

Whistle Contours

Species Encounters
Manually Detected Auto-detected

Bottlenose dolphin 74 1,632 1,719
Atlantic spotted dolphin 45 706 988
Striped dolphin 12 293 648
Shortfinned pilot whale 15 259 749
Shortbeaked common 9 249 475
dolphin

Risso's dolphin 8 119 99
Clymene dolphin 2 99 64
Roughtoothed dolphin 3 98 109
False killer whale 2 70 176
Total 170 3,625 5,027

3.2 Manuallassifier

3.2.1 SingleStageClassifier

When whistles were classifieglith the single stge classifieto species, aneanof 60 percent(standard
deviation[sd = 1.1percen) of whistles and 6@ercent(sd = 1.5ercen) of encounters were classified
correctly (strong whistle threshold = 4fercen)). Confusion matrices for botlindividual whistles and
overall encountersare provided inTable 2 Patterns in classifications were similar between the two,
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with the highestpercentage ofcorrect classification scores occurring &rortfinned pilot whales (76
percentand 88percentfor whistles and encounters, respectively) and the lowsstcentage ottorrect
classification scores attributed to striped dolphins (B8rcent and 43 percent for whistles and
encounters, respectively)Striped and short-beaked common dolphin whistles we most often
misclassified as each other, bottlenose dolphin whistles were most often misclassified as Atlantic
spotted dolphins, and Atlantic spotted dolphin whistles were most often misclassified as sfitbey

finned pilot whales or bottlenose dolphs Shortfinned plot whale classification errors were spread
relatively evenly across the other four species.

Table 2 Confusion matrices for the singlgtage classifier trained using manually detected at
extracted whistles The percent of whistles corly classified for each specieis in bold, with
standard deviations in parenthesesA) hdividual whistles Overall, 60percent (sd = 1.1percent) of
whistles were correctly classified when the strong whistle threshold wasp#dcent Sample size (n) i
the number of whistles that were strongly classified®) Encounters Overall, 65.9percent (sd = 1.5
percent of encounters were correctly classified when the strong whistle threshold waspéécent

Sample sizen)) is the number of encounters that couldebclassified based on strong whistles alone.

A)
Percentclassified as
Short .
Actual species beaked e Striped Atlantic | g nose
finned pilot : spotted . n
common dolphin : dolphin
) whale dolphin
dolphin
jg‘lgﬁi?]eaked common |- 492(0.8) | 02(0.4) | 330(24) | 53(1.3) | 123(19) | 202(5)
Shortfinned pilot whale 3.7 (0.7) 76.1 (1.4) 6.4 (1.3) 9.0 (1.6) 4.6 (1.2) 210 (5)
Striped dolphin 35.6(4.0) 4.1 (0.9) 39.0 (4.2) 8.7 (1.1) 12.8 (1.8) 192 (5)
Atlantic spotted dolphin 0.8 (0.8) 11.5(1.4) 3.1(0.3) 69.8 (3.8) 14.4 (3.1) 201 (6)
Bottlenose dolphin 5.0 (1.9) 4.5 (0.8) 5.5(1.4) 19.3(3.7) 66.0 (4.1) 203 (5)
B)
% Classified as
Short .
Actual species beaked | S Striped ALl Bottlenose
finned pilot : spotted . n
common dolphin : dolphin
) whale dolphin
dolphin
shortbeaked common |, 1 ) 0(0) 198(6.9) | 220(0) | 132(6.9) | 9(0)
dolphin
Shortfinned pilot whale 6.0 (0) 88.0 (0) 0(0) 5.4 (1.9) 0.6 (1.9) 16 (0)
Striped dolphin 27.5(8.6) 0.8 (2.5) 43.4 (6.6) 16.1 (2.8) 12.4 (6.1) 12 (0)
Atlantic spotted dolphin 0 (0) 7.1(2.8) 0.9 (1.9 81.7 (4.3) 10.5 (4.4) 38 (2)
Bottlenose dolphin 3.9(1.9) 3.2(1.6) 3.4 (1.6) 16.9 (5.0) 72.5 (4.7) 59.1 (2.1)
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3.2.2 TwoStageClassifier

Based on the confusion matrices for the singlage classifier, severio-stage classifiers were tested,
each with different combined speciggoups in stage .JExamples of specieggoups that were tested
include:

1. Shortfinned gdlot whales versus dolphs &hort-beaked common, striped,Atlantic spotted,
bottlenose)

2. Small dolphins shortbeaked common and striped) versus large dolphinstldntic spotted,
bottlenose andshort-finned pilot whales)

3. Small dolphins versus medium dolphirstigntic spotted andbottlenose) versushortfinned
pilot whales

Thesmall dolphins versus large dolphic@mbination produced the highest correct classification scores
When contours were classified to small versus large dolphins in stagelthen to species in stage 2,
average overall correct classification scores wergp@ent (sd = 1.2percen) for individual whistles
and 86percent (sd = 2.5percen) for encounters (strong whistle threshold = p@rceni. Confusion
matrices for these classifiers are giveable 3

When compared to the singlgtage results, correct classification scofes whistlesin the two-stage

classifier were higher for every specidhese differences werstatisticallys i gni f i cant ( Fi sh
test, a = 0.05) fordottleroseaalphin ang Adlaniic spottee dolphéhgbte 4. For

encounters, correct classification scores fortho-st age cl assi fier were signi
e X a ¢t =0.@xkthan theosinglstage classifier for striped and shdr¢aked common dolphins.
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Table 3 Confusion matrices for the twastage classifier trained using manually detected and extractt
whistles. The percent of whistles correctly classified for each spedgga bold, with standard
deviations in parenthesesA) @nfusion matrix for individual whistles Overall, 78percent(sd = 1.2
percent) of whistles were correctly classified when the strong whistle threshold waggtcent
Sample size (n) is the number of whistles that were strongly classifigdConfusion mtix for overall
encounters Overall, 86percent(sd = 2.5erceni) of encounters were correctly classified when the
strong whistle threshold was 5@ercent Sample sizen) is the number of encounters that could be
classified based on strong whistles alen

A)
% Classified as
Short :
Actual species beaked _ Slngi: Striped Atlantic | g e nose
finned pilot : spotted : n
common dolphin . dolphin
: whale dolphin
dolphin
shortbeaked common | g5 555 | 0.9(0.3) 0(0) 3505) | 99(4) | 2442
dolphin
Shortfinned pilot whale | 2.6(0.8) 86.4 (1.6) | 11.2(1.3) 0(0) 0(0) 181 (0)
Striped dolphin 2.6(1.2) 3.8(0.6) 77.8 (1.7) 7.6(1.1) 8.3(2.2) 279 (2)
Atlantic spotted dolphin | 1.3(0.8) 3.8(1.1) 11.2(23) | 776 (3.7) | 6.2(2.3) 166 (4)
Bottlenosedolphin 5.6(1.9) 3.7(1.8) 18.5 (2.5) 8.3(2.9) 63.8(2.6) 164 (4.0)
B)
% Classified as
Actual species Common . Striped ALl Bottlenose
dolphin | Pilotwhale |y iohin | SPOEd T 4oiohin n
P P dolphin P
Shortbeaked common | g/ & ) 0(0) 0(0) 11(0) 4.4(5.7) 9(0)
dolphin
Pilot whale 0(0) 94.6 (1.9) | 5.4(1.9) 0(0) 0(0) 16 (0)
Striped dolphin 0(0) 0(0) 91.1 (2.8) 8.0(0) 0.8(2.5) 12(0)
Atlantic spotted dolphin 0.3(0.9) 2.5(2.6) 4.8(3.1) 90(6.6) 2.5(2.6) 36.7 (1.6)
Bottlenosedolphin 5.4(2.2) 2.7(1.6) 147 (4.2) | 7.2(2.9) 70(4.3) 56.5 (2.4)




