Appendix A – Integrated Comprehensive Monitoring Program. 2010 Update. THIS PAGE INTENTIONALLY BLANK

UNITED STATES NAVY

INTEGRATED COMPREHENSIVE MONITORING PROGRAM

2010 UPDATE

20 December 2010

Point of Contact: OPNAV N45 Dr. V. Frank Stone 703-604-1424 [This page intentionally left blank.]

EXECUTIVE SUMMARY

The Navy is responsible for compliance with a suite of Federal environmental laws and regulations that apply to marine mammals and other marine protected species, including the Endangered Species Act (ESA) and the Marine Mammal Protection Act (MMPA). As part of the regulatory compliance process associated with these Acts, the Navy is responsible for meeting specific requirements for monitoring and reporting on activities involving active sonar and/or detonations from underwater explosives.

This Integrated Comprehensive Monitoring Program (ICMP) plan provides the overarching framework for coordination of the United States Navy monitoring program. It has been developed in direct response to Navy Range permitting requirements established in the various MMPA Final Rules, ESA consultations, Biological Opinions, and applicable regulations. As a framework document, the ICMP applies by regulation to those activities on ranges and operating areas for which the Navy sought and received incidental take authorizations.

The ICMP is intended for use as a planning tool to focus Navy monitoring priorities pursuant to ESA and MMPA requirements. Top priority will always be given to satisfying the mandated legal requirements across all ranges. Once legal requirements are met, any additional monitoring-related research will be planned and prioritized using guidelines provided by the ICMP, consistent with availability of both funding and scientific resources. As a planning tool, the ICMP is a "living document" that will be routinely updated as the Program matures.

The ICMP will be evaluated annually through the adaptive management process to assess progress, provide a matrix of goals for the following year, and make recommendations for refinement and analysis of the monitoring and mitigation techniques. This process includes conducting an annual Adaptive Management Review (AMR) at which the Navy and National Marine Fisheries Service (NMFS) jointly consider the prior year's goals, monitoring results, and related science advances to determine if modifications are needed to more effectively address monitoring program goals. Modifications to the ICMP that result from AMR decisions will be incorporated by an addendum or revision to the ICMP. The ICMP updates will be provided to NMFS by 31 December annually beginning in 2010. This adaptive management process recurs annually, with some modifications to the process in 2011, when the Navy, with guidance and support from NMFS, is to host a monitoring workshop that incorporates outside experts and expanded participation.

Section 1 introduces the ICMP, including purpose, objectives, specific ranges and geographic areas included, and additional background material. Section 2 describes overall monitoring goals and prioritization guidelines. Section 3 discusses standard data collection and management procedures. Section 4 addresses the coordination of reporting requirements, including a specific timeline for coordination of the current year's reporting requirements, and the record-keeping system that documents how each Range Complex contributes to ongoing monitoring objectives. Section 5 outlines the adaptive management process, including provisions for annual reviews as well as a monitoring workshop in 2011. Section 6 discusses near-term plans for continued maturation of the Monitoring Program. Section 7 provides roles and responsibilities among the various Navy components. References are listed in Section 8.

2010 UPDATE dtd 20 Dec 2010

OPNAV (N45) is responsible for maintaining and updating this ICMP, as required, to reflect the results of future regulatory agency final rulemakings, adaptive management reviews, best available science, improved assessment methodologies, or more effective protective measures. This will be done in consultation with Navy technical experts, Fleet Commanders, and Echelon II Commands, as appropriate, as part of the adaptive management process.

2010 UPDATE SUMMARY

The initial version of the ICMP was released in December 2009. This document is updated on an annual basis and modifications of substance to the 2010 version are summarized below:

In Section 1, Table 1, "Status of MMPA Final Rules for Navy Range Complexes included in the ICMP" was updated. Additionally, information derived from those Final Rules published during 2010 was used to update Appendices A and B.

In Section 2, the top-level goals for monitoring were refined through the adaptive management process and expanded to incorporate comments from the Marine Mammal Commission (MMC). The process by which these goals would be further refined through collaboration with a newly created Scientific Advisory Group (SAG) and group review was added. This section also notes that Navy awarded *HDR engineering-environmental Management* (HDR|e²M) of Englewood, CO a contract to assist with designing, managing, and performing the overall monitoring. A description of an alternate approach to the study questions currently used to focus the range-specific monitoring plans was added. This alternate approach provides that HDR|e²M and the SAG will use the top-level goals established by the ICMP to define a proposed long-term strategic plan for monitoring. The intent is to incorporate this strategic plan into the framework provided by the ICMP.

In Section 3, updates to the data management approach are provided. Navy and NMFS continue to work together to develop a data-sharing process that best supports the regulatory process in a transparent manner. Navy is working with HDR|e²M to develop structured procedures to meet specific access requirements for the various Fleet, Scientific, and General Public user groups. This work will continue into 2011.

In Section 4, Table 4, "Common reporting requirements for range complexes/study areas covered by ICMP" was updated. As part of adaptive management, NMFS and the Navy are coordinating on the development of a streamlined workload plan for developing and reviewing these reports. Although the reports described will always be submitted annually at a time that allows for adequate analysis by NMFS prior to the issuance of the subsequent LOA, NMFS retains the flexibility to change those dates yearly. Each annual LOA will provide the required submittal dates.

There were no substantial changes to the adaptive management process described by Section 5.

In Section 6, progress within each of the designated "ICMP Near-Term Development Focus Areas" was listed.

In Section 7, the roles and responsibilities of Naval Facilities Engineering Command were added.

Finally, Appendix E was added to provide an initial framework for the range matrix characterization. This matrix, currently under development, will include reference information that provides the user a top-level view of attributes across the various Navy range complexes and supports comparative analysis. The work to fully develop this matrix will extend into 2011.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

2010 UPDATE dtd 20 Dec 2010

TABLE OF CONTENTS

Executive summaryi
2010 UPDATE summaryiii
Table of Figuresvi
Table of Tablesvi
1. Introduction
 Monitoring Goals and Prioritization Guidelines
2.2 Prioritization Guidelines
3. Data Collection and Management
3.1 Data Collection
4. Reporting 21 4.1 Report Coordination 21 4.2 Recordkeeping System 25
5. Adaptive Management
5.1 Annual Reviews275.2 Monitoring Workshop in 201129
6. ICMP Near-Term Development Focus Areas
7. Roles and Responsibilities
8. References
Appendix A: Sound Sources and Activities authorized or anticipated to be authorized under the MMPA Final Rules for Fleet Training Range Complexes / Study Areas
Appendix B: Sound Sources and Activities anticipated to be authorized under the MMPA Final Rules for NAVSEA RDT&E Ranges / Study Areas
Appendix C: Sample size and Statistical analysis 42
Appendix D: Marine Mammal Sighting Form for Navy Lookouts
Appendix E: Characterization of Navy Range Complexes / Study Areas

2010 UPDATE dtd 20 Dec 2010

TABLE OF FIGURES

Figure 1:	Navy Range Complexes and Study Areas included under the ICMP 2	
Figure 2:	Strategic plan development and implementation process	F

TABLE OF TABLES

Table 1:	Status of MMPA Final Rules for Navy Range Complexes included in the ICMP	. 3
	Data Elements to be recorded for individual marine animal sightings associated itored military readiness activities	17
Table 3:	Summary Sections contained in the Annual Exercise Report	22
	Common reporting requirements for range complexes/study areas covered	24

2010 UPDATE dtd 20 Dec 2010

1. INTRODUCTION

The Navy is responsible for compliance with a suite of Federal environmental laws and regulations that apply to marine mammals and other marine protected species, including the Endangered Species Act (ESA) and the Marine Mammal Protection Act (MMPA). As part of the regulatory compliance process associated with these Acts, the Navy is responsible for meeting specific requirements for monitoring and reporting on military readiness activities involving active sonar and underwater detonations from explosives and explosive munitions. These military readiness activities include both Fleet training events and Navy-funded research, development, test and evaluation (RDT&E) activities.

This Integrated Comprehensive Monitoring Program (ICMP) plan provides the overarching framework for coordination of the United States Navy monitoring program. It is intended for use as a planning tool to focus Navy monitoring priorities pursuant to ESA and MMPA requirements and as an adaptive management tool to analyze and refine monitoring and mitigation techniques over time. It has been developed in direct response to Navy Range permitting requirements established in the various MMPA Final Rules, ESA consultations, Biological Opinions, and applicable regulations. As a framework document, the ICMP applies by regulation to those activities on ranges and operating areas for which the Navy sought and received incidental take authorizations.

The ICMP currently includes specific monitoring plans that have been or are being developed for the Southern California (SOCAL) Range Complex, Atlantic Fleet Active Sonar Training (AFAST) Study Area, Hawaii Range Complex (HRC), Mariana Islands Range Complex (MIRC), Northwest Training Range Complex (NVTRC), Gulf of Alaska (GOA) Temporary Maritime Activities Area (TMAA), Virginia Capes (VACAPES) Range Complex, Cherry Point Range Complex, Jacksonville (JAX) Range Complex¹, Gulf of Mexico (GOMEX) Range Complex, Naval Sea Systems Command Naval Undersea Warfare Center Keyport (NUWC Keyport) Range Complex, and Naval Sea Systems Command Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area. These range complexes and study areas are depicted in Figure 1. Note that the AFAST study area encompasses multiple smaller ranges. Additional ranges or study areas may be added to the ICMP consistent with future Navy range permitting requirements.

Table 1 provides a status listing of the MMPA Final Rules for ranges and study areas presently included in the ICMP, and the applicable dates for those Final Rules that are in effect. This table is current as of 3 December 2010. Unless otherwise specified, references to "MMPA Final Rules" throughout this document include all of the rules listed by Table 1 that have a status of "In Effect". A listing of the corresponding Letters of Authorization (LOA) and monitoring plans in effect as of the data date is provided in the reference section. While the ICMP also applies to range-specific monitoring plans that are still being developed, modifications to the ICMP may be required to appropriately reflect requirements established by future rulemakings.

¹ Note, the Jacksonville Range Complex includes operating areas for both Jacksonville, FL and Charleston, SC and is sometimes referred to as the Charleston / Jacksonville (CHASJAX) Range Complex. For purposes of this document, references to this Range Complex will simply be as Jacksonville Range Complex, which is consistent with the nomenclature used in the MMPA Final Rule.

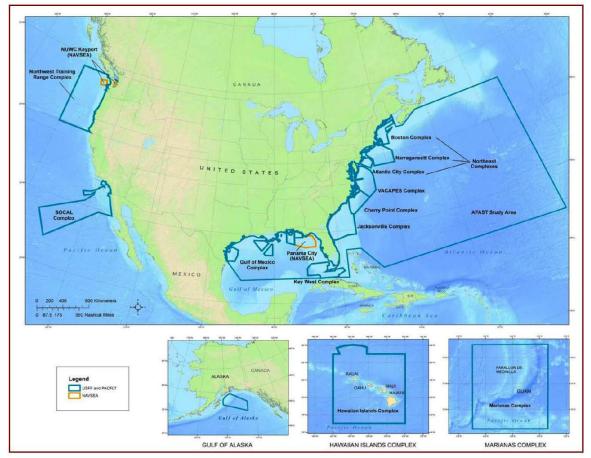


Figure 1: Navy Range Complexes and Study Areas included under the ICMP

2010 UPDATE dtd 20 Dec 2010

Table 1: Status of MMPA Fir	nal Rules for Navy Range Comp (Data date: 3 December 2010)	plexes included	in the ICMP

RANGE	MMPA Final Rule Reference (or status)	Dates Applicable
Hawaii Range Complex (HRC)	IN EFFECT : Taking and Importing Marine Mammals; U.S. Navy Training in the Hawaii Range Complex; Final Rule, 74 Fed. Reg. 1456 (January 12, 2009) (to be codified at 50 C.F.R. § 216).	5 Jan 2009 – 5 Jan 2014
Southern California (SOCAL) Range Complex	IN EFFECT : Taking and Importing Marine Mammals; U.S. Navy Training in the Southern California Range Complex; Final Rule, 74 Fed. Reg. 3883 (January 21, 2009) (to be codified at 50 C.F.R. § 216).	14 Jan 2009 - 14 Jan 2014
Atlantic Fleet Active Sonar Training (AFAST) Study Area	IN EFFECT : Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training (AFAST); Final Rule, 74 Fed. Reg. 4844 (January 27, 2009) (to be codified at 50 C.F.R. § 216).	22 Jan 2009 - 22 Jan 2014
Cherry Point Range Complex	IN EFFECT: Taking and Importing Marine Mammals; U.S. Navy Training in the Cherry Point Range Complex; Final Rule, 74 Fed. Reg. 28370 (June 15, 2009) (to be codified at 50 C.F.R. § 218).	5 Jun 2009 – 4 Jun 2014
Jacksonville (JAX) Range Complex	IN EFFECT : Taking and Importing Marine Mammals; U.S. Navy Training in the Jacksonville Range Complex; Final Rule, 74 Fed. Reg. 28349 (June 15, 2009) (to be codified at 50 C.F.R. § 218).	5 Jun 2009 – 4 Jun 2014
Virginia Capes (VACAPES) Range Complex	IN EFFECT : Taking and Importing Marine Mammals; U.S. Navy Training in the Virginia Capes Range Complex; Final Rule, 74 Fed. Reg. 28328 (June 15, 2009) (to be codified at 50 C.F.R. § 218).	5 Jun 2009 – 4 Jun 2014
Naval Sea Systems Command Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area	IN EFFECT: Taking and Importing Marine Mammals; U.S. Naval Surface Warfare Center Panama City Division Mission Activities; Final Rule, 75 Fed. Reg. 3395 (January 21, 2010) (to be codified at 50 C.F.R. § 218).	21 Jan 2010 - 21 Jan 2015
Mariana Islands Range Complex (MIRC)	IN EFFECT : Taking and Importing Marine Mammals; Military Training Activities and Research, Development, Testing and Evaluation Conducted Within the Mariana Islands Range Complex; Final Rule, 75 Fed. Reg. 45527 (August 3, 2010) (to be codified at 50 C.F.R. § 218).	3 Aug 2010 – 3 Aug 2015
Northwest Training Range Complex (NWTRC)	IN EFFECT : Taking and Importing Marine Mammals; Navy Training Activities Conducted Within the Northwest Training Range Complex; Final Rule, 75 Fed. Reg. 69296 (November 10, 2010) (to be codified at 50 C.F.R. § 218).	9 Nov 2010 - 9 Nov 2015
Naval Sea Systems Command Naval Undersea Warfare Center Keyport (NUWC Keyport) Range Complex	PROPOSED : Taking and Importing of Marine Mammals; U.S. Navy's Research, Development, Test, and Evaluation Activities Within the Naval Sea Systems Command Naval Undersea Warfare Center Keyport Range Complex; Proposed Rules, 74 Fed. Reg. 32264 (July 7, 2009) (to be codified at 50 C.F.R. § 218).	TBD. Proposed Rule closed to public comments on 6 Aug 2009.
Gulf of Mexico (GOMEX) Range Complex	PROPOSED : Taking of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Training Operations Conducted Within the Gulf of Mexico Range Complex; Proposed Rules, 74 Fed. Reg. 33960 (July 14, 2009) (to be codified at 50 C.F.R. § 218).	TBD. Proposed Rule closed to public comments on 13 Aug 2009.
Gulf of Alaska (GOA) Temporary Maritime Activities Area (TMAA)	PROPOSED: Taking and Importing Marine Mammals; Military Training Activities Conducted Within the Gulf of Alaska (GoA) Temporary Maritime Activities Area (TMAA); Proposed Rules, 75 Fed. Reg. 64508 (October 19, 2010)	TBD. Proposed Rule closed to public comments on 18 Nov 2010.

There are two broad categories of authorized activities covered by the ICMP. These include:

1) Authorized Fleet activities carried out on Fleet-permitted ranges in support of military readiness, and

2) Authorized Navy Acquisition Community RDT&E activities carried out on NAVSEApermitted ranges in support of military readiness.

There are variations in the monitoring and mitigation requirements between Fleet and Acquisition Community activities. This is in part due to the significant differences in the nature of activities conducted by these two communities relative to factors such as the types of sound sources, numbers and size of platforms (boats, ships, aircraft), as well as numbers of individuals involved. Monitoring and mitigation measures are tailored to the specific authorized activities consistent with permitting requirements. For the Fleet-permitted ranges, the associated monitoring plans are generally "range-specific" and apply across all authorized activities on that range. For the NAVSEA-permitted ranges, their monitoring plans tend to be "project-specific", that is, specifically tailored to each individual authorized activity.