Table 4 Percenagesof whistles and encounters correctly classified (with standatdviation in parentheses) for singte
stage and twestageclassifiers trained using manually detected and extted whistles and using whistiedetected and
extracted automatically. Pralues are forFisher's exact test comparing singitage carect classification scores to two
stage correct classification scoréar each species and dataset. Significant differences are shaith an asterisk

% correct classificationmanual % correct classificationautomated
. whistles encounters whistles encounters
Species
single- | two- single | two- single- | two- single- | two-
stage | stage P stage | stage P stage | stage P stage | stage P
Shortbeaked
49.2 85.5 44.0 84.6 37.0 85.6 25.8 95.2
common <0.000* <0.0001* <0.0001* 0.007
. (0.8) | (2.5) 0) (5.7) 0.8) | (3.4 @7 | (6.2
dolphin
Shortfinned 76.1 | 86.4 . 88.0 94.6 81.3 | 83.6 94.0 | 95.2
pilot whale @4 | ae | %0t o | a9y | w9) | 08 | %3 | g | @5 | *
Striped 39.0 77.8 N 43.4 91.1 « 49.3 71.8 «| 55.0 87.9 | <0.000
dolphin @2) | @7 | 000 66 | @28 | 00| e | @ |00 o) | 7.8 | 1*
Atlantic
69.8 77.6 81.7 90 85.0 77.2 . 93.8 89.7
spotted 38 | @7 | %% | @3 | 66 | % | a5 | @e | %7 | 8 | 5g | %68
dolphin
Bottlenose 66.0 63.8 72.5 70 88.6 84.4 88.7 88.9
dolphin a0 | 26| %™ | @n | @3] °%8 | as | 9| %% | 28 | 2| *
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3.3 Automated Classifier

3.3.1 SingleStage Classifier

Using thesingle stageclassifier, wherwhistles were classified directly to species, ovemadansof 68
percent(sd = 0.7percen) of whistles and 7percent(sd = 0.8perceni of encounters were correctly
classified (strong whistle threshold = g&rcen). Confusion matrices for both individual whistles and
overall encountersire provided inTable 5 Correct classification scordsr Bottlenose dolphin, Atlantic
spotted dolphin and shortfinned pilot whaleall were greater than 8@ercentfor whistles and close to
or greater than 90 percentfor encounters Correct classification scores wemvest for shortbeaked
common dolphins (whistles: 3@ercent sd =0.8 percent encounters: 26percent sd =1.7 percent).
Shortbeaked ommon dolphin whistles were most often misclassified as bottlenose, strimesitlantic
spotted dolphin

Table 5 Confusion matrices for the singlgtage classifier trained using automatically detected and
extractedwhistles. Thepercentagesof whistles correctly classified for each speciepresentedin
bold, with standard deviations in parenthese#\) Confusion matk for individual whistles Overall,
68.2percent(sd = 0.7percent) of whistles were correctly classified when ¢hstrong whistle threshold
was 45percent Sample size (n) is the number of contours that were strongly classifBdConfusion
matrix for overall encountersOverall, 71.5ercent(sd = 0.8ercent) of encounters were correctly
classified when the strongvhistle threshold was 4%ercent Sample sizen| is the number of
encounters that could be classified based on strong whistles alone.

A)
% Classified as
Actual species Common | . Striped Atlantic | b ienose
dolphin | Plotwhale | 4 ohin | SPOted T oiohin n
P P dolphin P

iglgﬁ'i?]eaked common 1 370(0.8) | 4.2(06) | 195(1.1) | 145(1.8) | 245(1.2) | 299 (7)
Pilot whale 16(0.7) | 81.3(1.9) | 3.9(09) | 85(05) | 4.6(0.9) 343 (8)
Striped dolphin 135(14) | 12.6(0.9) | 49.3(1.6) | 10.1(0.9) | 145(1.3) | 294 (6)
Atlantic spotted dolphin 1.2(0.6) 5.9(1.1) 2.2(0.6) 85(1.5) 6.0(0.9) 311 (9)
Bottlenose dolphin 2.8(09) | 1.8(0.8) | 1.4(0.7) | 5.1(1.4) | 886(1.8) | 328(14)




B)

% Classified as
Actual species Common | . Striped Atlantic | o ienose
dolphin | Plotwhale | yophin | SPOted g oiohin n
P P dolphin P
gg‘l‘;ﬁi?]eaked common 1 o5 8 (1.7) 0(0) 10.4 (5.5) | 20.7(6.5) | 44.0(7.1) | 8(0.4)
Pilot whale 0(0) 940(2.8) | 0(0) 6.0(2.8) 0(0) 17(0)
Striped dolphin 0(0) 135(4.7) | 55.0(0) | 14.4(46) | 17.1(66) | 11(0)
Atlantic spotted dolphin 0(0) 2.0(1.8) 0.9(1.4) 93.8(2.8) 3.6(2.4) 35(2)
Bottlenose dolphin 0.6(0.9) 0(0) 0.6(0.9) 10.1(3.5) 88.7(2.8) 57(1)

3.3.2 TwoStage Classifier

Results ofhe speciesgroups tested in stage 1 of theo-stage classifier were similar to those described
for the manual classifier(see Section 32.2). The combination that produced the highest correct
classification scores for the auttetector data wasshortfinned pilot whales ersusdolphins ghort-
beakedcommon, stripedAtlanticspotted, bottlenose)When test data were run through thig/o-stage
classifier,mean overall correct classification scores were B&cent (sd = 1.9percen) for individual
whistles and 9Jpercent(sd =2.4 percen)) for encounters (strong whistle threshold = gérceni). For
this classifier, correct classification scoresvitnistles were above 7percentfor all species and close to
85 percent for short-beaked common dolphins, bottlenose dolphinand shortfinned pilot whales
Correct classification scores for encounters were close to or aboym@@ntfor every speciegTable

6).

Thetwo-stage classifier resulted statisticallysignificant increases in correct classification of whistles

for every species excephortfinnedp i | ot whal es and bottlenose dol phi
Table 4. For over al |l encounter s, correct cl assificatio
o = 0 .slowBhHeakédoommon dolphins and striped dolphin®able 4. Forshort-beakedcommon

dolphins, mean correct classification scores increaged 37.0 percent (sd = 0.8 percent) to 85.6

percent (sd = 3.4 percent) for whistles and from 25.8 percent (sd = 1.7 percent) to 95.2 percent (sd = 6.2
percent) forencounters when using thivo-stage classifier~or striped dolphins, correct classification

scores increaseftom 49.3 percent (sd = 1.6 percent) to 71.8 percent (sd = 3.0 percenthistles and

from 55.0 percent (sd = 0 percent) to 87.9 percent (sd = 7.8 percerghfmunters when using thisvo-

stage classifier.
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Table 6 Confusion matrice for thetwo-stage classifier trained using automatically detected and

extractedwhistles. The percent of whistles correctly classified for each speasdn bold, with

standard deviatons in parenthesesA) Confusion maix for individual whistles Overall, 80.5percent
(sd = 1.9ercent) of whistles were correctly classified when the strong whistle threshold was 45

percent Sample size (n) is the number of whistles that were strongly classifBdConfusion matrix
for overall encountersOverall, 91.4percent(sd = 2.5ercent) of encounters were correctly classified
when the strong whistle threshold was 4Bercent Sample sizen is the number of encounters that
could be classified based only on strong whistles.

A)
% Classifie@s
Short .
Actual species Shcc())rrt;]bne]grljed finned Striped ':u:t?gg Bottlenose 0
. pilot dolphin potte dolphin
dolphin whale dolphin
iglgﬁitr’]eaked common 1 g56(3.4) | 144(34)| 000 0(0) 0(0) 188(0)
Shortfinned pilot whale 2.0(0.5) 83.6 (0.8) | 2.9(0.6) 7.4(0.7) 4.0(0) 695(8)
Striped dolphin 1.4(0.8) 225(2.8)| 71.8(3.0)| 1.7(1.2) 3.1(1.4) 177(3)
Atlantic spotted dolphin 0.8(0.6) 18.8(1.3) | 1.0(0.7) | 77.2(1.6) 2.1(1.4) 176(3)
Bottlenose dolphin 2.0(0.9) 9.6(2.0) 1.1(0.7) 2.7(1.2) 84.4(2.9) 160(5)
B)
% Classified as
Short .
Actual species SISV ooy Striped AUEIIE Bottlenose
common . : spotted . n
X pilot dolphin : dolphin
dolphin whale dolphin
Shortbeaked common
dolphin 95.2 (6.2) 5.2(6.7) 0(0) 0(0) 0(0) 8(0)
Shortfinned pilot whale 0(0) 95.2 (2.5) 0(0) 4.8(2.5) 0(0) 17(0)
Striped dolphin 0(0) 12.1(7.8) | 87.9(7.8) 0(0) 0(0) 11(0.4)
Atlantic spotted dolphin 0(0) 8.9(5.3) 0(0) 89.7 (5.8) 1.2(1.5) 32(2)
Bottlenose dolphin 0.8(1.4) 5.6(2.5) | 0.4(0.8) | 4.1(2.0) 88.9 (2.2) 49(3)
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3.4 Whistle Measurements

3.4.1 Manual Measurements

Descriptive statistics for features that were important in the classifiers based on Gini Impoviaines
are presentedin Tables 79. The Ginirhportancevaluesindicatedthat featuresthat characterizethe
slope and shape of whistles were most important in the sistggle classifierTable10). Therangefor
the slope of whistlesvaslarge when compared among specidalple 9. For examplemean positive
slope anged from 101.Xkilohertz per second Hz/9 (sd = 44.8Hz/seq for Atlantic spotted dolphins to
35.9kHz/s(sd = 37.3z/9 for shortbeaked common dolphing-eatures describing slope were similar
for shortbeaked common dolphins and striped dolphins,dafor Atlantic spotted dolphins and
bottlenose dolphins.

For thetwo-stage classifier, a different set of variables was most important in each.st&gemost
important variables in stage 1 (small dolphirersuslarge dolphins) were similar to the variables that
were important in the singlstage classifierT@ables10, 11). In stage 2, the small dolphins (shdmtaked
common and striped) were classified based on a mix of shape,, slogdrequency variableg éde 11).
Striped dolphins produced whistles that were shorter and steeper with fewer inflection points than
short-beaked common dolphing &bles 89). The most important features in the large dolphin classifier
(Atlantic spotted dolphins, bottlenose dolpty and short-finned pilot whales) were frequency variables
(Table11). Shortfinned glot whales produced the lowest frequency whistles and bottlenose dolphins
produced the highestrequency whistlesTable7).

19



Table 7 Descriptive statistics (m&n, standard deviation, minimum, maximungf frequency variables (in kHz) for manually detected and

measuredwhistles. Because of the large number of features, only thdsaturesmost important to the classitrs (based on the Gini

Importancelndex) are ncluded in this table See AppendiB for a description of variables.

Species n Max Min Beg End | Mean ?éig%rg Median Center | 1/4 1/2 Range | COFM
mean | 14.4 | 94 | 121 | 119 | 115 1.4 11.3 11.9 11.2 | 115 5 0.8
Shortbeaked sd 32 | 20 | 37 | 29 1.9 0.9 2.1 2.1 24 | 25 3.4 0.8
common 249 -
dolphin min 7.1 52 | 56 | 5.2 6.4 0.1 6.0 6.7 58 | 6.0 0.2 0.0
max | 37.7 | 164 | 37.7 | 216 | 181 5.0 18.2 23.8 195 | 202 | 27.7 7.0
mean | 83 | 49 | 63 | 6.7 6.6 0.9 6.6 6.6 66 | 6.7 3.4 0.6
Shortfinned | sd 3.7 27 | 32 | 38 2.9 0.8 3.1 2.9 30 | 32 2.9 0.7
pilot whale min 2.4 1.1 1.1 1.4 1.6 0.03 15 2.1 1.7 15 0.2 0.0
max | 20.1 | 15.7 | 17.2 | 20.0 | 16.3 3.9 17.4 17.9 17.1 | 193 | 1438 7.8
mean | 146 | 87 | 107 | 115 | 11.3 1.7 11.2 11.6 11.1 | 116 5.8 0.9
Striped 203 sd 3.7 23 | 38 | 36 25 1.1 2.6 2.6 3.1 3.1 3.4 0.9
dolphin min 2.7 1.2 1.2 2.7 2.1 0.1 2.2 1.9 1.6 2.2 0.2 0.0
max | 23.8 | 19.3 | 229 | 238 | 208 5.3 21.0 203 | 218 | 214 15 6.3
mean | 139 | 82 | 99 | 125 | 104 1.6 10.2 11.1 96 | 10.3 5.7 1.0
Atlantic sd 39 | 24 | 33 | 41 2.6 1.1 2.6 2.7 28 | 29 3.6 1.4
spotted 706 :
dolphin min 3.0 28 | 28 | 28 3.0 0.0 3.0 3.0 30 | 30 0 0.0
max | 27.6 | 20.6 | 274 | 253 | 235 7.0 23.8 228 | 244 | 243 | 201 12.5
mean | 16.8 | 85 | 11.9 | 120 | 125 2.4 12.4 12.7 12.8 | 12.7 8.3 2.0
Bottlenose sd 44 | 29 | 46 | 49 3.2 1.4 35 3.0 41 | 41 4.4 2.2
dolphin 1632 min 3.2 2.4 2.6 3.2 2.8 0.0 2.8 2.8 2.4 2.6 0 0.0
max | 384 | 264 | 300 | 38.4 | 284 10.6 31.9 279 | 344 | 379 | 315 18.2
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Table 8 Descriptive statistics (mean, standard deviation, minimumaximum) for features describing shape for manually detected and
measured whistlesDuration and delta features (time between inflection points) are given in secarBiscause of the large number of
features, only thosdeaturesmost important to the clasdiers (based on the Gini Importandaedex) are included in this tableSee AppendiB
for a description of variables.