Appendices A and B provide a listing by range complex/study area of specific sound sources and activities included in the associated MMPA Final Rules/Proposed Rules for the Fleet and Naval Sea Systems Command (NAVSEA) action proponents respectively. Note that for Atlantic ranges in the AFAST study area, monitoring and mitigation requirements for mid-frequency active sonar (MFAS), high-frequency active sonar (HFAS), and underwater detonations from explosive sonobuoy (specifically IEER) Fleet military readiness activities are addressed in the AFAST MMPA Final Rule. Monitoring requirements associated with Fleet military readiness activities involving other types of underwater detonations are established in the MMPA Final Rules for the individual range complexes (e.g., VACAPES, JAX, Cherry Point, and GOMEX) where these activities will be conducted.

The MMPA Final Rules detail specific requirements for this document. The following quote is from the Final Rule for the SOCAL Range Complex². Similar language is found in each of the other MMPA Final Rules listed by Table 1.

"The Navy shall complete an Integrated Comprehensive Monitoring Plan (ICMP) in 2009. This planning and adaptive management tool shall include:

(1) A method for prioritizing monitoring projects that clearly describes the characteristics of a proposal that factor into its priority.

(2) A method for annually reviewing, with NMFS, monitoring results, Navy R&D, and current science to use for potential modification of mitigation or monitoring methods.

(3) A detailed description of the Monitoring Workshop to be convened in 2011 and how and when Navy/NMFS will subsequently utilize the findings of the Monitoring Workshop to potentially modify subsequent monitoring and mitigation.

(4) An adaptive management plan.

(5) A method for standardizing data collection across Range Complexes."

The MMPA Final Rules further provide that the primary objectives of the ICMP are to:

² See 74 Fed. Reg. 3882 (January 21, 2009) (50 C.F.R.§216.275(c)).

2010 UPDATE dtd 20 Dec 2010

- Monitor and assess the effects of Navy activities on protected marine species;
- Ensure that data collected at multiple locations is collected in a manner that allows comparison between and among different geographic locations;
- Assess the efficacy and practicality of the monitoring and mitigation techniques; and
- Add to the overall knowledge base of protected marine species and the effects of Navy activities on these species.

The ICMP meets these requirements and objectives by:

- Identifying top-level goals for the monitoring program, as well as guidelines for use in prioritizing monitoring projects and related RDT&E activities;
- Defining standard procedures for the compilation and management of data from range/project-specific monitoring plans;
- Establishing an adaptive management process that includes annual reviews with NMFS;
- Making provisions to review relevant monitoring-related research and, where appropriate, incorporate findings as updates to the range/project-specific monitoring plans and mitigation measures through adaptive management; and
- Providing an unclassified recordkeeping system that will allow interested parties to see how each range complex is contributing to ongoing monitoring.

As the overarching framework, the ICMP focuses Navy monitoring priorities pursuant to ESA and MMPA requirements. However, the ICMP does not include or specify the actual monitoring fieldwork components, nor does it commit to fund specific monitoring-related activities. Individual Navy permit-holders and research sponsors are responsible for defining the range/project-specific fieldwork components and research activities for their respective range monitoring plans and research programs. Top priority will always be given to satisfying the mandated legal requirements across all ranges. Once legal requirements are met, any additional monitoring-related activities will be planned and prioritized using guidelines provided by the ICMP, consistent with availability of both funding and scientific resources.

The ICMP will be evaluated annually through the adaptive management process to assess progress, provide a matrix of goals for the following year, and make recommendations for refinement and analysis of the monitoring and mitigation techniques. This process includes conducting an Adaptive Management Review (AMR) at which Navy and National Marine Fisheries Service (NMFS) will jointly consider the prior year's goals, monitoring results, and related science advances to determine if modifications are needed to more effectively address monitoring program goals. Modifications to the ICMP that result from AMR decisions will be incorporated by an addendum or revision to the ICMP. These ICMP updates will be provided to NMFS by 31 December annually beginning in 2010. This adaptive management process recurs annually, with some modifications to the process in 2011, when the Navy, with guidance and support from NMFS, is to host a monitoring workshop that incorporates outside experts and expanded participation.

The ICMP is organized in the following way: Section 2 describes overall monitoring goals and prioritization guidelines; Section 3 discusses standard data collection and management procedures; Section 4 addresses the coordination of reporting requirements and the recordkeeping system that documents how each range complex contributes to ongoing monitoring objectives; Section 5 outlines the adaptive management review process,

2010 UPDATE dtd 20 Dec 2010

including provisions for a monitoring workshop in 2011; Section 6 discusses near-term plans for continued maturation of the Monitoring Program; Section 7 provides roles and responsibilities among the various Navy components; and references are listed in Section 8.

- 6 -

2. MONITORING GOALS AND PRIORITIZATION GUIDELINES

Research relating to the effects of anthropogenic sound on marine species is an evolving science. The Navy is committed to utilizing the best available science in developing and implementing the monitoring programs required pursuant to ESA and MMPA. The Navy demonstrated this commitment by funding approximately \$26 million annually in marine mammal-related research projects for fiscal years 2007-2009³ to better understand how marine mammals hear and how they are affected by sound. Researchers at Navy laboratories and warfare centers are investigating marine mammal bioacoustics, marine mammal distribution and abundance, and passive acoustic detection of marine mammals. The Navy also collaborates with universities, institutions, conservation agencies, private industries, and independent researchers around the world to better understand what combinations of ocean conditions, bathymetry, and sonar usage patterns may lead to marine species disturbances. The Navy intends to continue this level of annual investment in protected marine species research over the next five years.⁴

As the overarching framework for coordination of the Navy's monitoring efforts, the ICMP guides the research investment by establishing top-level goals and guidelines for use in prioritizing monitoring projects and related RDT&E activities. The guidelines are not intended to supersede the specific legal requirements that each range complex must meet for monitoring and mitigation of ongoing Navy military readiness activities as detailed by its associated LOA. Top priority will continue to be given to satisfying the mandated legal requirements across all ranges.

To meet requirements in the MMPA Final Rules for Navy range complexes⁵, this section provides a method for prioritizing monitoring projects and clearly describes the characteristics of a proposal that factor into its priority. However, as noted previously, the ICMP does not specify or commit to fund specific monitoring-related research; that remains the responsibility of individual research sponsors. The ICMP also makes provisions for maintaining an unclassified record of Navy-sponsored monitoring projects and research using the procedures described in Section 4.

The adaptive management process described in Section 5 will be used to review and, when appropriate, incorporate findings from relevant research as updates to the range/project-specific monitoring plans. Adaptive management will also be used to evaluate and update the goals and priorities presented here on an annual basis. ICMP updates resulting from the adaptive management process will be documented and provided to NMFS by 31 December annually beginning in 2010.

³ Research funding level from http://www.navy.mil/oceans/environmental.html on 14 April 2009.

⁴ Projected investment level from http://www.navy.mil/oceans/science.html on 15 July 2009.

⁵ E.g., 50 C.F.R. § 216.175(c).

2.1 MONITORING GOALS

Monitoring measures prescribed in range/project-specific monitoring plans and Navy-funded research relating to the effects of Navy training and testing activities on protected marine species should be designed to accomplish one or more of the following top-level goals:

- An increase in our understanding of the likely occurrence of marine mammals and/or ESA-listed marine species in the vicinity of the action (i.e., presence, abundance, distribution, and/or density of species);
- An increase in our understanding of the nature, scope, or context of the likely exposure of marine mammals and/or ESA-listed species to any of the potential stressor(s) associated with the action (e.g., tonal and impulsive sound), through better understanding of one or more of the following: 1) the action and the environment in which it occurs (e.g., sound source characterization, propagation, and ambient noise levels); 2) the affected species (e.g., life history or dive patterns); 3) the likely co-occurrence of marine mammals and/or ESA-listed marine species with the action (in whole or part) associated with specific adverse effects, and/or; 4) the likely biological or behavioral context of exposure to the stressor for the marine mammal and/or ESA-listed marine species (e.g., age class of exposed animals or known pupping, calving or feeding areas);
- An increase in our understanding of how individual marine mammals or ESA-listed marine species respond (behaviorally or physiologically) to the specific stressors associated with the action (in specific contexts, where possible, e.g., at what distance or received level);
- An increase in our understanding of how anticipated individual responses, to individual stressors or anticipated combinations of stressors, may impact either: 1) the long-term fitness and survival of an individual; or 2) the population, species, or stock (e.g., through effects on annual rates of recruitment or survival);
- An increase in our understanding of the effectiveness of mitigation and monitoring measures;
- A better understanding and record of the manner in which the authorized entity complies with the Incidental Take Authorization and Incidental Take Statement;
- An increase in the probability of detecting marine mammals (through improved technology or methods), both specifically within the safety zone (thus allowing for more effective implementation of the mitigation) and in general, to better achieve the above goals; and
- A reduction in the adverse impact of activities to the least practicable level, as defined in the MMPA.

Several of the top-level goals listed above focus on understanding the short-term effects to individual animals from naval anthropogenic sound. For the purposes of the ICMP, short-term is defined as the period during which the behavioral response is empirically determined or presumed to be directly attributable to exposure to naval anthropogenic sound.

The original set of range-specific monitoring plans were designed as a collection of focused "studies" to gather data that would allow the Navy to address a series of proposed questions (not all questions apply to each range). However, during the Adaptive Management Review in 2010, discussions reported that these five "study questions" [provided below for completeness] were determined to be too general for practical application across all ranges/study areas. The original study questions were as follows:

- Are marine mammals (and sea turtles) exposed to mid-frequency active sonar (MFAS), especially at levels associated with adverse effects (i.e., based on NMFS' criteria for behavioral harassment, temporary threshold shift (TTS), or permanent threshold shift (PTS))? If so, at what levels are they exposed?
- If marine mammals (and sea turtles) are exposed to MFAS, do they redistribute geographically as a result of continued exposure? If so, how long does the redistribution last?
- If marine mammals (and sea turtles) are exposed to MFAS, what are their behavioral responses to various received levels?
- What are the behavioral responses of marine mammals and sea turtles that are exposed to explosives?
- Is the Navy's suite of mitigation measures for MFAS (e.g., measures agreed to by the Navy through permitting) effective at avoiding TTS, injury, and mortality of marine mammals?

As an alternate approach to these five original study questions, the Navy worked with NMFS and the scientific community to further refine the top-level goals, with refined goals as listed at the beginning of this section, and continues to work on the development of a 3-5 year strategic plan for monitoring activities across the various ranges and study areas covered by authorizations and permits.

Figure 2 depicts the process that will develop this strategic plan and lead to the selection of annual range-specific monitoring projects. This process is also described below. While revisions to the existing monitoring plans are anticipated, the Navy does not expect there will be a significant change in types of monitoring activities proposed. Rather, proposed changes to the distribution of activities are more likely to focus concentrated effort on larger, more integrated monitoring efforts.

In the initial steps of the process, the Navy will complete development of a matrix that characterizes the various geographic regions of interest and provides "bounding conditions" to the Scientific Advisory Group (SAG). Appendix E provides additional information regarding this matrix.

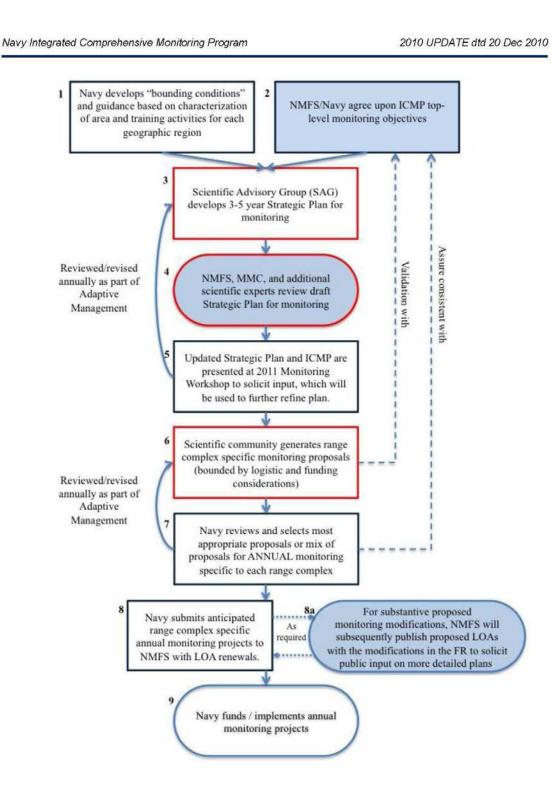


Figure 2: Strategic plan development and implementation process

- 10 -

Next, with support from their lead contractor⁶, *HDR engineering-environmental Management* (HDR|e²M) of Englewood, CO, the Navy will then convene the newly created SAG. The SAG will use the top-level goals provided by the ICMP to define a proposed 3-5 year "Strategic Plan for Monitoring" covering all permitted areas. The SAG will adapt the original study questions and refine the goals for individual geographic regions based on the level of information and data currently available. Specifically, they will consider what is known regarding "Occurrence, Exposure, Responses, Consequences, and Mitigation" for each geographic region of interest to suggest appropriate monitoring activities. Other parameters to be considered include those listed by the Appendix E matrix, as well as available assets and operational constraints. This strategic plan will serve as a roadmap to guide selection of appropriate monitoring projects based on region-specific considerations. The draft plan will then be circulated through a larger review group that includes NMFS HQ and the Marine Mammal Commission (MMC). The objective is to have a group-reviewed draft plan that has been developed/reviewed by experts and vetted through NMFS and MMC to present at the 2011 Monitoring Workshop.

As the overarching framework document, the ICMP will be updated to document the systematic approach and the allocation of resources for these monitoring activities. This 3-5 year strategic monitoring plan is necessary to provide sufficient lead time to put task orders in place, and procure any long-lead time material needed such as passive acoustic monitoring equipment.

Monitoring measures that are put in place to meet the above goals and focused studies will produce data sets that include short-term individual observations. These observations, in combination with parallel monitoring and data analysis efforts by others, support research efforts directed towards identifying biologically significant behavioral responses that may have either cumulative or population-level effects. These data sets will also support the assessment of population trends, including species composition, distribution, and abundance, to determine the efficacy of mitigation and monitoring measures, and increase knowledge regarding the response of marine mammals and other threatened or endangered marine species to Navy sound sources. These data sets may also help to provide important information on the geographic and temporal extent of key habitats and provide baseline information to account for natural perturbations such as El Niño or La Niña events. Additionally, the data sets will provide observational data and baseline information to determine the spatial and temporal extent of reactions to Navy operations, or indirect effects from changes in prey availability and distribution. These data sets will be managed and made available for use by the procedures outlined in Section 3.

In developing range/project-specific monitoring plans or research programs to address these top-level goals and focused studies, sponsors should strive to prevent creating situations that leave the Navy "data rich but information poor." That is, it is often easier to collect some types of information than it is to analyze and draw meaningful conclusions from the data.

⁶ *HDR engineering-environmental Management (*HDR|e²M) of Englewood, CO was awarded an indefinitedelivery / indefinite-quantity contract in April 2010 to assist with designing, managing, and performing the overall monitoring effort.

One example of this potential situation is the collection of marine mammal vocalizations using passive acoustic monitoring, where terabytes of acoustic data can be collected over the course of a given monitored event. To fully benefit from this type of monitoring and data collection investment, it is critical that sufficient funding for data analysis be factored into the program plans.

2.2 PRIORITIZATION GUIDELINES

In establishing prioritization guidelines, it is important to "begin with the end in mind." The desired end-result from Navy monitoring and mitigation conducted pursuant to ESA and MMPA requirements is a comprehensive and accurate assessment of applicable Navy military readiness and scientific research activities that involve active sonar and/or underwater detonations, performed in a manner that enables Fleet Commands, Program Executive Offices (PEOs), and other Echelon II Commands to meet their requisite operational, training, acquisition, research, development, testing, and evaluation requirements.

The guidelines presented here maximize marine resource protection by focusing Navy efforts and resources on those geographic areas where potential effects to marine mammals and other threatened or endangered marine species are most likely to occur due to concentrated and repetitive Navy activities. However, the guidelines are not intended to preclude monitoring activities in other areas of moderate or low Navy use when there might be special biological circumstances or other overriding considerations. The guidelines are intended for use when developing or modifying range/project-specific monitoring plans and monitoring-related research programs that will be considered as part of the adaptive management process described in Section 5. The guidelines are not intended to supersede the specific legal requirements that each range complex must meet for monitoring and mitigation of ongoing Navy military readiness activities as detailed in its associated LOA. Top priority will continue to be given to satisfying the mandated legal requirements across all ranges. Once legal requirements are met, additional monitoring activities will be prioritized using the guidelines that follow, consistent with availability of both funding and scientific resources.