Species n Duration Max delta | Min delta '\(;I;?; # Iggf;filg:y jol\jvr; # ?&m ﬁ:\ztn
mean 0.8 0.4 0.2 0.3 4.7 1.0 4.7 4.7
Shortbeaked sd 0.5 0.5 0.2 0.3 4.9 2.8 7.6 7.6
common dolphin 249 min 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 2.0 1.8 1.2 1.2 28.3 42.0 42.0 43.0
mean 0.5 0.3 0.1 0.2 5.2 7.0 6.1 6.2
Shortfinned flot 056 sd 0.3 0.3 0.1 0.2 5.3 14.4 6.6 6.4
whale min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 3.1 3.1 0.6 1.6 37.0 137.0 41.0 37.0
mean 0.7 0.3 0.1 0.2 4.3 0.7 4.7 4.8
_ _ sd 0.3 0.3 0.2 0.2 6.9 0.7 7.3 7.3
Striped dolphin 293 -
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 2.0 15 1.3 1.3 111.1 4.0 35.0 35.0
mean 0.3 0.2 0.1 0.1 12.0 4.4 3.2 2.9
Atantic spotted 206 sd 0.3 0.3 0.1 0.2 12.9 9.6 3.9 3.9
dolphin min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 2.4 2.2 0.7 1.1 137.9 87.0 29.0 28.0
mean 0.7 0.5 0.1 0.3 4.5 11.0 12.9 13.1
Bottlenose sd 0.5 0.6 0.1 0.3 5.5 21.7 12.5 12.5
dolphin 1632 min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 3.7 3.6 1.0 1.8 100.0 129.0 79.0 76.0
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Table 9 Descriptive statistics (mean, standard deviation, minimum, maximum) for features describing giogeHz/sec) for manually
detected and measuredavhistles. Because of the large number of features, only thdsaturesmost important to the classifiergbased on the
Gini Importancelndex) are included in this tablesee AppendixB for a description of vaables.

Species n 'Z:g;g Absolute slope | Positive slope | Negative slope Epir\zigi dolz\):r:g\?vre]:tpt Peﬂr;::: nt

mean 1.2 12.2 35.9 -38.1 455 36.7 17.8

Shortbeaked sd 9.6 9.2 37.3 38.9 20.4 18.5 11.2
common 249 -

dolphin min -26.9 0.6 0 -178.9 0.0 0.0 0.0

max 57.1 59.1 281.2 0 100.0 100.0 32,5

mean 1.9 22.4 71.2 -66.9 38.6 35.8 25.5

Shortfinned sd 12.3 21.1 35.8 40.3 8.9 7.8 7.4

pilot whale 236 min -58.3 0.3 0 -234.4 0.0 0.0 0.0

max 100.0 100 183.6 0 100.0 100.0 33.2

mean 15 15.1 48.9 -43.2 42.2 39.3 18.5

_ _ sd 11.4 12.1 36.5 42.5 17.8 18.2 11.6
Striped dolphin 293 -

min -68.4 0.4 0 -272.6 0.0 0.0 0.0

max 71.4 112.3 164.7 0 100.0 100.0 32.7

mean 14.5 49.3 101.5 -92.7 46.1 33.3 20.6

Adantic spotted | - sd 31.6 39.7 445 53.8 13.3 10.7 8.1

dolphin min -125.0 0 0 -390.6 0.0 0.0 0.0

max 242.8 281.2 406.2 0 100.0 100.0 33.3

mean 1.2 40.7 92.1 -90.5 39.3 38.4 22.3

Bottlenose sd 17.9 30.1 44.2 48.5 9.4 8.4 7.1

dolphin 1632 min -79.6 0 0 -1031.2 8.0 0.0 0.0

max 255.7 264.2 502.4 0 100.0 83.9 33.3
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Table10. Tenfeatures most important in the singlestage
classifier trained using manually detected and extracted
whistles. See AppendiB for a description of eaclieature.

Feature Ginilmportance value

positive slope 104.1
# flatdown 93.7
absolute slope 86.1
# downflat 78.1
negative slope 76.5
# inflection points/duration 76.5
duration 75.8
% flat 72.5
center frequency 70

1/4 frequency 69.2

Tablell. Ten features most impdant in each classifier in the twetage classifier trained using
manually detected and extracte@histles. See AppendiB for a description of each feature.

Stage 1

Stage 2

Small dolphins vslarge dolphins

Shortbeaked @ommon dolphins vs
Striped dolphins

Atlantic spotted dolphins vs
bottlenose dolphins vsshort-
finned pilot whales

Gini Gini Gini
Feature Importance | Feature Importance | Feature Importance
value value value
positive slope 64.9 duration 11.7 center frequency 34.9
absoluteslope 54.8 positive slope 114 mean frequency 26.9
. # inflection -
negative slope 53.7 points/duration 104 minimum frequency 24
% flat 324 beginning 9.9 maximum 23.8
frequency frequency
duration 235 absolute slope 8.8 median frequency 22.5
mean slope 15.8 1/2 frequency 8.7 1/4 frequency 21.3
# inflection
# updown 11.2 mean frequency 8.4 points/duration 19.3
# downflat 111 median frequency 8.1 1/2 frequency 19
% downswept 111 center frequency 7.3 # flat-down 19
# inflection
points/duration 10.7 1/4 frequency 6.9 absolute slope 18.6
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3.4.2 Automated Measurements

Descriptive statistics for features that were important in the classifiers based on Gini Impovianes
are presentedin Tables 2¢14. Based on Ginimportance values duration was the mosimportant
feature inboth the singlestage and the twestage automated classifier3gbles15 and 16). Atlantic
spotted dolphins andshortfinned pilot whalesproducedthe shortest whistles (mean = Os®&conds
(sec), sd ©.1sec and 0.3ec, sd = @ secespectively Table B), and shortbeaked common dolphins
producedthe longest whistles (mean = O%®c sd = 04 sec) For the singlestage classifier, features
describing slope were also importaritgblel5).

For the twostage classifier, featuregescribing frequency were most important (after duration) in stage
1 (shortfinned pilot whales ersusdolphins, Table B). All frequency features were lowest for pilot
whale contours Tablel1l2) and highest for bottlenose and shedreaked common dolphinsAtlantic
spotted and striped dolphin contours were generatiythe middle of the frequency rangelative to the
other species and their frequency features were similar to each otinestage 2, features describing
slope were the most important for sepating thefour smaller dolphin species (shereaked common,
striped, Atlantic spottedand bottlenose Table 16). Sopes of whistle contours were steepest for
Atlantic spotted dolphin(mean absolute value = 147 kHz/sd =68 kHz/s Table ¥) and were
predominantly positive (mean slope = 9.6 kHz8l =20.1 kHz/s)Bottlenose dolphins were the only
species with contours containing predominantly negative slopes (mean slopel kHz/s sd =16.1
kHz/s).
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Table 2. Descriptive statistics (mearstandard deviation, minimum, maximum) for frequency variables (in kHz) for automatically detectec
and measured whistlesBecause of the large number of features, only thdgaturesmost important to the classifiers (based on the Gini
Importance Index) areincluded in this table See AppendiB for a description of variables.

Species n Max Min Beg End Mean 3;3?;3;: Median Center 1/4 1/2 Range | COFM
Short mean| 165 | 11.6 | 136 | 146 | 13.9 1.4 13.8 14.0 13.6 | 13.7 4.9 1.0
beaked s sd 6.1 5.3 6.0 6.0 5.4 0.9 5.5 5.5 56 | 5.6 3.2 1.4
common min | 2.6 0.9 0.9 1.1 1.5 0.1 1.3 1.8 09 | 15 0.2 0.0
dolphin max | 448 | 39.9 | 441 | 437 | 429 7.9 437 415 | 437 | 442 | 285 | 173

mean| 109 | 7.6 9.1 9.2 9.2 0.9 9.2 9.2 93 | 9.2 3.3 0.4
Short sd 6.1 5.1 5.8 5.8 5.5 0.8 5.6 5.5 57 | 5.6 2.8 0.5
finned glot 749 :
whale min | 1.3 0.9 0.9 0.9 0.9 0.03 0.9 1.1 09 | 09 0.2 0.0
max | 39.9 | 358 | 382 | 39.6 | 385 4.6 38.3 37.9 37.7 | 381 | 197 4.1
mean| 13.8 | 9.0 11.2 | 119 | 111 1.4 11.0 11.4 10.9 | 10.9 4.8 0.9
Striped 643 sd 4.3 35 4.2 4.4 3.7 0.8 3.7 3.6 39 | 38 2.9 1.4
dolphin min | 2.1 0.9 1.9 1.7 1.9 0.03 1.9 1.9 09 | 1.9 0.2 0.0
max | 422 | 324 | 422 | 416 | 36.3 4.8 35.3 37.3 39.0 | 35.2 | 17.1 19.7
mean| 145 | 8.2 10.3 | 128 | 10.9 1.7 10.7 11.3 9.9 | 106 6.3 1.2
Atlantic sd | 48 34 | 44 | 50 3.8 1.0 3.8 3.8 3.8 | 39 3.4 1.2
spotted 988 :
dolphin min | 2.2 0.9 0.9 0.9 1.5 0.1 1.7 1.6 15 | 1.3 0.6 0.0
max | 44.6 | 422 | 431 | 444 | 427 8.6 42.7 42.7 42.7 | 427 | 227 12.0
mean| 17.4 | 9.3 13.7 | 13.0 | 13.1 2.3 13.0 13.3 13.4 | 13.0 8.1 1.5
Bottlenose sd 4.8 35 5.4 5.3 3.8 1.2 39 3.7 44 | 43 3.9 2.3
dolphin 1719 min | 6.0 3.4 3.7 4.3 5.1 0.2 5.2 5.2 39 | 47 0.7 0.1
max | 44.8 | 33.0 | 448 | 39.6 | 36.2 9.6 35.6 36.7 39.2 | 444 | 322 55.5
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Table B. Descriptive statistics (mean, standard deviation, minimum, maximum) for features describing shape for automatically detecte
measured whistlesDuration and delta features (time between inflection points) are given in secari8iscause of the large maber of
features, only those features most important to the classifs (based on the Gini Importandaedex) are included in this tableSee AppendiB
for a description of variables.

Species n Duration Max delta | Min delta Mean # Inflect_lons/ #up- i Iy iy
delta duration down flat down
mean 0.6 0.5 0.1 0.3 24.1 3.9 5.8 5.9
Shortbeaked sd 0.4 0.4 0.2 0.3 25.1 3.3 7.4 7.4
common 475 -
dolphin min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 3.1 2.3 1.2 1.3 114.1 19.0 44.0 44.0
mean 0.3 0.1 0.03 0.1 27.2 2.2 4.4 4.8
Shortfinned 249 sd 0.2 0.1 0.05 0.1 24.8 2.3 5.7 5.7
pilot whale min 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 1.2 1.0 0.4 0.7 145.2 14.0 45.0 46.0
mean 0.5 0.4 0.1 0.2 19.3 3.0 4.8 4.8
] ) sd 0.3 0.3 0.2 0.2 17.7 3.2 6.9 7.0
Striped dolphin 648 -
min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 2.7 2.6 1.1 1.5 88.7 33.0 57.0 58.0
mean 0.3 0.2 0.04 0.1 51.1 5.9 3.1 3.1
Atlantic sd 0.1 0.2 0.1 0.1 28.0 4.4 3.1 3.0
spotted 988 -
max 1.4 1.3 0.4 0.8 166.7 32.0 23.0 20.0
mean 0.5 0.4 0.1 0.2 18.3 3.4 13.7 14.0
Bottlenose 1719 sd 0.3 0.3 0.1 0.2 15.5 3.5 12.1 12.0
dolphin min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 4.3 4.3 0.9 1.5 105.5 35.0 109.0 105.0
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Table 4. Descriptive statistic§mean, standard deviation, minimum, maximum) for features describing slope (in kHz/sec) for automatical
detected and measured whistleBecause of the large number of features, only those features most important to the classifbased on the
Gini ImpatancelIndex) are included in this tableSee AppendiB for a description of variables.

. Mean " Negative Percent Percent Percent
Species n Absolute slope | Positive slope

slope slope upswept downswept flat

mean 2.6 39.4 95.8 -98.5 42.2 37.4 20.3

Shortbeaked common 475 sd 13.1 50.8 133.3 123.1 15.0 14.0 8.2

dolphin min -46.2 1.3 0 -1229.6 5.3 3.2 0.0

max 5.5 385.1 1143.1 0 96.8 94.7 32.1

mean 11 35.1 98.5 -93.1 37.7 39.0 23.4

i i sd 21.3 38.2 82.7 74.7 14.5 155 7.8
Shortfinned glot whale 749 -

min -15.9 0.6 0 -690.5 0.0 0.0 0.0

max 20.6 385.2 928.8 0 100.0 100.0 33.1

mean 1.9 31.8 86.5 -93.3 41.6 39.4 19.0

. . sd 12.2 37.9 93.4 116 17.0 17.4 10.0
Striped dolphin 648 -

min -65.8 0.8 4.3 -1343.7 0.0 0.0 0.0

max 62.1 339.6 633.7 0 100.0 100.0 32.7

mean 9.6 86.6 146.7 -155.6 46.6 35.5 17.9

) ) sd 20.1 56.8 67.7 82.6 11.3 10.7 6.5
Atlantic spotted dolphin| 988 -

min -76.9 6.8 62.5 -864.6 8.2 10.8 0.0

max 84.8 399.9 724.3 0 83.1 83.6 32.0

mean -1.4 40.5 123.4 -113.9 36.8 38.8 24.3

] sd 16.1 37.4 121.9 87.9 9.7 9.2 4.7
Bottlenose dolphin 1719 -

min -64.8 3.7 0 -1348.8 5.4 5.7 5.0

max 64.0 541.2 2495.2 0 88.7 89.3 325
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Tablel5. Tenfeatures most important in the singlestage
classifier trained using automaticallgietected and extracted
whistles. See AppendiB for a description of each feature.

Feature Gini Importance value

duration 137.4
absolute slope 80.1
negative slope 70.8
% flat 70.5
positive slope 66.7
# inflection points/duration 61

center frequency 60.8
maximum frequency 57.6
mean frequency 56.3
maximum delta 52.6

Table B. Ten features most impdant in each classifier in the twetage classifier trained using
automatically detected and extracted whistleSee AppendiB for a description of each feature.