In shaping, designing or evaluating prospective monitoring projects, sponsors should consider the following factors for each proposal:

- a. Number of monitoring goals that the project addresses;
- b. Relative density of marine mammals and other protected marine species in the proposed area;
- c. Relative occurrence of concentrated and repetitive Navy active sonar activities in the proposed area;
- d. Level of anticipated impacts to marine mammals in the area;
- e. Presence of unique biological and/or physical attributes that better allow monitoring goals to be addressed;

- f. Degree to which the proposed activity might provide unique contributions or additional diversity to the data set collection that will assist in meeting the top-level goals,
- g. Ability to leverage and/or augment existing efforts by Navy monitoring to positive effect,
- h. Availability of specialized Navy assets within a specific area to support monitoring efforts (e.g. instrumented ranges);
- i. Return on investment as measured by confidence level in the likelihood of obtaining meaningful monitoring data based on factors such as prior success with the specific method itself, anticipated sea states, seasonal weather patterns, local animal densities and migration patterns, and anticipated success rate for integrating the monitoring method with training events; and
- j. Degree to which the proposed activity might affect the ability of Navy Commands to meet their requisite operational, training, acquisition, research, development, testing, and evaluation requirements.

Many of the factors listed above are highly dependent on the specific location at which the proposed activity is to be conducted. To better assist planning efforts within the ICMP, a characterization of the unique attributes associated with each range complex/study area is under development. This characterization matrix is further addressed in Appendix E.

The monitoring requirements established in the MMPA Final Rules listed by Table 1 are currently in effect for 5-year periods beginning in 2009. To fully evaluate and respond to the effects of naval anthropogenic sound on living marine resources, it is anticipated that monitoring time frames extending beyond the initial 5 years will be needed.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

3. DATA COLLECTION AND MANAGEMENT

This section discusses standardized data collection and management methods in support of Navy monitoring activities, and is a required element of the ICMP under the MMPA Final Rules for Navy ranges and operating areas. The Navy makes substantial investments in monitoring programs to ensure compliance with terms of ESA consultations and MMPA authorizations, and to provide for adaptive program management. Standardized procedures are essential to make the most of this investment. The objective for this standardization is to collect data in a manner that will enable comparison between and among different geographic locations to the extent that is scientifically justifiable. These standardized approaches apply to both range/project-specific monitoring plans as well as Navy-funded R&D studies.

Improved monitoring and assessment methodologies are likely to be developed as the science surrounding marine species monitoring continues to evolve. These improvements will be reviewed and assessed annually as part of the adaptive management process conducted jointly by Navy and NMFS. This process will determine whether modifications to the standardized collection and management methods are appropriate for the upcoming year. If so, updates to the ICMP will be made to reflect the results of Navy-NMFS adaptive management decisions to incorporate the improved monitoring and assessment methodologies as standard procedures and provided to NMFS by 31 December annually. As discussed in Section 5, adaptive management reviews will be done in consultation with Navy technical experts, Fleet Commanders, and Echelon II Commands, as appropriate.

3.1 DATA COLLECTION

There is a large suite of monitoring methods that may be used to detect, locate, identify, and study the behaviors and responses of individual marine animals *in situ*. Some of the more prevalent categories of monitoring techniques and tools include:

- Visual observations made using Navy lookouts, civilian protected species observers (PSOs), vessel-based surveys, aerial surveys, shore surveys, and photo-identification;
- Acoustic monitoring using both passive and active methods; and
- Behavioral monitoring through tag attachments.

This suite of methods is continually evolving in step with advances in research. Each monitoring technique has advantages and disadvantages that vary temporally and spatially. Therefore, a combination of techniques is generally recommended so that the detection and observation of marine animals is maximized. The optimal choice of monitoring approach will vary depending on the purpose for the monitoring, the type of data to be collected, and a number of other factors such as the species of concern (whether frequently on surface, deep-diving, or cryptic), animal density, geographical location, weather, visibility, expected sea state conditions, type of Navy activities conducted in the area, and the total size of the area to be monitored. The particular choice of monitoring approaches will also be influenced by duration of monitoring period, effectiveness, practicality, impact to training, and cost.

It is beyond the scope of this framework document to fully describe this suite of monitoring methods or to prescribe "best practices" for the implementation of these independent techniques for monitoring purposes. Instead, the focus here is on prescribing both essential as well as desired data elements to be collected and recorded as "standard data" to support future data comparisons to the extent that is scientifically appropriate.

This section prescribes the data elements that are to be collected as standard practice for both range/project-specific monitoring as well as Navy-funded R&D studies. While it may not be scientifically valid to directly combine data sets from varied platforms such as shipboard and aerial surveys, the use of standardized sampling and survey protocols will be critical to meeting the overall monitoring goals, as well as assisting better data comparison between years and across different sets of observations. While detailed sampling and survey protocols are specific to independent monitoring techniques and outside the scope of this document, some overall guidelines on sample size and statistical analysis are provided by Appendix C.

Each range/operating area LOA designates particular types and quantities of military readiness activities that require mitigation, monitoring, and reporting pursuant to MMPA and ESA. The LOA details the specific mitigation measures that must be implemented when conducting these activities, and the data that is to be recorded and documented for the various compliance reports. While the information presented here is intended to highlight common data collection requirements from the LOAs, requirements imposed in the range/project-specific LOA take precedence over the information listed here.

The MMPA Final Rules pertaining to Fleet military readiness activities prescribe essential data elements that are to be recorded for individual marine mammal sightings during MFAS/HFAS Major Training Exercises (MTEs) and SINK Exercises (SINKEXs). Table 2 highlights these essential data elements. As one step towards collecting this data in a standardized manner, formatted marine species sighting forms are used by Navy lookouts during monitored military readiness activities. Appendix D provides the current Fleet version of this form. Note, while the LOAs prescribe the collection of these data elements specifically during Fleet MTEs and SINKEXs, the marine species sighting form may also be used to document sightings during other monitored military readiness activities. Its use is not strictly limited to MTEs or SINKEXs.

The MMPA Proposed Rules pertaining to RDT&E activities also prescribe the reporting of individual marine mammal sightings. For purposes of standardized data collection, PSOs monitoring RDT&E activities, as well as third-party biologists under contract to the Navy for marine species monitoring, should be tasked to collect (at minimum) the essential data elements highlighted by Table 2. They may elect to use a different format than that presented in Appendix D as long as these essential data elements are included. In addition, the associated LOA, once issued, should be verified in the event additional essential data elements are prescribed for marine species sightings associated with RDT&E activities. To the extent possible, data will be collected from all distinct habitats in the region to avoid potential sampling bias.

Table 2 also lists additional oceanographic data elements that are highly desirable to fully support analysis of the observations and associated acoustic propagation conditions.

2010 UPDATE dtd 20 Dec 2010

	DATA ELEMENTS TO BE RECORDED FOR INDIVIDUAL MARINE ANIMAL SIGHTINGS
	ASSOCIATED WITH MONITORED MILITARY READINESS ACTIVITIES
CON	IMON DATA ELEMENTS
1)	Location of sighting (lat / long)
2)	Species (if species not possible— indication of whale/dolphin/pinniped/turtle)
3)	Number of individuals
4)	Calves observed (y/n)
5)	Initial Detection Sensor
6)	Indication of specific type of platform observation made from (including, for example, type of surface vessel, i.e., FFG, DDG, or CG)
7)	Length of time observers maintained visual contact with marine animal(s)
8)	Wave height (in feet)
9)	Visibility
10)	Sonar source in use (y/n). If impulsive or explosive source in use, skip to line 15.
IF A	CTIVE SONAR SOURCE IN USE:
11)	Indication of whether animal is <200yd, 200–500yd, 500–1000yd, 1000– 2000yd, or >2000yd from sonar source in (10) above
12)	Mitigation Implementation— Whether operation of sonar sensor was delayed, or sonar was powered or shut down, and how long the delay was.
13)	If source in use (from 10 above)) is hull-mounted, true bearing of animal from ship, true direction of ship's travel, and estimation of animal's motion relative to ship (opening, closing, parallel)
14)	Observed behavior— Watchstanders shall report, in plain language and without trying to categorize in any way, the observed behavior of the animals (such as animal closing to bow ride, paralleling course/ speed, floating on surface and not swimming, etc.) [END for active source essential data elements]
IF IN	IPULSIVE/EXPLOSIVE SOURCES ARE BEING USED:
15)	Whether sighting was before, during, or after detonations/exercise, and how many minutes before or after.
16)	Distance of individual/group from actual detonations—or target spot if not yet detonated—use four categories to define distance: (a) The modeled injury threshold radius (MITR) for the largest explosive used in that exercise type in that OPAREA; (b) the required exclusion zone (e.g., 1 nm for SINKEX); (c) the required observation distance (if different than the exclusion zone) (e.g., 2 nm for SINKEX); and (d) greater than the required observed distance. In this example, the observer would indicate if < MITR, from MITR — 1 nm, from 1 nm—2 nm, and > 2 nm.
17)	Observed behavior— Watchstanders will report, in plain language and without trying to categorize in any way, the observed behavior of the animals (such as animal closing to bow ride, paralleling course/ speed, floating on surface and not swimming etc.), including speed and direction.
18)	Resulting mitigation implementation—Indicate whether explosive detonations were delayed, ceased, modified, or not modified due to marine mammal presence and for how long.
19)	If observation occurs while explosives are detonating in the water, indicate munition type in use at time of marine mammal detection. [END for explosive source essential data elements]
OPT	IONAL DATA ELEMENTS, PROVIDE AS AVAILABLE or KNOWN
20)	Sound Velocity Profile for location
21)	Sea surface temperature
22)	Presence of strong gulf stream currents, fronts, and/or mesoscale eddies (y/n)
	Other prominent oceanographic features

Table 2: Data Elements to be recorded for individual marine animal sightings associated with monitored military readiness activities

Distribution and abundance of marine species are highly dependent on oceanographic conditions and other environmental factors. Some scientific literature suggests that animals often limit their range to certain habitat areas or broad ocean regions based on sea surface temperature, bathymetric features, and prey abundance. Thus, it is desirable to include data from additional oceanographic and environmental monitoring, predictive forecasts of oceanographic conditions, or some mix of both to account for ambient conditions. The Navy's meteorological and oceanographic community has an extensive array of ocean data gathered by satellite sensing, direct measurements, and predictive models that may be used to support this. Oceanographic conditions can be monitored by a variety of different platforms including satellites, in situ observation systems such as buoys, and vessel surveys. For more extensive monitoring efforts, UAVs or gliders might be utilized to obtain oceanographic data. In addition, the recent distribution of joint civilian-government agency Ocean Observing Systems, ocean monitoring satellites, and in-situ buoys offer multiple information sources that could support the Navy's protected marine species monitoring program. Whenever possible, these optional data elements should be recorded for individual marine mammal sightings or relevant groups of individual sightings when made in close proximity to each other. Note that these optional data elements, if available, are typically recorded pre- or post-monitoring by personnel other than the Navy lookouts assigned to sight marine animals.

3.2 DATA MANAGEMENT

As previously discussed, results from Navy-funded monitoring activities will establish timeseries data sets that may be used to research trends in species abundance, behavioral reactions and mitigation effectiveness. The data collected through protected marine species monitoring and mitigation activities across all permitted Navy range complexes and relevant Navy-funded RDT&E activities will be incorporated into an electronic centralized data repository established under the guidance of OPNAV N45. These data will be used to support a Navy-wide analysis of monitoring and produce required reports for NMFS on behalf of the Navy Action Proponent. The electronic central repository will include data that are the result of activities conducted under the MMPA authorizations, such as monitoring data from sonar activities and underwater detonations from designated ranges and OPAREAS, marine species sighting observations, and exercise reports pertaining to protected marine species monitoring. The repository will also include annual results from Navy-funded R&D programs such as technical and professional journal articles. Due to the potential for inclusion of classified data, distribution of raw acoustic time series data from monitoring activities is subject to the written consent of the Secretary of the Navy or appointed designee. Unclassified NMFS-required monitoring reports, as specified by the MMPA Final Rules, will be made publicly available by posting on the internet.

As the ICMP matures, and greater amounts of monitoring data are recorded and available for analysis, ways of efficiently organizing this data to support discovery and access within the bounds of existing regulations will become increasingly important. The Navy's first priority is on managing the data collected in support of permitted activities. However, there is also interest in setting up links to relevant reports or a data library so that "best available" science can be easily accessed. This may include active research awards and grants, as well as annual status reports of work accomplished.

2010 UPDATE dtd 20 Dec 2010

Navy is working with their contractor, HDR|e²M, to develop structured procedures to address data archiving, security, and analysis needs as well as to meet specific access requirements for the various Fleet, Scientific, and General Public user groups. This development effort will continue into 2011. Initially, all visual survey data from Fleet-funded monitoring efforts will be made publically available through the OBIS-SEAMAP (Ocean Biogeographic Information System – Spatial Ecological Analysis of Megavertebrate Populations) interface and may also be integrated into other public databases. Navy and NMFS will continue to work together to develop a data-sharing process that best supports the regulatory process in a transparent manner, as well as provides public access to appropriate data products and reports. Unclassified NMFS-required monitoring reports as specified by the MMPA Final Rules are currently available on the NMFS website. These reports along with unclassified results from monitoring-related Navy R&D programs will also be publicly available from the Navy repository.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

4. REPORTING

This section addresses the overarching structure and coordination that will be used to coordinate reporting requirements from range/project-specific monitoring plans, and the recordkeeping system that tracks and documents how each range complex or operating area contributes to ongoing monitoring.

4.1 REPORT COORDINATION

The Navy is required to monitor and report on the effects of Navy actions on protected marine species. The MMPA Final Rules and LOAs specify the compilation of reports that summarize range/project-specific monitoring activities, analyses and results. These reports are submitted to the NMFS Office of Protected Resources (NMFS OPR) and provide critical inputs to the adaptive management process that allows the Navy and NMFS to assess and refine the Navy's overall monitoring effort. If there is a conflict between the reporting information described here and the requirements specified in the LOA, the LOA requirements take precedence.

Navy range action proponents are responsible for report development and submittal. The action proponents include Commander United States Fleet Forces Command (USFF), Commander Pacific Fleet (CPF), and Commander Naval Sea Systems Command (NAVSEA). Note, while Commander NAVSEA is the Action Proponent, he has designated Commander NUWC Keyport Division and Commander NSWC Panama City Division as the responsible individuals for report development and submittal. It is recognized that some information provided in the annual reports may be classified and not releasable to the public.

For the Fleet range complexes and study areas, there are two recurring reports required annually: an Annual Exercise Report and an Annual Monitoring Plan Report.

The primary purpose of the Annual Exercise Report is to report on authorized military readiness activities conducted within each range complex or study area, as well as the monitoring and mitigation performed in association with those activities. Table 3 provides a summary of contents for this multi-part report. As noted in Section 1, Anti-Submarine Warfare (ASW) military readiness activities that take place within the AFAST Study Area are covered in entirety under the AFAST MMPA Final Rules and LOA. Subsequently, only the explosives summary section is required in the Annual Exercise Report for the Cherry Point, JAX, VACAPES, and GOMEX Range Complexes.

The Annual Monitoring Plan Report describes the implementation and results from the associated range/project-specific monitoring plan. It relies on standardized data collection methods across the Navy range complexes to allow for comparison of different geographic locations. The individual range reports may be provided to NMFS within a consolidated report that includes the required Monitoring Plan Reports from multiple range complexes.

For the NAVSEA ranges, there is a single recurring annual report required on RDT&E military readiness activities authorized under their permit. This report includes an estimated number of hours of sonar operation broken down by source type as well as a report of all marine mammal sightings.

2010 UPDATE dtd 20 Dec 2010

Summary Sections contained in the Annual Exercise Report				
Summary of MFAS/HFAS Major Training Exercises				
a) Exercise info for Integrated Coordinated, and Major Training Exercises (MTEs)				
– (i) Exercise designator.				
 (i) Exercise designator. (ii) Date that exercise began and ended. 				
 (iii) Location. (iv) Number and times of active sources used in the systemics 				
 (iv) Number and types of active sources used in the exercise. (i) Number and types of accive sources laid used in everying 				
 (v) Number and types of passive acoustic sources [<i>sic</i>] used in exercise. 				
 (vi) Number and types of vessels, aircraft, etc., participating in exercise. (vii) Total hours of observation by lookouts. 				
 (vii) Total hours of observation by lookouts. (viii) Total hours of all active sonar source operation. 				
 (ix) Total hours of each active sonar source (along with explanation of how hours are calculated for sources typically quantified in alternate way (buoys, torpedoes, etc.)). 				
 (x) Wave height (high, low, and average during exercise). 				
b) Individual marine mammal sighting info (for each sighting in each MTE).				
— See list of data elements described in Section 3.1				
c) An evaluation (based on data gathered during all of the MTEs) of the effectiveness of mitigation				
measures designed to avoid exposing marine mammals to mid-frequency sonar.				
This evaluation shall identify the specific observations that support any conclusions the Navy				
reaches about the effectiveness of the mitigation.				
ASW Summary				
a) Summarized information For MTEs & non-major training exercises				
Include total annual hours of each type of sonar source (along with explanation of how hours are				
calculated for sources typically quantified in alternate way (buoys, torpedoes, etc.)), plus other				
range-specific information.				
b) Cumulative Impact Report				
c) Annual (and seasonal, where practicable) depiction of non-major training exercises				
geographically across the Study Area.				
SINKEX Summary				
a) Exercise info for each SINKEX completed that year				
— (i) Location.				
 (ii) Date and time exercise began and ended. 				
 (ii) Date and time exercise began and ended. (iii) Total hours of observation by lookouts before, during, and after exercise. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vi) Number and types of vessels, aircraft, etc., participating in exercise. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. (b) Individual marine mammal sighting info (for each sighting in each MTE). 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vi) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. (b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 IEER / AEER Summary (i) Total number of IEER and AEER events conducted. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 IEER / AEER Summary (i) Total number of IEER and AEER events conducted. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 IEER / AEER Summary (i) Total number of IEER and AEER events conducted. (ii) Total number of self-scuttled IEER rounds. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 IEER / AEER Summary (i) Total number of IEER and AEER events conducted. (ii) Total number of self-scuttled IEER rounds. 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 IEER / AEER Summary (i) Total number of IEER and AEER events conducted. (ii) Total number of self-scuttled IEER rounds. Explosives Summary (i) Total annual number of each type of explosive exercise (of those identified as part of the 				
 (iii) Total hours of observation by lookouts before, during, and after exercise. (iv) Total number and types of rounds expended/explosives detonated. (v) Number and types of passive acoustic sources used in exercise. (vi) Total hours of passive acoustic search time. (vii) Number and types of vessels, aircraft, etc., participating in exercise. (viii) Wave height in feet (high, low, and average during exercise). (ix) Narrative description of sensors and platforms utilized for marine mammal detection and timeline illustrating how marine mammal detection was conducted. b) Individual marine mammal sighting info (for each sighting in each MTE). See list of data elements described in Section 3.1 IEER / AEER Summary (i) Total number of IEER and AEER events conducted. (ii) Total number of self-scuttled IEER rounds. 				

 Table 3: Summary Sections contained in the Annual Exercise Report

 Each range complex submits annual summaries as applicable for authorized military readiness activities.

The annual reporting requirements associated with the MMPA Final Rules are designed to provide NMFS with monitoring data from the previous year and assist NMFS in analyzing the information for subsequent LOA applications. As part of the adaptive management process described in Section 5, NMFS and the Navy will meet yearly, prior to LOA issuance, to discuss these annual reports and to determine whether mitigation or monitoring modifications are appropriate. Range/project-specific monitoring plans are then updated and submitted as part of the LOA renewal application. If substantial modification, as determined by NMFS, to the described mitigation or monitoring will occur during the upcoming season, NMFS will provide the public a period of 30 days for review and comment on the request.

There are also non-recurring reporting requirements. For both Fleet and NAVSEA ranges and study areas, these requirements include a draft "Range Complex 5-year Comprehensive Report" that analyzes and summarizes all multi-year marine mammal information gathered during authorized activities for which annual reports are required. This report is submitted at the end of the fourth year of the rule, covering activities that occurred through a specified data cutoff date.

For the Fleet ranges only, the non-recurring requirements also include a draft "Comprehensive National ASW Report" that analyzes, compares, and summarizes the active sonar data gathered from Navy lookouts pursuant to the implementation of rangespecific monitoring plans. This National ASW Report is not required for the Cherry Point, JAX, VACAPES, and GOMEX Range Complexes, as active sonar data from these OPAREAS is included in the AFAST reporting requirements. Further guidance to support the preparation of these two comprehensive reports will be promulgated by OPNAV N45 in conjunction with the adaptive management process.

Table 4 provides an overall summary listing of specific report dates under the current MMPA Final Rules, current as of 16 November 2010. NMFS is responsible for establishing the specific timeline for each year's report submittals. As part of adaptive management, NMFS and the Navy are coordinating on the development of a streamlined workload plan for developing and reviewing these reports. Although the reports described will always be submitted annually at a time that allows for adequate analysis by NMFS prior to the issuance of the subsequent LOA, NMFS retains the flexibility to change those dates yearly. Therefore, regulatory text may not specify the dates that the reports are due, but each annual LOA will provide these required dates. Additionally, by way of adaptive management, the Navy may choose to combine the annual reports from multiple ranges into a Multi-Range Complex Annual Report.

The Navy shall respond to NMFS' comments and requests for additional information or clarification on the individual annual or comprehensive reports if submitted within 3 months of receipt. These reports will be considered final after the Navy has addressed NMFS' comments or provided the requested information, or 3 months after the submittal of the original submittal if NMFS does not comment by then.

It is anticipated that reporting requirements will be added pursuant to the implementation of monitoring plans and MMPA Final Rules for the NUWC Keyport Range Complex and the GOA TMAA. The ICMP plan will be updated as appropriate to reflect these requirements through the adaptive management process.

2010 UPDATE dtd 20 Dec 2010

Table 4: Common reporting requirements for range complexes/study areas covered by ICMP* (Data date: 16 November 2010)

* 2010 update: The requirements as written include specific due dates for each of the reports. As part of adaptive management, NMFS and the Navy are coordinating on the development of a streamlined workload plan for developing and reviewing these reports. Although the reports described will always be submitted annually at a time that allows for adequate analysis by NMFS prior to the issuance of the subsequent LOA, NMFS retains the flexibility to change those dates yearly. Therefore, regulatory text may not always specify the dates that the reports are due, but each annual LOA will provide these required dates.

Annual Exercise (or RDT&E) Report	Annual Monitoring Plan Report	5-Year Comprehensive Monitoring Report	Comprehensive National ASW Report
1 Aug cutoff / 1 Oct submit	1 Aug cutoff / 1 Oct submit	1 June 2012 cutoff / 30 Nov 2012 submit	1 Jan 2014 cutoff / June 2014 submit
1 Aug cutoff / 1 Oct submit	1 Aug cutoff / 1 Oct submit	1 June 2012 cutoff / 30 Nov 2012 submit	1 Jan 2014 cutoff / June 2014 submit
1 Aug cutoff / 1 Oct submit	1 Aug cutoff / 1 Oct submit	1 June 2012 cutoff / 30 Nov 2012 submit	1 Jan 2014 cutoff / June 2014 submit
Annual report required, but submittal date not specified.	1 Jan cutoff / 1 Mar submit	1 Dec 2012 cutoff / 31 May 2013 submit	Not Applicable
Annual report required, but submittal date not specified.	1 Jan cutoff / 1 Mar submit	1 Dec 2012 cutoff / 31 May 2013 submit	Not Applicable
Annual report required, but submittal date not specified.	1 Jan cutoff / 1 Mar submit	1 Dec 2012 cutoff / 31 May 2013 submit	Not Applicable
Annual RDT&E report 1 Aug cutoff / 1 Oct submit	1 Aug cutoff / 1 Oct submit	1 July 2013 cutoff / 31 Dec 2013 submit	Not Applicable
15 April submit/15 Feb cutoff (not specified in LOA but derived by Navy)	15 April submit/15 Feb cutoff (not specified in LOA but derived by Navy)	15 Jul 2014 cutoff / 30 Nov 2014 submit	1 Jan 2014 cutoff / June 2014 submit
Annual report required; submission date will be identified each year in the LOA.	Annual report required; submission date will be identified each year in the LOA.	1 Feb 2014 cutoff / July 2014 submit	1 Jan 2014 cutoff / June 2014 submit
Not Applicable	PROPOSED: 1 Sep cutoff / 1 Dec submit	PROPOSED: 1 Sep 2013 [<i>sic</i>] cutoff / 30 Jun 2013 submit	Not Applicable
Annual report required, but submittal date not specified.	PROPOSED: 1 Jan cutoff / 1 Mar submit	PROPOSED: 1 Sep 2013 cutoff / 30 Mar 2014 submit	Not Applicable
PROPOSED: October cutoff/ Dec 15 submit	PROPOSED: October cutoff/ Dec 15 submit	PROPOSED: Oct 2014 cutoff / Dec 2014 submit	PROPOSED: 1 Jan 2014 cutoff / June 2014 submit
	RDT&E) Report 1 Aug cutoff / 1 Oct submit Annual report required, but submittal date not specified. Annual report required, but submittal date not specified. Annual report required, but submittal date not specified. Annual RDT&E report 1 Aug cutoff / 1 Oct submit 15 April submit/15 Feb cutoff (not specified in LOA but derived by Navy) Annual report required; submission date will be identified each year in the LOA. Not Applicable Annual report required, but submittal date not specified. PROPOSED: October cutoff/	RDT&E) ReportMonitoring Plan Report1 Aug cutoff / 1 Oct submit1 Aug cutoff / 1 Oct submitAnnual report required, but submittal date not specified.1 Jan cutoff / 1 Mar submitAnnual report required, but submittal date not specified.1 Jan cutoff / 1 Mar submitAnnual RDT&E report 1 Aug cutoff / 1 Oct submit1 Aug cutoff / 1 Mar submit15 April submit/15 Feb cutoff (not specified in LOA but derived by Navy)15 April submit/15 Feb cutoff (not specified in LOA but derived by Navy)Annual report required; submission date will be identified each year in the LOA.PROPOSED: 1 Sep cutoff / 1 Dec submitNot ApplicablePROPOSED: 1 Jan cutoff / 1 Jan cutoff / 1 Mar submitAnnual report required, submission date will be identified each year in the LOA.Not ApplicablePROPOSED: 1 Jan cutoff / 1 Mar submitPROPOSED: October cutoff/PROPOSED: 0ctober cutoff/	RDT&E) ReportMonitoring Plan ReportComprehensive Monitoring Report1 Aug cutoff / 1 Oct submit1 Aug cutoff / 1 Oct submit1 June 2012 cutoff / 30 Nov 2012 submit1 Aug cutoff / 1 Oct submit1 Aug cutoff / 1 Aug cutoff / 1 Oct submit1 June 2012 cutoff / 30 Nov 2012 submit1 Aug cutoff / 1 Oct submit1 Aug cutoff / 1 Oct submit1 June 2012 cutoff / 30 Nov 2012 submit1 Aug cutoff / 1 Oct submit1 Aug cutoff / 1 Oct submit1 June 2012 cutoff / 30 Nov 2012 submitAnnual report required, but submittal date not specified.1 Jan cutoff / 1 Mar submit1 Dec 2012 cutoff / 31 May 2013 submitAnnual report required, but submittal date not specified.1 Jan cutoff / 1 Mar submit1 Dec 2012 cutoff / 31 May 2013 submitAnnual report required, but submittal date not specified.1 Jan cutoff / 1 Mar submit1 Dec 2012 cutoff / 31 May 2013 submitAnnual report required, but submittal date not specified.1 Aug cutoff / 1 Oct submit1 July 2013 cutoff / 31 Dec 2013 submit15 April submit/15 Feb cutoff (not specified in LOA15 April submit/15 Feb cutoff (not specified in LOA but derived by Navy)15 April submitAnnual report required; submission date will be identified each year in the LOA.PROPOSED: 1 Sep cutoff / 1 Dec submit1 Feb 2014 cutoff / July 2014 submitAnnual report required, but submittal date not specified.PROPOSED: 1 Sep cutoff / 1 Dec submit1 Sep 2013 cutoff / 30 Jun 2013 submitAnnual report required; submission da

4.2 RECORDKEEPING SYSTEM

OPNAV (N45) is responsible for coordinating the development, funding, and assessment of Navy marine research, and ensuring prioritization of research monitoring projects consistent with the top-level goals and priorities established by the ICMP or other applicable legal requirements. Monitoring activities will be allocated and resourced based on the strength of particular and specific monitoring proposals. With NMFS concurrence, they will not be allocated based on maintaining an equal (or commensurate to effects) distribution of monitoring effort across the range complexes. For example, careful prioritization and planning through the ICMP (which would include a review of both past monitoring results and current scientific developments) may show that a large, intense monitoring effort in one range complex would likely provide extensive, robust and much-needed data that could be used to understand the effects of sonar on the marine environment throughout different geographical areas. In this case, it may be appropriate to have other range complexes dedicate money, resources, or staff to the specific monitoring proposal identified as "high priority" by the Navy and NMFS, in lieu of focusing on smaller, lower priority projects divided throughout their home range complexes. In the event that monitoring is allocated in this fashion, clear recordkeeping is needed to demonstrate how each range complex/project is contributing to all of the ongoing monitoring. This will be done by maintaining a record of these resource allocation decisions in the electronic central data repository previously discussed in Section 3.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

5. ADAPTIVE MANAGEMENT

The MMPA Final Rules for Navy range complexes⁷ require an adaptive management process to be established. Section 5.1 describes the process that will be used to annually review, with NMFS, monitoring results, Navy RDT&E, and current science to use for potential modification of mitigation or monitoring methods. The MMPA Final Rules also prescribe a monitoring workshop to be held in 2011 to review cumulative monitoring results from 2009 and 2010. Section 5.2 discusses this monitoring workshop, as well as how and when Navy/NMFS will subsequently utilize the findings of the monitoring workshop to potentially modify subsequent monitoring and mitigation.

5.1 ANNUAL REVIEWS

The reporting requirements associated with the MMPA Final Rules are designed to provide NMFS with monitoring data from the previous year in sufficient time to allow NMFS to consider the data before reissuing subsequent LOAs. Using the data collection and reporting procedures previously described in Sections 3 and 4, the Navy's monitoring data and marine species sighting observations will be consolidated and made available for analysis. NMFS and Navy will then meet to conduct an annual Adaptive Management Review (AMR). The AMR is a multipart review at which NMFS and the Navy jointly consider prior year goals, monitoring results and advancing science to assess overall progress. The review will determine if modifications are needed in mitigation or monitoring measures to more effectively address monitoring program goals. The AMR will consider data as available from across all of the range complexes included within the ICMP. At present, only one AMR per year is planned, and it will be applicable to all range complexes covered by the ICMP. The AMR will also consider an updated matrix of goals and prioritization guidelines proposed for the following year.

OPNAV N45 is responsible for the overall AMR meeting coordination and agenda. Navy action proponents will be asked to assign staff familiar with range/project-specific monitoring results to participate in this review and present an overview of the past year's monitoring activities. Additionally, sponsors of Navy-funded monitoring-related research will be asked to participate and provide a summary of their activities and accomplishments. Other potential presentation and discussion topics for the AMR include:

- Lessons learned from previous year's monitoring efforts;
- Other (non Navy-funded) monitoring-related science advances;
- Effectiveness of existing monitoring and mitigation tools;
- Operational feasibility of new tools and technologies;
- Recommendations for refinement and analysis of monitoring and mitigation methods; and
- Recommendations for the next year's monitoring activities.

⁷ E.g., 50 C.F.R. § 216.175(c)(4).

If available, collaboration with regional NMFS scientists, academic scientists, and other non-Navy subject matter experts will be informally sought.

Products of the AMR include a determination as to whether mitigation or monitoring modifications are appropriate for the upcoming year, and an updated matrix of monitoring goals and prioritization guidelines. Adaptations and refinements to monitoring programs that result from the AMR will be incorporated into the range/project-specific monitoring plans as they come up for renewal in the normal course of events.

Adaptive management will also lead to updates and improvements to the overall ICMP. The updated matrix of goals and prioritization guidelines resulting from the AMR will be incorporated by an annual addendum or revision to the ICMP. Additionally, expanded descriptions of the data repository, details for data standardization protocols, expanded information on range-specific characteristics, and planning information for the 2011 Monitoring Workshop are among the candidate information to be included in future updates. Annual ICMP updates will be provided to NMFS by 31 December beginning in 2010.