Stage 1

Stage 2

Shortfinned pilot whales vs dolphins

Shortbeaked @mmon dolphins vsstriped dolphins
vs. Atlantic spotted dolphins vsbottlenose

dolphins

Feature Gini Importance value| Feature Gini Importancevalue
duration 63 duration 93.9
maximum frequency 45.8 % flat 64.1
;:T:)Oe;fLich:;r;tnof frequency 455 negative slope 63.4
center frequency 40.7 absolute slope 61.7
mean frequency 32.8 positive slope 56.9
standard deviation of the #inflection pointgduration

frequency 29 56.9
maximum delta 28.1 # downflat 52.9
frequency range 26.9 # flat-down 50.9
mean delta 21.6 max delta 35.7
minimum frequency 21.4 1/4 frequency 35.5
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3.5 PAMGuar®OCCA

Both the manual classifier and the automated classifier have been incorporatethen®OCCA module
in PAMGuard The updates to ROCCA will be availdbleusers atwww.pamguard.orgin the next
PAMGuard updateUntil that time, users can obtain the updatirectly from BioWaves, Inc(www.bio-
waves.com. With these new ROCCA updateserscan now choosdo run the automated Atlantic
classifier, the manual Atlantic classifier the manual tropical Pacific classifier whstarting ROCCA
Whistles are detected, extracted and measured usirgmethodsdescribedin Sections2.2.1¢2.2.3. A
Us e rMarsial describingthe setup and use of both the manual and the automated clagsifis
available, and detailed help files are contained within the softwW@swald and Oswald 2013)
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4. DISCUSSION

Two new classifiensere trainedfor whistles produced by delphinid species in the northwestern Atlantic
Ocean. One classifier was trained and tested using whistles detected and extracted manually and the
secondwas trained and tested using whistles detected and extracted automaticadigg PAMGuards
WMD module).These are the only classifiers that we are aware of tleatrently are availableo the
general public and scientific commungpecificallyfor classifying whistlesf delphinid speciesccurring

in the western Atlantic ocearThese classifiers will be valuable ®oi the analysis of acoustic data,

both in realtime andfor post-processingCorrect classification scores were excellent for both classifiers,
with 78 percentand 80percentof whistles and 86percentand 91percent of schools being correctly
classified using the manual classifier and the automated classifier, respecliielseresults compare

very favorably with multspecies classifiers trained for other spegjgsups and locationsg-or example,

the originalROCCA classifier is a sirgfigge randordorest classifier that was trained using whistles
recorded from eight delphinid species in the tropical Pacific O¢@smwald et al. 2013Dverall correct
classification scores for this classifier were onlypéent for whistles and 6(ercentfor encounters
(Oswald et al. 2013Pther researcheyhaveused multivariate discriminant function analysis to classify
whistles produced by five species in the west®&orth Atlantic, with an overall correatlassification

score of 70percent (Steiner 1981) Roch et al. (2007) used cepstral feature vectors and Gaussian
mixture models to classify whistles and clicks produced by four species recorded in the Southern
California Bight and the Gulf of Californ@orrect classification scoreim this studyrangedfrom 67
percentto 75 percent, depending on how their training and test data were partitioned.

We believe the maimeason for the high correct classification scotieat were obtainedin this project
were due to theuse of atwo-stage classifief~or both the manual and automated data, theo-stage
classifier was able to classify whistles and encounters more accurately than thestaggeclassifier
(Table 4. This is because different features were imamt for separatingcertain speciesor species
groups Using two classifiers instead of only one, allows different feasete to be exploited more
effectively. For example, in the singl#age manual classifier, shdseaked common dolphins were
most oten misclassified as striped dolphins (and vice vewrma] bottlenose dolphins were most often
misclassified as Atlantic spotted dolphins (and vice vefrahle 2. It is likely that this i®ecause of the
similar slope and shape featurés whistles fran those two speciegiroups When species with similar
slope and shapevhistle features were combined into two groups atite whistles were first classified
into either the smalldolphin or largedolphin classcorrect classification scores increasdrdmatically
Stage two contained two different classifiers that used different sets of featiresach The most
important features in the small dolphin classifier (stripentsusshort-beaked common dolphins) were a
mixture of shape, slopeand frequerty features Table 1). Although the differences in those features
did not seem large for commatolphinsand striped dolphins, they were sufficient to create a classifier
that coulddistinguishbetweenthose two species with almost 1Qfercentaccuracy. Alifferent set of
features was most important in the large dolphin (bottlenose, Atlantic spotted dolphirshad-finned
pilot whale) classifielTheten most important features in this classifiprimarily consisted ofrequency
variables Table 1). Thewhistles produced by pilot whales were much lower in frequency than those
produced by Atlantic spotted and bottlenose dolphins and as a result, no pilot whale whistles were
misclassified as Atlantic spotted or bottlenose dolphiasd very few Atlantic sgted or bottlenose
whistles were misclassified as pilot whales.

The two-stage approach also worked well for the automated ddta the singlestage automated
classifier, duration and contowope featureswere most important for separating speciegapke 15). In
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this classifier, classification errors for all species wdistributed relatively evenly among all species
(Table 5. Major sources of these errors are likaltye to the similar durations ofwhistles for pilot
whales and Atlantic spotted dolphs) and similar slope characteristics for Atlantic spotted and
bottlenose dolphins and striped and shdr¢éaked common dolphinsTables B and 14). In addition,
frequency characteristics were similar for shbgaked common and bottlenose dolphjress wellasfor
Atlantic spotted and striped dolphin§&ble 14.

Thetwo-stage classifier had higher correct classification scores because inostagalot whales were
effectively separated from the other species based mainly on duration and frequency chistaager
(Table B). Althoughwhistles fromthe four smaller species had frequency characteristicg were
similar, pilot whalewhistleswere consistently lower in frequency than tistlesof all other species
Pilot whale whistts also haghorter duations thanwhistles fromall other specieswith the exception of
Atlantic spotted dolphirwhistles (Tables 2 and 13). Separating pilot whaleffom the other species
based on frequency in stagme removedsome of thesources of errarThese sources of @r included
slope characteristicgsimilar between pilot whales and striped dolphins and pilot whales and short
beaked common dolphinsand duration (similar betweepilot whales and Atlantic spotted dolphins
(Tables B and 14). In stagetwo, frequency variables were not as important as they were in stage
because these features were so similar among the small dolpimstead, duration and slope variables
were used to separate themall dolphinspecies Table B). Because pilot whales we not included in
stage 2, Atlantic spotted dolphins could be separated based on durdfiontours of the remaining
three species had similar durationand so slope variables were important for their identification
Bottlenose dolphins had the most disttive slope characteristics of the remaining three specieble
14). Most of the classification errors in thevo-stage classifier were common, stripeahd bottlenose
dolphins being misclassified as pilot whal€alfle §, which suggests that frequepwariables should be
refined further to allow greater separation between pilot whales and smaller dolphins.

The accurate performance of the automated classifign relation to the manual classifiewas
unexpected For each encounter, WMD settings weretiagzed for whistle detection and contour
extraction; however, as with any automated system, inaccurate extractions and false detections were
unavoidable In addition, the WMD sometimes fragmented whistles, resulting in a single whistle
incorrectly labelechs multiple individual whistleg-{gure ). Because the goal of this work was to create
a fully automated classifierit was decidedthat inaccurately extracted whistles, false detectipios
fragmented whistlesvould not be removedOnly by usinghe entire output of the WMDto train a
classifier is it possible toreate aclassificationsystem that is fully automated from start to finisAn
advantage tausingthe entire output of the WMDis that it provided a larger sample size for training and
testing the classifierThe larger sample size likebllowed the classifier t@apture a greater amount of
the variability in the datset and consequentlyresulted in higher correct classificatiatores One
disadvantage to the fully automated classifier is that its performance is affettiexigreater extentby
noiseand other soundé the recordings than the performance of the manual classigigiowever this

is true of most automated acatic detection and classification systenifie manual classifier requires
the user to detect whistles so there are no (or very few) false detections caused by Inogsigition,

the user has the option to adjust the extracted contournb@ke it more accuate. Low signato-noise
ratios in the recordings can cause the automated detector to produce false detections or inaccurate
whistle extractionsIn addition, noise can mask portions of whistles, causing them to be fragmented
Adjusting thenoise and threlolding settings in theWMD (Figure 3 can reduce theeffectsof noise in

the recordings, but it is not always possible to remove it complefdie amount and type of noise in
recordings will vary by location, recording equipmeahd time The recordingaused to train this
classifier were made using towed hydrophone arrays, which kawedifferent self and ambienhoise
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characteristics than recordings made using other devices such as seafbooted hydrophones and
acoustic recorderslt is important to test the classifier on each new dataset to evaluate whether the
automated classifier is appropriate for that dataskt some cases, interference from noise may be too
great, and it may be necessary to use the manual classifier.

While both the manual and automated classifiers produced good results when evaluatedhestegt

data, it is important to treat these resultswith caution, especiallywhen using the classifiers to analyze
novel data. Differences in recording platfornend noise environments may affect the performance of
automated detectors as well as whistle measurements made using manual methodexample,
ROCCA"s classifiers were trained with data <coll e
surface of tle water. Whistles recorded at depth (ex. using seafloor mounted autonomous recorders)
may have different characteristics due to propagation effects and attenuation. In addition, animals may
produce whistles with different characteristics in response tophesence of a research vessel towing a
hydrophone array. If this is the case, then the classifiers may perform differently when used on
recordings made using less obtrusive platforms such as autonomous recorders or sonobuoys. It is not
possible to asseghe performance of classifiers without growticithing them using visually validated
acoustic recordingdlf possible, it igmportant to groundtruth the classifiers using visually validated
acoustic data before each new analysis. This will provide eat®s specific to the recordings in
guestion and will allow a more accurate assessment of the results.

Although ROCCA does not classify with fi@ftentaccuracywe believe thatthe correct classification
scoresof ~ 8590 percent thatwe achievedare high enough to provideeliable information about the
identity of whistlesproduced by mangpeciesof odontocete that are monitored with passive acoustics.
These results can be used poovide new and important information on occurrence, distribution,dan
even the behaviors of dolphins and pilot whakbsit would not bepossible (or would be extremely
difficult or expensive) to obtaimtherwise. Neverthelessadditional effort is neededto continue to
improve classification success. Some of the featuess, @uration, beginning and ending frequencies,
maximum frequencygurrently includedin the classifier could be unreliable, depending on the SNR of
the recording Alternative features that may be more robust to noissay increase the accuracy and
reliabiity of classifiers. Additional variablessuch as cepstral features (Roch et al. 2007) or statistical
measuref signalssuch as those used by Fristrup and Watkins (1898)e program ACOUST Afould

be explored.

Finally, it ismportant to note that the classifiers presented here include only five whistling species that
occurin the northwest Atlantic Ocean. At leastvenadditional speciesthat occur in this region are
known to produce whistlegpantropical spotted dolphin,Stenella attenuataroughtoothed dolphin,

Steno bredanensisClymene dolphinStenella clymenelongfinned pilot whale,Globicephala melas;
false killer w hG@Grampus grRdusAtantic svhitegidet pldiphimLagenorhynchus
acutug (Palka2012 Waring et al. 2012 These species are not yet included in RO®E&ause
recordings of singlespeciesschools either were unavailable or there wer@ot enough acoustic
encounters to reliably train the classifieFhislack ofdatafor some species due to the fact that these
species were either rarely encountered during the NEFSC, SEFSC and Duke surveys or, if they were
encountered, they produced few or no whistlegar the survey vesseUnfortunately, If recordings
containingany ofthese speciesire analyzed using ROCCA, they will be misclassified as one of the five
speciesncludedin the classifier. This type of error will result inianorrectpicture of the occurrence of
species in recordings analyzed using ROCCA. Given the faethisties produced bythese species

were rare during the surveys,is expeced that the magnitude of this error will be lofer at least some
species Some species may change their acoustic behavior (i.e. stop whistling) in response to the
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presence of ships. kack of recordings does not necessarily reflect low abundance for those species.
Therefore we believe that it is important to addll missing species to the classifier. The ability to
identify the full complement of species in the northwest Atlantiould allow for a more complete
understanding of the occurrence and distribution of whistling species in the northwest Atlantic Ocean.
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5. CONCLUSIONS

This project resulted in theuccessfutlevelopment ofdelphinidwhistle classifiers that are usdriendly,
accuate and freely available for download, making them useful tools for the analysis of acoustic data
collected along the Atlanticoast of the United State<lassifiers were trained using whistles detected
both manually and automatically, providirdternative methods for analyzing data with a wide variety

of signalto-noise characteristicsThe ability to identify delphinid species based on whistles will allow a
deeper understandingf the distribution, occurrenceand vocal behavigrof theseimportant, federally
protected,living marine resource
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6. RECOMMENDATIONIR FUTURE RESEARCH

Although resultfrom the manual and automated classifiprocesses as developed and applied here
were good, there are several importariasks that should be undertaken to make ROCCA more
complete, accurate precise and dependable Perhaps the highest prioritys testing the Atlantic
classifierausingvisually validated recordingsontainingdifferent noise leveland characteristicsThisis
particularly important forthe automated classifierand forrecordings maddrom different platforms,
such as seafloor recorderBesting classifiers on recordings made using seaftmrders is challenging
because seafloor recordings rarely haveasated visual observatioresd marine mammalswhich are
often necessary to validate speciegousticidentifications In cases when acoustidentification is
uncertain, suface observations concurrent with seaflemounted acoustic recordings and localiions
should beconductedin order toconfirm species identity

When possible classifiers should be tested in retine to assess their capabilities for fiekdbrk
applications The classifiers this studywere trained using data analyzed duripgstprocessing, which
alloned more time for ensuring accuracy and testiobWMD parametersin a realtime setting there
are often manyactivitiesoccurring simultaneously and conditions are constantly changmthe field
detectionclassification sftware needs to beobust, easyto use andtime-efficient n order to be truly
useful ROCCA should be tested in réale scenariosn order to evaluate itsobustnessaccuracyand
userfriendliness, a well aghe frequency with which WMD settings meb¢o be adjustedBased orsuch
at-seatesting and evaluationimprovements can be made to make ROCCA a more effective field tool.

ROCCA's Atlantic classifier current Eagthasbaofthai ns f i
United StatesRecodings are currently available for five additional spe¢ieas, not currently included

in ROCCApantropicalspotted dolphin, roughoothed dolphin,Clymene dolphinfalse killer whaleand

Ri s s o' sUnfdruhaely sample sizes are nget large enough for training and testimdgtectors
and classifierdor these speciedn order to be able to correctly identify all of the whistles on recordings
made in the westeriNorth Atlantic Ocean, it is necessary to add these specisl any others tht are
missing to the classifier During the summer of 2013hé SEFS€onducted aconcurrentvisual and
acoustic surveyff the East Coast of the United StatesBecause this survey occurred as work on the
Atlantic classifier was wrapping up, recordingsd®a during the survey were not included in our dataset.
It is recommended thathe data recorded during SEFS@013 surveybe analyzedand existing data
from other researcherbe obtainedto increase sample sizes and allow additional species to bedigtiu
in the Atlantic classifiers.