With the annual AMR, NMFS and Navy will have the ability to consider new data from different sources for purposes of making minor modifications to improve the effectiveness of range/project-specific monitoring plans, or to potentially identify substantial changes for subsequent 5-year regulations. This could result in mitigation or monitoring measures being added, modified, or deleted for subsequent annual LOAs. If a request to renew an LOA indicates that a substantial modification as determined by NMFS to the described activity, mitigation, or monitoring during the upcoming season will occur, NMFS will provide the public a period of 30 days for review and comment on the request.

AMRs potentially could lead to significant restructuring of the monitoring plans put forward by individual ranges. In order to obtain robust, much-needed data that addresses highpriority monitoring goals, monitoring activities may be prioritized and resourced based on the likely contribution of specific monitoring proposals to stated monitoring goals, as well as the likely technical success of the proposed monitoring approach based on a review of past monitoring results. This is in contrast to allocating monitoring resources based on maintaining an equal (or commensurate to effects) distribution of monitoring effort across range complexes. For example, if careful prioritization and planning were to suggest that a large, intense monitoring effort in one Range Complex could be used to understand the effects of sonar throughout different geographical areas, it may be appropriate to have other Range Complexes dedicate money, resources, or staff to the specific monitoring proposal identified as "high priority" by the Navy and NMFS, in lieu of focusing on smaller, lower priority projects divided throughout their home Range Complexes.

A record of decisions and monitoring resource allocations made as a result of the AMR will be documented and maintained in the electronic central data depository previously discussed in Section 3. This will allow NMFS and other interested parties to see how each range complex is contributing to all of the ongoing monitoring (funding, staffing, and level of effort).

This adaptive management process recurs annually. However, there will be modifications to the process in 2011, when the Navy, with guidance and support from NMFS, is to host a monitoring workshop that incorporates outside experts and expanded participation.

2010 UPDATE dtd 20 Dec 2010

5.2 MONITORING WORKSHOP IN 2011

As part of the adaptive management process in 2011, the Navy, with guidance and support from NMFS, will convene a monitoring workshop with participation from marine mammal and acoustic experts, as well as other interested parties. This monitoring workshop, tentatively scheduled for mid-2011 in the Metropolitan D.C. area, will present a consolidated overview of monitoring activities accomplished in 2009 and 2010 pursuant to the regulations in place to govern the unintentional taking of marine mammals incidental to authorized activities conducted on Navy ranges and operating areas. It will also include outcomes of selected monitoring-related research activities. One possible outcome of this workshop is the potential identification of substantial changes in monitoring approaches for subsequent 5-year regulations.

Participation in this jointly sponsored NMFS/Navy Workshop will be by invitation only. Participants will include, among others, recognized experts in marine species monitoring from across government, academia, and the private sector. After considering the current science and working within the framework of available resources and feasibility of implementation, monitoring workshop participants will be asked to submit their individual recommendations to the Navy and NMFS. Navy and NMFS will then analyze the input from participants and determine the best way forward from a national perspective.

The workshop will not be used to seek or achieve consensus on a way forward for the monitoring program. NMFS has statutory responsibility to prescribe regulations pertaining to monitoring and reporting, and will develop in coordination with the Navy the most effective and appropriate monitoring and reporting protocols for future authorizations. As necessary, NMFS will incorporate any changes into future LOAs and rulemakings. If the modification to the described activity, mitigation, or monitoring is determined by NMFS to be substantial, then NMFS will provide the public a period of 30 days for review and comment.

OPNAV N45 will take the lead for Navy in coordinating this monitoring workshop with NMFS. There will be a series of detailed planning meetings for this 2011 workshop starting with the 2010 AMR.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

6. ICMP NEAR-TERM DEVELOPMENT FOCUS AREAS

To be an effective planning tool, the ICMP must continue to develop and evolve over time. Specific recommendations for near-term development of the ICMP were suggested in December 2009. Progress in each of the focus areas listed below was the subject of discussion in the October 2010 AMR. This progress is also summarized below.

The three specific areas originally identified for the ICMP near-term development included:

1. **Top-level Goal Refinement**. NMFS and Navy, with input from the 2010 monitoring workshop, refined the top-level goals. These refined goals are provided in Section 2. The Navy is now working with their contractor, HDR|e²M, and a newly created Scientific Advisory Group (SAG) to implement these refined goals into a 3-5 year Strategic Plan for monitoring. The current objective is to produce a group-reviewed draft Strategic Monitoring Plan that has been refined/reviewed by experts and vetted through NMFS and MMC to present at the 2011 Monitoring Workshop.

2. Characterization of Navy Range Complexes/Study Areas. Many of the prioritization guideline factors provided by Section 2 are highly dependent on the specific location at which the proposed monitoring activity is to be conducted. To better assist planning efforts within the ICMP, one would like to predict a confidence level for the likelihood of obtaining meaningful monitoring data in any given location based on factors such as prior success with the specific monitoring method itself, anticipated sea states, seasonal weather patterns, local animal densities and migration patterns, and anticipated success rate for integrating the monitoring method with training events at that location. For this framework document to support that level of comparative analysis, it needs to include reference information that allows the user a top-level view of attributes across the various Navy range complexes. This characterization of the unique attributes associated with each range complex/study area is under development, and the work will extend into 2011. Appendix E provides the initial framework and selected portions of the current draft matrix for the range characterization.

3. Data Management Organization and Access Procedures Development. Section 3 provided a preliminary description of the centralized electronic repository for data associated with the ICMP, and the types of data that might be made available, as appropriate, to various categories of users. At present, there is a mix of classified and unclassified data that falls under the ICMP umbrella. As the ICMP matures, and greater amounts of monitoring data are recorded and available for analysis, ways of efficiently organizing this data to support discovery and access within the bounds of existing regulations will become increasingly important. The Navy's first priority is on managing the data collected in support of permitted activities. However, there is also interest in setting up links to relevant reports or a data library so that "best available" science can be easily accessed. This might include active research awards and grants, as well as annual reports of work accomplished. Navy is working with their contractor, HDR|e²M, to develop structured procedures to meet specific access requirements for the various Fleet, Scientific, and General Public user groups. This development effort will continue into 2011. Initially, all visual survey data from Fleet-funded monitoring efforts will be made publically available through the OBIS-SEAMAP interface and may also be integrated into other public databases. Unclassified NMFS-required monitoring reports as specified by the MMPA Final Rules are currently available on the NMFS website. These reports along

2010 UPDATE dtd 20 Dec 2010

with unclassified results from monitoring-related Navy R&D programs will also be publicly available from the Navy repository.

7. ROLES AND RESPONSIBILITIES

OPNAV (N45) is responsible for maintaining and updating this ICMP, as appropriate, to reflect future regulatory agency final rulemakings, adaptive management reviews, best available science, improved assessment methodologies, or more effective protective measures. This will be done in consultation with Navy technical experts, Fleet Commanders, and Echelon II Commands as appropriate.

OPNAV (N45) shall:

- Coordinate the development, funding, and assessment of Navy marine research, ensuring prioritization of monitoring projects consistent with the top-level goals established by the ICMP or other applicable legal requirements;
- Establish an electronic central repository that includes both monitoring data from activities conducted under the MMPA authorizations and annual results from Navyfunded R&D programs;
- Review annual ESA and MMPA reports prepared by Echelon II Commands to ensure a standardized approach is maintained that will enable appropriate consolidation and comparison of data;
- Chair an annual Adaptive Management Review (AMR) with NMFS on a schedule that supports the reissuance of LOA and annual Biological Opinions (BO) to maintain uninterrupted Fleet training and operations as well as Acquisition Community RDT&E activities. Attendees should include representatives from OPNAV, Office of the Assistant Secretary of the Navy for Installations and Environment (OASN I&E), Office of Naval Research (ONR), and Echelon II commands. OPNAV (N45) may approve additional attendees;
- In conjunction with the Adaptive Management Review, submit an annual evaluation of monitoring-related goals and priorities to NMFS; and
- Co-chair planning sessions with NMFS to address detailed planning for the mid-2011 Monitoring Workshop.

USFF, CPF, NAVSEA, and other permit holders shall:

- Coordinate completion of environmental planning, permitting, consultations, and reports to support uninterrupted Fleet training and research, development, testing, and evaluation requirements;
- Conduct monitoring measures consistent with applicable NMFS MMPA Final Rules, Biological Opinions, and other governing legal requirements;
- Monitor changes in ESA species, critical habitats, Habitat Areas of Particular Concern (HAPC), sanctuaries and protected marine species regulations as it may affect Navy military readiness activities authorized under their permits; and
- Assign staff to participate in the AMR.

2010 UPDATE dtd 20 Dec 2010

NAVFAC, NUWC, and other Echelon III commands have contracting authority and provide support to the permit holders through contracting, executing, and managing Fleet-funded monitoring activities as directed.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

8. REFERENCES

MMPA FINAL RULES / PROPOSED RULES:

Taking and Importing Marine Mammals; U.S. Navy Training in the Hawaii Range Complex; Final Rule, 74 Fed. Reg. 1456 (January 12, 2009) (to be codified at 50 C.F.R. pt. 216).

Taking and Importing Marine Mammals; U.S. Navy Training in the Southern California Range Complex; Final Rule, 74 Fed. Reg. 3883 (January 21, 2009) (to be codified at 50 C.F.R. pt. 216).

Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training (AFAST); Final Rule, 74 Fed. Reg. 4844 (January 27, 2009) (to be codified at 50 C.F.R. pt. 216).

Taking and Importing Marine Mammals; U.S. Navy Training in the Cherry Point Range Complex; Final Rule, 74 Fed. Reg. 28370 (June 15, 2009) (to be codified at 50 C.F.R. pt. 218).

Taking and Importing Marine Mammals; U.S. Navy Training in the Jacksonville Range Complex; Final Rule, 74 Fed. Reg. 28349 (June 15, 2009) (to be codified at 50 C.F.R. pt. 218).

Taking and Importing Marine Mammals; U.S. Navy Training in the Virginia Capes Range Complex; Final Rule, 74 Fed. Reg. 28328 (June 15, 2009) (to be codified at 50 C.F.R. pt. 218).

Taking and Importing Marine Mammals; U.S. Naval Surface Warfare Center Panama City Division Mission Activities; Final Rule, 75 Fed. Reg. 3395 (January 21, 2010) (to be codified at 50 C.F.R. § 218).

Taking and Importing Marine Mammals; Military Training Activities and Research, Development, Testing and Evaluation Conducted Within the Mariana Islands Range Complex (MIRC); Final Rule, 75 Fed. Reg. 45527 (August 3, 2010) (to be codified at 50 C.F.R. pt. 218).

Taking and Importing Marine Mammals; Navy Training Activities Conducted Within the Northwest Training Range Complex; Final Rule, 75 Fed. Reg. 69296 (November 10, 2010) (to be codified at 50 C.F.R. pt. 218).

Taking and Importing of Marine Mammals; U.S. Navy's Research, Development, Test, and Evaluation Activities Within the Naval Sea Systems Command Naval Undersea Warfare Center Keyport Range Complex; Proposed Rules, 74 Fed. Reg. 32264 (July 7, 2009) (to be codified at 50 C.F.R. pt. 218).

Taking of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Training Operations Conducted Within the Gulf of Mexico Range Complex; Proposed Rules, 74 Fed. Reg. 33960 (July 14, 2009) (to be codified at 50 C.F.R. pt. 218).

RANGE-SPECIFIC MONITORING PLANS

Hawaii Range Complex Monitoring Plan dated December 2008.

Atlantic Fleet Active Sonar Training Range Complex Monitoring Plan dated January 2009.

Southern California Range Complex Monitoring Plan dated 9 January 2009.

Jacksonville Range Complex Monitoring Plan dated February 2009.

VACAPES Range Complex Monitoring Plan dated February 2009.

Cherry Point Range Complex Monitoring Plan dated April 2009.

Gulf of Mexico Complex Monitoring Plan (draft) dated April 2009.

Mariana Islands Range Complex Monitoring Plan dated May 2010.

Northwest Training Range Complex Monitoring Plan dated June 2010.

Gulf of Alaska Temporary Maritime Activities Area Monitoring Plan (draft) dated June 2010.

OTHER REFERENCES:

CNO Memo dated 6 Mar 2006, "Mid-Frequency Active Sonar Effects Analysis Interim Policy".

DRAFT United States Navy Comprehensive Marine Species Monitoring Program dated October 2007. Naval Facilities Engineering Command Pacific, Pearl Harbor, HI. Prepared by: ManTech SRS Technologies, Inc., 3865 Wilson Boulevard, Suite 800, Arlington, VA 22203 under Contract No. N68711-02-D-8043; Task Order No. 0035 in collaboration with: Cascadia Research Collective; Centre for Research into Ecological and Environmental Modeling, University of St. Andrews; Greeneridge Sciences, Inc.; LGL Limited; Kim Holland, Ph.D. University of Hawaii; and U. S. Navy Marine Resources Support Group.

Endangered Species Act (ESA), 16 U.S.C. §1531, et seq.

Executive Order 12114, "Environmental Effects Abroad of Major Federal Actions".

Marine Mammal Protection Act (MMPA), 16 U.S.C. §1361, *et seq.*, as amended by the 2004 National Defense Authorization Act, Pub. L. No. 108-136, 319, 117, Stat. 1433.

National Environmental Policy Act (NEPA), 42 U.S.C. §4321, et seq.

OPNAVINST 5090.1C, Environmental Readiness Program Manual dated 30 October 2007.

Navy Integrated Comprehensive Monitoring Program

2010 UPDATE dtd 20 Dec 2010

APPENDIX A:

SOUND SOURCES AND ACTIVITIES AUTHORIZED OR ANTICIPATED TO BE AUTHORIZED UNDER THE MMPA FINAL RULES FOR FLEET TRAINING RANGE COMPLEXES / STUDY AREAS

Green: Proposed Rules	Range ISP3E	SOCAL	HRC	VACAPES	Cherry Pt	JAX	NWTRC	MIRC	GOMEX	GOA TMAA
Sound Source / Activity	Y	•2		V,	U		2		0	60
Use of mid-frequency active sonar (MFAS) and high freque	ency active son:	ar (HI	TAS) s	source	es for	Fleet	Traini	ing:		
AN/AQS-22 or 13 (helicopter dipping sonar)	Х	Х	Х					Х		Х
AN/BQQ-10 or 5 (submarine mounted sonar)	X	Х	Х					Х		Х
AN/BQS-15 (submarine navigation)	Х	Х					Х	Х		Х
AN/SLQ-25 (NIXIE—towed countermeasure)	X	Х								
AN/SQQ–32 (over the side mine-hunting sonar)	X	3.7	77				¥7	77		77
AN/SQS-53 (hull-mounted sonar)	X	X	X				X	X		X
AN/SQS-56 (hull-mounted sonar)	X	X	Х				X	X		X
AN/SSQ–125 (AEER sonar sonobuoys)	X	Х					Х	Х		Х
MK-1 or 2 or 3 or 4 (Submarine-fired Acoustic Device	Х									
Countermeasure (ADC))	X	37						37		
MK-46 or 54 (lightweight torpedoes)	X X	X X	37				х	X X		37
MK-48 (heavyweight torpedoes)	X	А	Х				A	А		Х
Noise Acoustic Emitters (NAE - Sub-fired countermeasure) SSQ-62 DICASS (sonobuoys)	X	x	х				х	х		X
MK-84 range tracking pingers for ASW tracking	А	л	Λ				X	X		X
Portable Undersea Tracking Range Uplink							X	X		X
Detonation of underwater explosives for Fleet Training:							Λ	Λ		A
AN/SSQ-110A (IEER explosive sonobuoy) (5 lbs)	Х	Х	Х				Х	Х		Х
MK-48 Heavyweight Torpedo (851 lbs)	24	x	X				X	X		x
Airborne Mine Neutralization System (AMNS)			17	Х			~~			~ * *
Demolition Charges (20 lbs)		х	Х	x	Х	Х	Х	Х		
AGM–65 E/F Maverick missile (78.5 lbs)		X	X	X		X	X	X		
Harpoon missile (448 lbs)		X	X				X	X		
AGM–114 Hellfire missile				Х	Х	Х	X	Х		
AGM-88 High-speed anti-radiation missile (HARM)				Х			Х	Х		
Tube-launched Optically tracked Wire-guided (TOW) missile					Х					
SLAM missile							Х	Х		
MK–82 Bomb / GBU-12		Х	X				Х	Х		Χ
MK-83 Bomb / GBU-16 / GBU -32		Х	Х	Х			Х	Х	Х	Х
MK–84 Bomb / GBU-10		Х	Х				Х	Х		Χ
5" Naval Gunfire (9.5 lbs)		Х	Х	Х	Х	Х	Х	Х		Х
76 mm rounds (1.6 lbs)		Х	Х				Х	Х		Χ
MK3A2 anti-swimmer concussion grenades (0.5 lbs)						Х		Х	Х	
Training Events or Activity:										
ASW Exercise	X	X	Х				X	Х		Х
MINEX (Neutralization, Avoidance, Countermeasures)	X	X	Х	Х	X	X	Х	X		
MISSILEX (Air-to-Surface)		Х	X	Х	Х	Х	Х	Х		X
MISSILEX (Surface-to-Surface)			Х						**	X
BOMBEX (Air-to-Surface)		X	X	Х			X	X	Х	X
SINKEX CUNEX (Surface to Surface)		X X	X X				X X	X X		X X
GUNEX (Surface-to-Surface)		х					X	Х		Х
Naval Surface Fire Support	(D & CC)		Х	v	v	v				
FIREX with Integrated Maritime Portable Acoustic Scoring System (II Small Arms Training with grane day	VIPA55)			Х	Х	X X		х	V	
Small Arms Training with grenades	Х	х				А		А	Х	
Maintenance RDT&E (unspecified)	X	X						х		
KD ræn (unspecifieu)	А	А						Λ		

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

APPENDIX B:

Sound Sources and Activities anticipated to be authorized under the MMPA Final Rules for NAVSEA RDT&E Ranges / Study Areas

Green: Proposed Rules Range Sound Source / Activity	NUWC Keyport	NSWC PCD
Use of mid-frequency and high frequency active sound sources for NAVSEA R	DT&E	:
Acoustic communication modems, HF	Х	Х
Acoustic devices for general range and UUV tracking (HF)	Х	
Aids to navigation (range equipment)	Х	
AN/AQS-22 (helicopter dipping sonar)	Х	
AN/AQS-20 (helicopter towed mine-hunting sonar)		Х
AN/SQQ-32 (over the side mine-hunting sonar)		Х
AN/SQS-53/56 (hull-mounted sonar, Kingfisher)		X
AN/WLD-11 RMS Navigation (HF)	Х	X
F84Y (Tower-mounted parametric sonar used to simulate mine-like objects, HF)	v	X
Object detection and navigation sonars (multiple HF)	X	Х
Range Targets with active acoustic devices (MF, HF)	X X	х
Sidescan Sonars (multiple HF frequencies) Sonobuoys, active	X	А
Special Test Systems with active acoustic devices (MF, HF)	X	
Sub-bottom profilers (MF, HF)	X	x
Torpedo Sonars (HF)	X	A
TVSS (Toroidal Volume Search Sonar, HF)	Λ	х
Detonation of underwater explosives for NAVSEA RDT&E:		21
Live Ordnance $(1 - 10$ lb net explosive weight)		Х
Live Ordnance $(11 - 75 \text{ lb net explosive weight})$		X
Live Ordnance (76 – 600 lb net explosive weight)		X
Line Charges (1750 lb net explosive in 5 lb increments)		Х
Projectiles (5in, 40mm, 30mm, 20mm, 76mm, 25mm, and small arms)		Х
NAVSEA RDT&E Activity:		
Acoustic and non-acoustic sensor testing	Х	
Countermeasure testing	Х	
Impact testing	Х	
Inert mine detection, classification, and localization	Х	
Ordnance Live T&E		Х
Projectile Firing T&E		Х
Sonar T&E		Х
Surf zone clearing T&E with line charges		Х
Surface Operations – equipment deployment and recovery	Х	Х
Surface Operations – system development	Х	Х
Surface Operations – test support	X	X
Surface Operations – tows	X	Х
UUV and UAS testing	X	
Vehicle propulsion testing	X	

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

2010 UPDATE dtd 20 Dec 2010

APPENDIX C: Sample size and Statistical analysis

Specific guidelines for sample size and statistical analysis are under development. This is a PLACEHOLDER for a FUTURE UPDATE.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

1

APPENDIX D: Marine Mammal Sighting Form for Navy Lookouts

Example:							
A. DTG: 061234 Z JAN 09 B. Species/Type of Mammal: Whale C. Number of Mammals: 2 VES/NO							
E. Initial Detection Source: (ISUAD) AURAL F. Initial Brg/Rng: 215 T/ 1400 Yds G. Unit Position: LAT: 123456N LONG: 1234555							
H. Unit Course/Speed: 265 T/ 12 Kts I. Last Known Brg/Rng: 095 T/ 900 Yds J. Total Time Visually Observed: 14 MI							
K. Wave Height: 4 FT L. Visibility: 12 NM M. MFAS Status: ON N. MFAS Action Taken: Powerdown							
IF MFAS WAS TRANSMITTING WHEN MAMMAL WAS SIGHTED AND SUBSEQUENTLY POWERED DOWN/SHUT DOWN, OR COURSE CHANGED:							
O. Duration of Action: 14 MIN P. Mancuver Conducted: Turn Stbd Q. Degrees of Course Chg: 45 DEG R. Range Action Taken: 800 Y							
S. Action impact (note 1): slight - degraded integrity of ASW screen, as ship maneuvered to avoid whales							
T. Narrative of observation (note 2): two whales paralleled ship's course, CPA of 600 yds after maneuver. Powered down MFAS for 14 min until lost sight of whales.							
down MFAS for 14 min until lost sight of whales.							
Data Fields:							
A. DDHHMM Z MMM YY							
B. WHALE / DOLPHIN / PORPOISE / SEAL / SEAL LION / TURTLE /GENERIC (i.e unknown)							
C. Number							
D. YES/NO							
E. VISUAL / AURAL							
F. Bearing in Degrees True / Range in Yards							
G. Position: DDMMSS N/S DDDMMSS E/W							
H. Course in Degrees True / Speed in Knots							
. Bearing in Degrees True / Range in Yards							
I. Minutes K. Feet							
L. Nautical Miles							
M. NO / YES							
N. Powerdown -6dB / Powerdown -10dB / Shutdown / None							
O. Minutes							
P. Turn STBD / Turn PORT / -							
Q. Degrees							
R. Range in Yards							
S. Tactical Degradation Assessment examples:							
- None							
- Slight - Degraded ASW screen integrity when ship maneuvered to open whales.							
- Moderate - Lost Contact when power reduced.							
- Significant - Engagement interrupted when MFAS was Shutdown.							
Γ. Observation examples:							
- Dolphins sighted at 1200 YDS off Port bow, closing the ship. Maneuvered to confirm Bow							
Riding and continued MFAS operations							
 Pod of whales sighted fin slapping 600 YDS off STBD bow, paralleling ships course. Ship maneuvered to Port to open range. 							
- Porpoises sighted 250 YDS off STBD Beam, opening ship. Powered down MFAS by -6dB							
until they opened to 1000 YDS. Lost sight astern.							
- DragonSlayer 12, flying NW at 60 kts, 1200FT, spotted pod of dolphins within 150 YDS of							
DICASS Buoy 12. Buoy was passive at the time, and remained so until dolphins were seen							
leaving the area. 80% cloud layer at 3500 FT. Photos taken.							

USS	1	DAILY MARI	NE MAMM	IAL LOG		
A. DTG: Z	B. Species/Type of Mammal:		C. Number of Ma	mmals:	D. Calves: Y	ES/NO
E. Initial Detection Source: VISUAL	/ AURAL F. Initial Brg/Rng:	T/ Ye	ds G. Unit Posi	tion: LAT:	LONG:	
H. Unit Course/Speed: T /	Kts I. Last Known	Brg/Rng:	T/ Yds	J. Total Time Vi	sually Observed:	MIN
K. Wave Height: FT L. Vi	sibility: NM	M. MFAS Active:		N. MFAS Action T	aken:	
IF MFAS WAS TRANSMITTING	WHEN MAMMAL WAS SIGHTE	D AND SUBSEQUENT	LY POWERED DO	WN/SHUT DOWN, (OR COURSE CHANG	ED:
O. Duration of Action: MIN	P. Maneuver Conducted:	Q. Degree	s of Course Chg:	DEG R. Ra	nge Action Taken:	YE
S. Action impact (note 1):						
T. Narrative of observation (note 2) :						
A. DTG: Z	B. Species/Type of Mammal:		C. Number of Ma	mmals:	D. Calves: Y	ES/NO
E. Initial Detection Source: VISUAL	AURAL F. Initial Brg/Rng:	T/ Ye	ds G. Unit Posi	tion: LAT:	LONG:	
H. Unit Course/Speed: T /	Kts I. Last Known	Brg/Rng:	T/ Yds	J. Total Time Vi	sually Observed:	MI
K. Wave Height FT L. Vi	sibility: NM	M. MFAS Active:		N. MFAS Action T	aken:	
IF MFAS WAS TRANSMITTING	WHEN MAMMAL WAS SIGHTE	D AND SUBSEQUENT	LY POWERED DO	WN/SHUT DOWN,	OR COURSE CHANG	ED:
O. Duration of Action: MIN	P. Maneuver Conducted:	Q. Degree	s of Course Chg:	DEG R. Ra	nge Action Taken:	YI
S. Action impact (note 1):			1994 C			
T. Narrative of observation (note 2) :						
A. DTG: Z	B. Species/Type of Mammal:	r	C. Number of Ma	mmala	D. Calves: Y	ES/NO
E. Initial Detection Source: VISUAL	Contraction and the second second	T/ Y	an Theory and a	(1) (1) (1) (1)	LONG:	23/110
	C INCOMENDATION CONTRACTOR CONTRACTOR	20 GU	T/ Yds	Indiana - Anto andra	7074-58-5.	MI
· · · · ·		2 224 353	Ĩ	J. Total Time Vi	2.57	MI
	sibility: NM	M. MFAS Active:		N. MFAS Action T		100
IF MFAS WAS TRANSMITTING					Sector and the sector of the sector of the	20 (C 4)
O. Duration of Action: MIN	P. Maneuver Conducted:	Q. Degree	s of Course Chg:	DEG R. Ra	nge Action Taken:	ΥI
S. Action impact (note 1):						
T. Narrative of observation (note 2) :						
ST YOMAN CALL			12 30% w 1444-00	1947	and there are	7 Mair (1911) 7
A. DTG: Z	B. Species/Type of Mammal:		C. Number of Ma		and the second	ES/NO
E. Initial Detection Source: VISUAL	/ AURAL F. Initial Brg/Rng:	T/ Ye	ds G. Unit Posi	tion: LAT:	LONG	
H. Unit Course/Speed: T /	Kts I. Last Known	Brg/Rng:	T/ Yds	J. Total Time Vi	sually Observed:	MI
K. Wave Height: FT L. Vi	sibility: NM	M. MFAS Active:		N. MFAS Action T	aken:	
IF MFAS WAS TRANSMITTING	WHEN MAMMAL WAS SIGHTE	D AND SUBSEQUENT	LY POWERED DO	WN/SHUT DOWN, (OR COURSE CHANG	ED:
	P. Maneuver Conducted:	Q. Degree	s of Course Chg:	DEG R. Ra	nge Action Taken:	YI
O. Duration of Action: MIN						
O. Duration of Action: MIN S. Action impact (note 1):						
S. Action impact (note 1):T. Narrative of observation (note 2):						
S. Action impact (note 1):	ement interrupted when MFAS w	vas Shutdown.	1917 E3 #35	NO. No. or second second		

Example:
A. DTG: 061234 Z JAN 09 B. Species/Type of Mammal: Whale C. Number of Mammals: 2 Cabes: YES/NO
E. Initial Detection Source: VISUAL AURAL F. Initial Brg/Rng: 215 T/ 1400 Yds G. Unit Position: LAT: 123456N LONG: 1234555E
H. Unit Course/Speed: 265 T / 12 Kts I. Last Known Brg/Rng: 095 T / 900 Yds J. Total Time Visually Observed: 14 MIN
K. Wave Height: 4 FT L. Visibility: 12 NM M. MFAS Status: ON N. MFAS Action Taken: Powerdown
IF MFAS WAS TRANSMITTING WHEN MAMMAL WAS SIGHTED AND SUBSEQUENTLY POWERED DOWN/SHUT DOWN, OR COURSE CHANGED:
O. Duration of Action: 14 MIN P. Maneuver Conducted: Turn Stbd Q. Degrees of Course Chg: 45 DEG R. Range Action Taken: 800 YDS
S. Action impact (note 1): slight - degraded integrity of ASW screen, as ship maneuvered to avoid whales
T. Narrative of observation (note 2): two whales paralleled ship's course, CPA of 600 yds after maneuver. Powered
down MFAS for 14 min until lost sight of whales.
Data Fields:
 A. DDHHMM Z MMM YY B. WHALE / DOLPHIN / PORPOISE / SEAL / SEAL LION / TURTLE /GENERIC (i.e unknown)
C. Number
D. YES/NO
E. VISUAL / AURAL
F. Bearing in Degrees True / Range in Yards
G. Position: DDMMSS N/S DDDMMSS E/W
H. Course in Degrees True / Speed in Knots
I. Bearing in Degrees True / Range in Yards
J. Minutes
K. Feet
L. Nautical Miles
M. NO / YES N. Powerdown -6dB / Powerdown -10dB / Shutdown / None
O. Minutes
P. Turn STBD / Turn PORT / -
Q. Degrees
R. Range in Yards
S. Tactical Degradation Assessment examples:
- None
- Slight - Degraded ASW screen integrity when ship maneuvered to open whales.
- Moderate - Lost Contact when power reduced.
- Significant - Engagement interrupted when MFAS was Shutdown.
T. Observation examples:
- Dolphins sighted at 1200 YDS off Port bow, closing the ship. Maneuvered to confirm Bow
Riding and continued MFAS operations - Pod of whales sighted fin slapping 600 YDS off STBD bow, paralleling ships course. Ship
maneuvered to Port to open range.
- Porpoises sighted 250 YDS off STBD Beam, opening ship. Powered down MFAS by -6dB
until they opened to 1000 YDS. Lost sight astern.
- DragonSlayer 12, flying NW at 60 kts, 1200FT, spotted pod of dolphins within 150 YDS of
DICASS Buoy 12. Buoy was passive at the time, and remained so until dolphins were seen
leaving the area. 80% cloud layer at 3500 FT. Photos taken.

2010 UPDATE dtd 20 Dec 2010

[This page intentionally left blank.]

APPENDIX E:

Characterization of Navy Range Complexes / Study Areas

Many of the prioritization guideline factors provided by Section 2 are highly dependent on the specific location at which the proposed monitoring activity is to be conducted. This appendix will present reference information that allows the user a top-level view of attributes across the various Navy range complexes.

A preliminary draft matrix has been developed, and is undergoing a broad group review. The current framework is provided here as a PLACEHOLDER for the full matrix and selected portions of the DRAFT matrix are provided as an example of content. The complete draft matrix will be available for consideration at the 2011 Monitoring workshop.

This example matrix pulls information from a variety of documents, including environmental compliance documentation, Letters of Authorization, Biological Opinions, Marine Resource Assessments, Range Monitoring Plans, and Range Monitoring Reports to name a few. It is a work in progress.

The matrix is organized into two primary sections. The first section shows the general characteristics of each range. These characteristics are expected to remain generally the same over time.

This matrix becomes quite sizable once all the information is filled in. For presentation purposes, the range complexes and study areas have been organized into four groups. These groups are shown by the color coding. The first group includes the "Big Three" (AFAST, SOCAL, and HRC), the second group includes the remaining areas that are under the cognizance of Fleet Forces Command, and the third group is the remaining areas under Pacific Fleet Command. The fourth group is RDT&E ranges that are under the Naval Sea Systems Command.

	AFAST	SOCAL	HRC	VACAPES	Cherry Pt	XVſ	GOMEX	MIRC	NWTRC	GOA	NUWC Keyport	NSWC PCD
General Description												
Occurrence of Marine Mammals												
Seasonal migration patterns												
Physical geography / Bathymetry												
Weather patterns												
Major Currents												
National Marine Sanctuaries												
Level of Fleet activities												
Other Shipping												
Unique range assets												

The second section of the matrix highlights monitoring considerations for each range complex or study area. Information in this section is captured from Fleet Exercise Reports, Monitoring Reports, Marine Resource Assessments, as well as an ongoing review of available science. The information in this section is expected to change over time, particularly as advances are made to monitoring techniques and technology. This section of the matrix will be reviewed and updated as appropriate during the Adaptive Management Reviews. Preliminary information is included in the draft version of the matrix, and is subject for discussion and review by the Scientific Advisory Group. This section of the matrix will continue to be filled out more completely as information is drawn from the 2010 Monitoring Reports.