Whil e ROCCA's classifiers have been trained using
the only marine mammal specidéisat produce tonal signaldvlany baleen whale species, including right
(Eubalaena glacia), fin (Balaenoptera physaljisblue (Balaenoptera musculusand humpback whales

(Megaptera novaeanglige also produce tonal signa(®ayne and McVay 1971, Mattila et al. 1987,
Thompson et al. 1992vlatthews et al. 2001Mellinger and Clark 2003These sighalsan easily be
detected and extracted wusing eit ROCCAhs fo¥siDd om R
classifiers have proven to work well with variable kiglguency tonal sounds and are likely to also

work well with lowfrequency ton& sounds such as those produced by baleen whales. Fristrup and
Watkins (1993) showed that the same feature vectors can be used to classify delphinids, baleen whales

and pinnipeds. Their detection/classification system, ACOUSTAT correctly classiiedé® of sounds

produced by 53 marine mammal species. However, this classifier has not been optimized or tested
specifically on data collected in the northwest Atlantic Ocearmllaboraton with the developers of
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AcouSTAT and/or other researchers workamgthe detection and classification of sounds produced by
baleen whaless recommendedo develop a multspecies baleen whale classifier specifically for the
northwest Atlantic Ocean and other areas of high naval activity.

Although the western Atlanticcontains areas that arenportant areas forPAM (especially related to
United States (U.SNavy activities), there are many other locations for which classifiers should be
created Previous studies have shown geographic variation in characteristics isflagh(e.g., Bazda
Duran and Au 20Q4Morisaka et al. 2005Ansmann et al. 20Q7aron et al. 2008May-Collado and
Wartzok 2008)and so it is important to develop classifiers for the specific locations in which they will be
used Areas such as the Guif Mexico,the Gulf ofAlaska, the temperate Pacific, tivaters surrounding

the Mariana Islandsand the CaribbearSeaare all being monitored using passive acoustics and are
important areas fonaval exercisedA standardized method for detectioma classification of delphinids
would allow results to be compared among locatioltsis recommendd that detectors and classifiers

be developedising data specific to each of the locations mentioned abdvisalso recommendd that
these detection/classification systems be based on common software systems sopthiators can
easily work in multiple areas without having to learn new methods for different study areas.

Methods for efficiently analyzing acoustic data and exangnguestions related to occurrence,
distribution, and behavior of animals are greatly needdtbr exampleit is crucial to be able to

accurately and efficiently identify species in order to evaluate potential responses to naval and other
human activitesL u mpi ng species into a ‘delphinid’ group i
result in the reactions of one species being masked by the opposite reactions of another sihédaige

amount of archival towegrray and seafloemounted recorder dad exist for the northwesrn Atlantic

Oceanlt isrecommenabd that a detector/classifier developed specifically for the northwestern Atlantic

Ocean be usedto process these data and examine guestions related to the occurrence of animals and
responses tamaval activities such as sonar exercises, explosions and ship traffic.
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APPENDIX A:

CHARACTERISTICS OF THE HYDROPHONE ARRAYS AND RECORDING SYSTEMS
USED BY THE SOUTHEAST FISHERIES SCIENCE CENTER AND THE NORTHEAST
FISHERIES SCIENCE CENTER OF THE NATIONAL MARINE FISHERIES SERVICE, AND
DUKE UNIVERSITY
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Appendix A

Characteristics of the hydrophone arraynd recording systems used by the Southeast Fisherie
Science Centeaindthe Northeast Fisheries Science Centdithe National Marine FisherieService,

and Duke University
. Number of Recording| Sampling
Source Quuise Year Hydrophones Array FrequencyResponse Medium Rate
+/-3dB from 1 to 180 kHz
Computer
SEFSC AMAPPS 2011 6 except for a 3 dB peak at 150 . 192kHz
hard drive
kHz
Digital
SEFSC| GU0201 | 2002 5 +/-3dB from 2 to 1kHz.except | o | 48kH;
for a 4dB peak at 35 kHz
Tape
Digital
+/-1dB from 1 Hz to 15 kKnd .
SEFSC GU02-01 2002 2 +/-2 dB from 15 to 25 kHz. Audio 48 kHz
Tape
Digital
+/-1 dB from 1 Hz to 15 kHz .
SEFSC GU06-03 2006 2 and +£ 2 dB from 15 to 25 kHz. Audio 4 kHz
Tape
+/-1.5 dB up to 15 kHz and-& | Computer
NEFSC AMAPPS 2011 2-3 dB up to 25 kHz hard drive 192kHz
2007- Computer
Duke | Oneday surveys 2010 4 +/- 3dB from 2kHz to 10(kHz hard drive 192kHz
2008,
Duke DTAG 2011, 1 +/- 3dB from 400 Hz to 9%Hz DTAG | 96-192 kHz
2012

Key:AMAPPS Atlantic Marine Assessment Program for Protec&ukciesdB = decibel(s); Duke = Duke University; GU = NOAA
ShipGordon GunterHz = Hertz; kHz = kilohertz; NEEQrtheast Fisheries Science Center; SEFSC = Southeast Fisheries
Science Center
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APPENDIX B:

VARIABLES MEASURED BY ROCCA
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Appendix B
Variables measured by ROCCA

Variable Explanation

Begsweep slope of the beginningweep (1 = positive]l = negative, 0 = zero)

Begup binary variable: X beginning slope is positive,£beginning slope is negative

Begdwn binary variable: * beginning slope is negative beginning slope is positive

Endsweep slope of the endweep (1 = positivel = negative, = 0 zero)

Endup binary variable: *ending slope is positive,®ending slope is negative

Enddwn binary variable: Eending slope is negative,€ending slope is positive

Beg beginning frequencyHertz HZ)

End ending frequency (Hz)

Min minimum frequency (Hz)

Dur duration (seconds)

Range maximum frequency minimum frequency (Hz)

Max maximum frequency (Hz)

mean freq mean frequency (Hz)

median freq median frequency (Hz)

std freq standard deviation of thérequency (Hz)

Spread difference between the 75th and the 25th percentiles of the frequency

quart freq frequency at onequarter of the duration (Hz)

half freq frequency at onehalf of the duration (Hz)

Threequart frequency at threequarters of theduration (Hz)

Centerfreq (minimum frequency+ (maximum frequencyninimum frequency))/2

rel bw relative bandwidth: (maixnum frequency- minimum frequency)/center frequency

Maxmin maxmum frequencyminimum frequency

Begend begnningfrequencyend frequency
coefficient of frequency modulatiofCOFM)take 20 frequency measurements equally

Cofm spaced in time, then subtract each frequency value from the one befoBOEM is the
sum of the absolute values of these differences, all divided K000

tot step number of _steps (1percentor greater increase or decrease in frequency dvey
contour points)

tot inflect number of inflection points (changes from positive to negative or negative to positive
slope)

max delta maximum time between inflectiopoints

min delta minimum time between inflection points

maxmin delta

maxmum delta/minimum delta

mean delta mean time between inflection points
std delta standard deviation of the time between inflection points
median delta median of the time betweeinflection points
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Variable

Explanation

mean slope

overall mean slope

mean pos slope

mean positive slope

mean neg slope

mean negative slope

mean absslope

mean absolute value of the slope

Posneg mean positive slope/mean negative slope

perc up percent of the whistle thahas a positive slope

perc dwn percent of the whistle that has a negative slope

perc flt percent of the whistle that has zero slope

up dwn number of inflection points that go from positive slope to negative slope
dwn up number of inflection points thagjo from negative slope to positive slope
up fit number of times the slope changes from positive to zero

dwn flt number of times the slope changes from negative to zero

flt dwn number of times the slope changes from zero to negative

flt up number of times the slope changes from zero to positive

step up number of steps that have increasing frequency

step dwn number of steps that have decreasing frequency

step.dur number of steps/duration

inflect.dur number of inflection points/duration
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