	AFAST	SOCAL	HRC	VACAPES	Cherry Pt	XVſ	COMEX	MIRC	NWTRC	60A	NUWC Keyport	NSWC PCD
Unique biological opportunities												
Biological data-gaps												
Monitoring Considerations - Factors that contribute to certain types of monitoring being difficult or less effective												
- Instrumented Range												
- Passive acoustic												
- Visual Surveys (general)												
- Aerial surveys												
- Ship surveys												
- Photo-ID												
- Tagging												

2010 UPDATE dtd 20 Dec 2010

DRAFT EXAMPLE OF SECTION 1-GENERAL CHARACTERISTICS FOR EACH RANGE:

DRAFT							
RANGE	AFAST	SOCAL	HRC				
COMPLEX General Description	The AFAST Study Area encompasses the waters and their associated substrates within and adjacent to existing Operating Areas (OPAREAs), located along the East Coast and within the Gulf of Mexico. It extends east from the Atlantic Coast of the U.S. to 45° W. long. and south from the Atlantic and Gulf of Mexico Coasts to approximately 23° N. lat., but not encompassing the Bahamas. Overall, this is greater than 2.1 million square nautical miles (nm²). The areas where training events will most likely occur in the AFAST Study Area cover approximately 1.0 million square nautical miles (nm²).	The SOCAL Range Complex consists of 120,000 nm ² of sea area from approximately Dana Point California to San Diego. It extends extends southwest-from southern California in an approximately 700 by 200 nm rectangle with the seaward comers at 27'30'00" N. lat.; 127'1 0'04" W. long. and 24'00'01" N. lat.; 125'00'03" W. long.	The HRC consists of 235,000 square nautical miles (nm ²) of ocean areas. Geographically it encompasses the open ocean (outside 12 nautical miles [nm] from land), offshore waters (within 12 nm from land), and onshore areas located on or around the islands of the Hawaiian Islands of the Hawaiian Islands chain. While it is irregularly shaped, the range complex is roughly bounded by the points: 179W 43N; 150W 43N; 154W 17N; and 179W 16 N.				
Occurrence of marine mammals	43 species of marine mammals (7 mysticetes, 29 odontocetes, 6 pinnipeds, and one sirenian (manatee)) that may be observed either seasonally or year- round in the AFAST study area; seven are endangered. In addition, there are six species of threatened and endangered sea turtles that may occur either seasonally or year- round in parts of the AFAST study area. Low densities of animals preclude large sample sizes and generally result in a relatively small number of	41 potential marine mammal species or separate stocks with possible or confirmed occurrence. This includes 34 cetacean species (whales, dolphins, and porpoises), six pinnipeds (sea lions, fur seals and true seals) and one sea otter species.	27 species of marine mammals may be observed either seasonally or year-round in the Hawaiian Islands Range Complex, seven of them are listed as endangered. Four species of threatened and endangered sea turtles. Apparent low densities of marine mammals in areas where the Navy trains.				
Seasonal migration patterns	sightings during surveys. Humpback and North Atlantic right whales make extensive annual migrations to low-latitude mating and calving grounds in the winter and to high-latitude feeding grounds in the summer. These migrations are thought to occur during these seasons due to the presence of highly productive waters and associated cetacean prey species at high latitudes and warm water temperatures at low latitudes. The West Indian manatee generally reside along the Southeastern Atlantic coast and the Gulf of Mexico and may migrate farther north during warm months but would be limited primarily to nearshore waters.	Variation in oceanographic and climatic conditions within Southern California has a dramatic influence on marine mammal distribution, species assemblages likely to be present, foraging, and breeding success.	Most of the central north Pacific stock of humpback whales migrate south to Hawaii in winter for breeding and calving from December through April. Green turtles occur in the coastal waters surrounding the Main Hawaiian Islands throughout the year and also migrate seasonally to the Northwestern Hawaiian Islands to reproduce.				

		DRAFT	
RANGE COMPLEX	AFAST	SOCAL	HRC
Physical Geography / Bathymetry	Significant variance due to large extended area encompassed by the study area. The Atlantic Fleet Study Area has a much larger shallow-water region available in comparison to the Pacific Fleet ranges because of the wide continental shelf.	The seafloor beneath the SOCAL OPAREA is comprised of a series of unique basins, steep escarpments, seamounts, and troughs that extend seaward for over 250 km. The maximum water depths in the Study Area are found over the abyssal plain in the SOCAL OPAREA and exceed 5,000 m.	In general, the Hawaiian Ridge forms a continuous barrier, exerting a dramatic influence over oceanic current patterns along the seafloor in this region. Bathymetric features include a steep, narrow continental margin and a seafloor comprised of depressed island moats, seamounts, submarine canyons and submerged banks.
Weather patterns	Significant variance due to large extended area encompassed by the study area.	Semi-arid, Mediterranean climate characterized by a well-defined cool, wet season. Semi-permanent high- pressure system creates a repetitive pattern of early morning fog, hazy afternoon sunshine, and daytime onshore breezes. Temperatures are relatively stable throughout the year.	The Hawaiian Islands are located along the northern edge of the tropics, but best described as subtropical. Persistent NE trade winds. Seasonal temperatures vary only slightly throughout the year.
Major Currents	The western continental margin of any ocean basin is the location of intense boundary currents. The Gulf Stream is the western boundary current of the North Atlantic Ocean. The Gulf Stream is part of a larger current system called the Gulf Stream System, which also includes the Loop Current in the Gulf of Mexico and the Florida Current in the Atlantic, between the Straits of Florida and Cape Hatteras. The Gulf Stream is a powerful surface current, carrying warm water into the cooler North Atlantic, and exerting a considerable influence on the oceanographic conditions in each OPAREA.	Three major surface currents: the California Current (slow equatorward flow), the California Countercurrent (northward flow), and an inshore coastal current.	Mean coast currents are to the west at variable speeds. Primary surface currents include: North Equatorial Current (to the west) and Hawaiian Lee Counter Current (to the east).
National Marine Sanctuaries	Five in AFAST. Stellwagen Bank NMS, USS Monitor NMS, Gray's Reef NMS, Flower Garden Banks NMS, and Florida Keys NMS.	One in SOCAL. Channel Islands NMS.	Two in HRC. Hawaiian Islands Humpback Whale National Marine Sanctuary Papahānaumokuākea Marine National Monument

		DRAFT	
RANGE	AFAST	SOCAL	HRC
COMPLEX			2.0.3.
Level of	High.	High.	High.
Fleet Activities	Navy OPAREAs in AFAST include designated ocean areas near fleet concentration areas (i.e., homeports) where the majority of routine Navy training and RDT&E occur. The majority of Atlantic Fleet active sonar activities occur in open ocean areas. While the Atlantic Fleet also has shorebased support facility requirements for ASW training, they are not concentrated in one geographic area, which provides greater potential for operational flexibility than in the Pacific Fleet Study Areas. Major training exercises (MTE) include: • Southeastern Integrated Training Initiative (SEASWITI) - 4 events annually, 5 to 7 days per entire event. • Integrated ASW Course (IAC) - 5 events annually, 2 to 5 days per entire event. • Group Sails - 20 events annually, 2 to 3 days per entire event. • Joint Task Force Exercise (JTFEX.) - 2 events annually, 10 days per entire event.	There were a total of 11 MTEs within the SOCAL Range Complex between 01 August 2008 and 03 August 2009. Of the 11, there were six MTEs between the end of January to 01 August 2009. All told, there were only 114 non-consecutive cumulative days involving MTEs within SOCAL out of the approximately 368 days between 01 August 2008 to 03 August 2009, and only 59 days of non-consecutive cumulative MTE out of approximately 192 days between 24 January 2009 and 03 August 2009. For in-water unit-level training and major training event (MTE) using sonar and explosives, only a limited subset of the overall range complex is used.	The large training area available to deployed forces within the HRC allows training to take place using a geographic scope that replicates possible real world events, with the channels between islands providing geography necessary for opposed transit scenarios. For in-water unit level training and major training events (MTE) using sonar and explosives, a much more limited subset of the range complex is used.
Other Shipping	It should be noted that sonar is typically not in use throughout an entire event. [LOA 2009]. The waters off the U.S. Atlantic coast support a large volume of maritime traffic heading to and from foreign ports as well as traffic traveling north and south to various U.S. ports. Commercial shipping comprises a large portion of this traffic, and a number of commercial ports are located along the Atlantic and Gulf of Mexico U.S. coasts.	There are three major commercial ports in SOCAL: Los Angeles, Long Beach, and San Diego. There are four primary shipping lanes: two run south along Mexico's west coast, one extends west towards the central and western North Pacific, and another stretches nort along the U.S. west coast up to the San Francisco area and beyond.	The Hawaiian Islands serve as a major port for international shipping. Transoceanic shipping lanes extend offshore from the region in several directions: north towards Alaka; northeast towards Washington, Oregon, and California; east towards the Panama Canal; southwest towards Guam and Wake Island; and northwest towards Japan and Okinawa.

DRAFT							
RANGE COMPLEX	AFAST	SOCAL	HRC				
Unique range assets	Geographically-fixed monitoring sites off the coasts of North Carolina (Onslow Bay) and Florida (Jacksonville) have been established to support consistent ongoing visual shipboard and aerial surveys, as well as passive acoustic monitoring. Data collected by a consortium of researchers from Duke University, the University of North Carolina at Wilmington, the University of St. Andrews, and NMFS Northeast Fisheries Science Center under a pilot study that started in 2007 established a longitudinal baseline of marine species distribution and abundance in Navy training areas during periods when training is not occurring at the site. This baseline provides the foundation for a monitoring program designed to provide meaningful data on potential long term effects to marine species that may be chronically exposed to training activities.	Fixed Hydrophone range at SOAR. Availability to the Floating Instrument Platform, FLIP. FLIP is a 355 foot long manned spar buoy designed as a stable research platform for oceanographic research. FLIP is owned by the US Navy and operated by the Marine Physical Laboratory (MPL), Scripps Institution of Oceanography, University of California, San Diego. Homeported in San Diego, FLIP is towed to its operating area in the horizontal position and through ballast changes is "flipped" to the vertical position to become a stable spar buoy with a draft of 300 feet. http://www.mpl.ucsd.edu/resources/flip. intro.html. Collaborations with California Cooperative Oceanic Fisheries Investigation (CalCOFI) for environmental data analyses.	Fixed hydrophone range at PMRF. A number of shallow, nearshore water ranges (e.g., Puuloa Underwater Range, Ewa Training Minefield, Barbers Point Underwater Range, and Lima Landing) that are used for underwater detonation training (i.e. mine neutralization, demolition of debris).				

		DRAFT		
RANGE COMPLEX	VACAPES	CHERRY POINT	JACKSONVILLE	GOMEX
General Description	The VACAPES OPAREA, located off the east coast of the United States, includes the nearshore area from just off the mouth of the Delaware Bay south to Cape Hatteras and extends seaward into waters more than 4,000 m deep. The surface water areas of the Range Complex covers the coast of Delaware, Maryland, Virginia, and North Carolina, encompassing 27,661 nm ² .	The CHERRY POINT OPAREA, located along the coast of North and South Carolina, extends 127 nm seaward from the 3 nm state waters boundary. Water depth in the OPAREA ranges from approximately 10 to 4,000 meter (m). It encompasses 18,617 square nautical miles (nm ²), of which12,529 nm ² of subsurface area is greater than 100 fathoms (600 ft) in depth.	The northernmost point of the JAX Range Complex OPAREA is located just north of Wilmington, North Carolina (34°37' N) in waters less than 20 m deep, while the easternmost boundary lies 281 nm offshore of Jacksonville, Florida (77°00' W in waters with a bottom depth of nearly 2,000 m. The JAX/CHASN OPAREA covers 66,505 square miles [mi²]) of ocean area. The majority of the western (shoreward) boundary of the JAX/CHASN OPAREA is located approximately 3 nautical miles (NM) off the southeast U.S. coast.	GOMEX study area encompasses the northern or U.S. waters of the Gulf of Mexico and includes the Florida Straits. The study area occupies waters offshore of all five U.S. Gulf coast states: Texas (TX), Louisiana (LA), Mississippi (MS), Alabama (AL), and Florida (FL) and extends seaward approximately to the U.S. exclusive economic zone (EEZ). The study area is bounded to the south and southwest by the Mexican-U.S. maritime boundary and in the southeast by the Cuba- U.S. maritime boundary. Covering 384,152 square kilometers (km2) of the marine environment, the study area spans coastal to deepwater habitats and encompasses waters shallower than 10 m in depth near the Florida Keys to waters greater than 3,000 m in depth near center of the <u>GOMEX</u> . 29 species of marine
of marine mammals	species with possible or confirmed occurrences in the VACAPES OPAREA. Six cetacean species, five sea turtle species, five sea turtle species, five sea turtle species listed as threatened or endangered and under the jurisdiction of the NMFS occur in the Action Area. The calving ground of the North Atlantic right whale, located seaward of southern Georgia and northern Florida, is designated under the ESA as critical habitat in the Action Area.	species are expected to occur regularly in the marine waters off North Carolina within the CHPT Range Complex. There are 32 cetacean species (whales, dolphins, and porpoises), one pinniped species (true seal) and one sirenian species (manatee) In addition there are five species of threatened and endangered sea turtles.	mammals are documented to occur within or immediately adjacent to the JAX/CHSN OPAREA. This includes 7 mysticetes, 25 odontocetes, 2 pinnipeds, and 1 sirenian (manatee). Seven species are endangered. In addition, there are six species of threatened and endangered sea turtles that are documented as occuring in the JAX/CHSN OPAREA.	mammals with potential occurrence in the GOMEX study area. (28 cetaceans and one sirenian species [manatees]). Seven marine mammal species listed as Federally-endangered under the Endangered Species Act (ESA) occur or have the potential to occur in the area.

	DRAFT					
RANGE COMPLEX	VACAPES	CHERRY POINT	JACKSONVILLE	GOMEX		
COMPLEX Seasonal migration patterns	During the winter (as early as November and through March), right whales may be found in coastal waters off North Carolina, Georgia, and northern Florida. The coastal waters of the Carolinas are suggested to be a migratory corridor for the North Atlantic right whale. There have also been opportunistic sightings of right whales in deep waters of the VACAPES OPAREA. North Atlantic right whale sightings in very deep offshore waters of the western North Atlantic are infrequent. However, there is limited evidence suggesting that a regular offshore component exists to their distributional and migratory cycle. Humpback whales occur on the continental shelf and in deep waters of the VACAPES OPAREA in fall, winter, and spring during migrations between calving grounds in the Caribbean and feeding grounds off the northeastern U.S.	During the winter (as early as November and through March), right whales may be found in coastal waters off North Carolina, Georgia, and northern Florida. The coastal waters of the Carolinas are suggested to be a migratory corridor for the North Atlantic right whale. There have also been opportunistic sightings of right whales in deep waters of the CHPT OPAREA. Humpback whales occur on the continental shelf and in deep waters of the CHPT OPAREA in fall, winter, and spring during migrations between calving grounds in the Caribbean and feeding grounds off the northeastern U.S.	North Atlantic right whales migrate to the coastal waters of the southeastern U.S. to calve from November through March. The waters off Georgia and northern Florida are the only known calving ground for the North Atlantic right whale. As waters warm in the spring, juvenile loggerhead, green, and Kemp's ridley sea turtles migrate northward along the U.S. Atlantic Coast in search of developmental feeding grounds. As waters cool in the fall, most sea turtles emigrate out of temperate inshore waters and travel southward at least as far as Cape Hatteras to avoid cold stunning. Although many sea turtles within the JAX/CHASN OPAREA may not exhibit extensive migrations, large concentrations of sea turtles during the spring and fall migration periods may still be expected; these large concentrations result from the combination of individuals, originating from other areas along the U.S. east coast, transiting through the area in addition to the presence of year-round residents.			
Physical Geography / Bathymetry	The VACAPES OPAREA includes the nearshore area from just off the mouth of Delaware Bay south to Cape Hatteras and extends seaward into waters more than 4,000 m (13,120 ft) deep. Along the Atlantic coast, the continental shelf extends from the shoreline to a depth of about 200 m (656 ft). At the shelf edge, the shelf gives way abruptly to the continental slope extends to water depths of between 2,000 and 4,000 m (6,560 and	Large, sand shoals extend from the barrier islands off southern North Carolina. Water depths near these shoals are among the shallowest in the CHPT OPAREA; the depth of the seafloor decreases rapidly so that the shoal crests are found in <10 m of water off Cape Lookout and Cape Hatteras. Seaward of Cape Hatteras and Hatteras Canyon, the ocean bottom deepens rapidly, reaching the maximum water depth in the CHPT OPAREA of 4,000 m approximately	Seafloor includes low relief, relatively gentle gradients, and smooth bottom surfaces exhibiting features contoured by erosional processes from the Gulf Stream. The sea floor beneath the JAX/CHASN OPAREA is notably featureless. The wide, flat Florida-Hatteras Shelf, which is marked by several shallow depressions, underlies nearly half of the OPAREA. The remainder of the sea floor beneath the OPAREA consists of the northern two-thirds of Blake Plateau	The GOMEX is distinguished by an enormous river delta, limestone islands, expansive and relatively flat continental-shelf areas, submarine canyons, steep escarpments, sea fans, and a central deep, flat basin where water depths reach a maximum of 3,767 m.		

DRAFT					
RANGE COMPLEX	VACAPES	CHERRY POINT	JACKSONVILLE	GOMEX	
	continental slope is the most prominent physiographic feature along the mid-Atlantic continental margin and is interlaced with numerous submarine canyons. Four submarine canyons— Norfolk, Washington, Accomac, and Baltimore—are found within the VACAPES OPAREA.		approximately 700 and 1,400 m.		
Weather patterns		Prevailing westerly winds result in a tropical/ subtropical climate south of Cape Hatteras. The proximity of the Gulf Stream Current to coastal North Carolina has a strong effect in the generation of cyclonic, extra-tropical storms in winter as cold, dry continental air meets the warm, moist air over Gulf Stream waters. From June through November, tropical cyclones are formed in warm, equatorial waters of the North Atlantic Ocean and Caribbean Sea and often move northward along the southeastern U.S. coast following the path of the Gulf Stream	Prevailing westerly winds result in a tropical/subtropical climate south of Cape Hatteras. Annual extremes in precipitation along the coastline bordering the OPAREA are wide- ranging. The proximity of the Gulf Stream to the southeast U.S. coast has a strong effect in the generation of cyclonic, extra-tropical storms in winter as cold, dry continental air meets the warm, moist air over Gulf Stream waters. Thunder storms and major storm systems occur in the region most often during summer and fall as hot, humid air masses collide with passing fronts. Most major storms, including hurricanes, occur in the JAX/CHASN OPAREA during the North Atlantic hurricane season which occurs annually from June through November.	Subtropical. In general, summer weather conditions in the GOMEX study area are relatively consistent and stable with winds predominantly out of the southeast while winter weather conditions are more variable with winds predominantly from the east or northeast. The eastern Gulf is characterized by a distinct wet season during summer and a dry season during winter; however no distinct seasonal variation in precipitation is evident in the northern Gulf.	
Major Currents	Gulf Stream. In VACAPES, the Gulf Stream is approximately 50 km (27 NM) wide and 1,000 m (3,280 ft) deep. Surface velocity ranges from 3.7 to 9.3 kilometers per hour (km/hr) (2.0 to 5.0 knots [kn]), and temperature ranges from 25 to 28oC (77 to 82oF).	Gulf Stream. OPAREA is dominated by the strong northeasterly flowing Gulf Stream, a current which effectively forms an oceanographic barrier separating the warm, tropical/subtropical waters found to the south from the cool, temperate waters found to the north.	The Gulf Stream Current flows north along the U.S. southeast coast, and is the dominant surface current in the northwestern Atlantic Ocean, South Atlantic Bight, and JAX/CHASN OPAREA.	Warm (>26°C) Caribbean Sea surface waters form the Yucatan Current, which flows into the GOMEX through the Yucatan Channel. The Gulf Stream Loop Current is the dominant surface current in the central and eastern GOMEX. The Florida Current is a strong, east-northeast flowing current that connects the Loop Current to the Gulf Stream at the entrance to the Florida Straits. Deep water circulation	

DRAFT					
RANGE COMPLEX	VACAPES	CHERRY POINT	JACKSONVILLE	GOMEX	
				in the GOMEX is not nearly as well understood as surface water circulation.	
National Marine Sanctuaries	No NMS in the VACAPES OPAREA.	One NMS in CHERRY POINT OPAREA. USS Monitor NMS.	One in JAX Range Complex. Gray's Reef NMS.	Two in the Study Area. Florida Keys National Marine Sanctuary. Flower Garden Banks National Marine Sanctuary, located on the outer edge of the continental shelf approximately 193 km and 172 km southeast of Galveston, TX.	
Level of Fleet Activities	High. The VACAPES OPAREA is a major area of military usage. The DoD has used the area extensively for military and National Aeronautics and Space Administration (NASA) training, testing, and ordnance and rocket firing exercises. The Fleet Air Control Surveillance Facility (FACSFAC) VACAPES provides fleet surveillance and functional area support services that include scheduling, monitoring, and controlling air traffic from just south of Nantucket Island, Massachusetts, to Charleston, South Carolina, and eastward more than 371 km (200 NM) into the Atlantic Ocean. The types of explosive events that occur within the VACAPES Range Complex include: underwater detonations associated with Mine Exercises (MINEX), Surface-to-Surface Firing Exercises (FIREX specifically with platforms using 5" shells), Surface-to-	Training Events authorized in LOA for 1 year ending June 2010: (A) Mine Neutralization (20 lb NEW charges) - 20 (B) MISSILEX (Air-to- Surface; Hellfire missile) - 8 (C) MISSILEX (Air-to- Surface; TOW) - 8 (D) FIREX with IMPASS - 2	Training Events authorized for June 2009 - June 2010: (A) Mine Neutralization (20 Ib NEW charges) - 12 (B) MISSILEX (Air-to- Surface; Hellfire missile) - 70 (C) MISSILEX (Air-to- Surface; Maverick) – 3 (D) FIREX with IMPASS – 10 (E) Small Arms Training with MK3A2 anti-swimmer concussion grenade (0.5 Ibs NEW) - 80 HE		

DRAFT					
RANGE	VACAPES	CHERRY POINT	JACKSONVILLE	GOMEX	
COMPLEX	and Bombing Exercises (BOMBEX).				
Other Shipping	VACAPES is in the direct path of commercial shipping traffic traveling between New York, Boston, and Miami and other ports in the southeast. Ships transiting within or in the vicinity of the VACAPES Range Complex may use any one of over 15 shipping lanes that intersect the range complex. One shipping lane runs roughly parallel to the coast and serves as a connecting route between domestic ports to the north and south of the range complex.	The CHPT OPAREA lies between the major commercial shipping ports of Baltimore, New York, and Boston to the north and Savannah, Jacksonville, and Miami to the south. Several other ports are located in the vicinity of the CHPT OPAREA including: Morehead City and Wilmington in North Carolina; Norfolk, VA; and Charleston,SC. Ships transiting within or in the vicinity of the CHPT OPAREA may use any one of the nine major waterways that intersect the OPAREA. Five of these waterways are oriented roughly north-south and run parallel to the coastline. The remaining four waterways are oriented roughly perpendicular to the coast and serve as connecting routes between coastal ports and offshore waterways.	The JAX/CHASN OPAREA lies just offshore of several major commercial shipping ports including: Jacksonville, Florida; Savannah, Georgia; and Charleston, South Carolina. Ships transiting within or in the vicinity of the JAX/CHASN OPAREA may use any one of over 20 major waterways that intersect the OPAREA.	A large volume of ship traffic navigates the GOMEX. Commercial (domestic and international) shipping comprises the vast majority of this traffic. Nine primary shipping lanes radiate north from the Yucatan Straits into the study area while several major shipping lanes bisect the Florida Straits.	
Unique range assets		Geographically-fixed monitoring site off the coast of North Carolina (Onslow Bay) was established to support consistent ongoing visual shipboard and aerial surveys, as well as passive acoustic monitoring. Data collected by a consortium of researchers from Duke University, the University of North Carolina at Wilmington, the University of St. Andrews, and NMFS Northeast Fisheries Science Center under a pilot study that started in 2007 established a longitudinal baseline of marine species distribution and abundance in Navy training areas during periods when training is not occurring at the site.	Geographically-fixed monitoring sites off the coast of Florida (Jacksonville) have been established to support consistent ongoing visual shipboard and aerial surveys, as well as passive acoustic monitoring. Data collected by a consortium of researchers from Duke University, the University of North Carolina at Wilmington, the University of St. Andrews, and NMFS Northeast Fisheries Science Center established a longitudinal baseline of marine species distribution and abundance in Navy training areas during periods when training is not occurring at the site. This baseline provides the foundation for a monitoring program designed to provide meaningful data on potential long term effects		

	DRAFT					
RANGE COMPLEX	VACAPES	CHERRY POINT	JACKSONVILLE	GOMEX		
		This baseline provides the foundation for a monitoring program designed to provide meaningful data on potential long term effects to marine species that may be chronically exposed to training activities.	to marine species that may be chronically exposed to training activities.			

	DRAFT				
RANGE	MIRC	NWTRC	GOA		
COMPLEX General Description	The MIRC study area encompasses a 501,873-square- nautical mile (nm²) area around the islands, including Guam, Tinian, Saipan, Rota, Farallon de Medinilla, and also includes ocean areas in both the Pacific Ocean and the Philippine Sea. The Mariana Islands Range Complex (MIRC) Study Area is bounded by a pentagon with the following five corners: 16°46'29.3376" N. lat., 138°00'59.835" E. long.; 20°02'24.8094" N. lat., 140°10'13.8642" E. long.; 20°3'27.5538" N. lat., 149°16'14.8542" E. long.; 7°0'30.0702" N. lat., 149°16'14.8542" E. long; and 6°59'24.633" N. lat, 138°1'29.7228" E. long.	The maritime component of the Northwest Training Range Complex includes 122,440 square nautical miles (nm2) of surface/ subsurface ocean operating areas (OPAREAs) that extend west to 250 nautical miles (nm) beyond the coast of Washington, Oregon, and Northern California. For range management and scheduling purposes, the NWTRC is divided into numerous sub- component ranges or training areas used to conduct training and Research, Development, Test, and Evaluation (RDT&E) activities (Unmanned Aerial Systems [UASs] only). The NWTRC Inshore Area includes all air, land, sea, and undersea ranges and OPAREAs inland of the coastline and including Puget Sound.	Gulf of Alaska (GOA) Temporary Maritime Activities Area (TMAA) is composed of 42,146 square nautical miles (nm2) of surface and subsurface ocean training area. TMAA is approximately 300 nautical miles (nm) in length by 150 nm in width and situated south of Prince William Sound and east of Kodiak Island. The TMAA's northern boundary is located approximately 24 nm south of the shoreline of the Kenai Peninsula, which is the largest proximate landmass. The only other shoreline close to the TMAA is Montague Island, which is located 12 nm north of the TMAA. The approximate middle of the TMAA is located 140 nm offshore.		
Occurrence of marine mammals	32 potential marine mammal species or separate stocks with possible or confirmed occurrence in the marine waters associated with the MIRC Range Complex: 29 cetaceans (whales, dolphins, and porpoises), 2 pinnipeds (seals), and 1 sirenia (dugong). While survey data is limited, an overview of watchstander data collected during major exercises in Hawaii and MIRC broadly suggests the number of animals encountered in the vicinity of an exercise in MIRC is not much different than the numbers encountered in Hawaii.	32 species of marine mammals known to occur in the NWTRC Study Area: 7 species of baleen whales (mysticetes), 19 species of toothed whales (odontocetes), 5 species of seals and sea lions (pinnipeds), and the sea otter (mustelid).	26 species of marine mammals with possible or confirmed occurrence in the waters of the GOA, but not all inhabit waters within the TMAA. The TMAA is well outside the normal range of six of these species and they are not expected to be present given their documented habitat preferences. The 20 species that occur in the TMAA include 7 species of baleen whales (mysticetes), 8 species of toothed whales /dolphins/porpoises (odontocetes), and 5 species of seals and sea lions (pinnipeds). [DEIS, 2009].		
Seasonal migration patterns	Some baleen whale species, such as the humpback whale, make extensive annual migrations in the northern hemisphere to low-latitude mating and calving grounds in the winter and to high-latitude feeding grounds in the summer.	The gray whale (Eschrichtius robustus) transits through the Study Area during annual migrations between northern feeding grounds and breeding lagoons in Mexico. While gray whales can be found along the Washington coast year-round, they are more common during January and March when they are migrating along the coast.	For many species, the TMAA constitutes a small portion of their total range given seasonal migrations to warmer waters where breeding and calving occur. These species, for example, include the humpback whale (Megaptera noveangliae) and gray whale (Eschrichtius robustus), which both feed in Alaska waters in roughly the May to September timeframe.		

	DRAFT				
RANGE	MIRC	NWTRC	GOA		
COMPLEX					
Physical Geography / Bathymetry	The seafloor of the MIRC is characterized by the Mariana Trench, the Mariana Basin, the Mariana Ridge, ridges, numerous seamounts, hydrothermal vents, and volcanic activity. These areas are comprised of very deep water (2,000 meters or more) with a very rapid transition from the shelf to deep water. It is located at the intersection of the Philippine and Pacific crustal plates. The collision of the two plates has resulted in the subduction of the Pacific Plate beneath the Philippine Plate forming the Mariana Trench. The Mariana Trench is over 1,410 mi (2,269 km) long and 71 mi (114 km) wide. The deepest point in the trench and on Earth, Challenger Deep, is found 338 mi (544 km) southwest of Guam in the southwestern extremity of the trench. The Mariana Islands are volcanic islands developed west of the Mariana Trench, an active subduction zone where one section of the ocean crust is pushed beneath another.	In general, the bathymetry of the offshore regions of the Pacific Northwest coast is smooth due to the long history of sediment accumulation. Northern California is characterized by the scarcity of submarine canyons and the absence of other conspicuous relief features. The continental shelf off of the Washington coast varies in width from 25 to 60 km and is broken by six canyons ; the canyons represent 5 to 20 km wide breaks in the otherwise smooth bathymetry along the coast.	The TMAA spans both coastal and deepwater habitats ranging from approximately 426 feet (ft) to over 12,000 ft in depth. The GOA forms a large, semicircular bight opening southward into the North Pacific Ocean. The GOA is characterized by a broad and deep continental shelf containing numerous troughs, seamounts, and ridges.		
Weather patterns	The MIRC is regularly struck by typhoons. Based on records compiled by the U.S. Navy Joint Typhoon Warning Center, islands within the MIRC Study Area were affected by typhoons in 37 of the 50-year period between 1955 and 2005 (National Marine Forecast Center, 2005).	The Pacific Northwest region has a mild and varied climate with only rare occurrences of severe weather such as thunderstorms or tornadoes. The normal movement of air masses is from west to east, so most of the systems moving across the region have been moderated by traveling over the Pacific Ocean. As a result, winter minimum temperatures and summer maximum temperatures in the region are greatly moderated. The Pacific Ocean also provides unlimited moisture to air masses traveling across the Pacific, so there is abundant rainfall in western Washington, Oregon, and northwestern California.	The GOA has a typical maritime climate, being somewhat warmer than adjacent land areas in winter and somewhat cooler than these land areas in summer. The region exhibits highly variable environmental conditions. The GOA is exposed to storms off the North Pacific Ocean. Consequently, it frequently experiences high winds and precipitation. Winds in the central GOA are primarily from the east or northeast, due to the interaction of the Pacific High with the GOA Low. Wind speeds often exceed 50 miles (mi) per hour except during the summer, when winds are relatively calm. Along the coast, this general circulation pattern may be altered locally by downslope surface winds following major river valleys that empty into the GOA, or by winds blowing through gaps in the ranges of mountains that border the GOA. The GOA remains ice-free for the entire year. Portions of bays and inlets may be covered by ice or may have floating glacial ice during the coldest months.		

DRAFT				
RANGE	MIRC	NWTRC	GOA	
COMPLEX Major Currents	North Equatorial Current	The coasts of Washington and Oregon are located in an eastern boundary current system where the North Pacific Current divides into the northward flowing Alaskan Current and the southward flowing California Current. Seasonal mean shelf currents in the upper water column along the Pacific coastline are southward from early spring to summer, and northward the remainder of the year.	The general ocean circulation in the Gulf of Alaska is dominated by the cyclonic Alaska Gyre. The gyre includes the Alaska Current and Alaskan Stream and the eastward-flowing North Pacific Current along the southern expanses of the Gulf of Alaska. Nearshore flow is dominated by the westward-flowing Alaskan Coastal Current and is less organized than the flow found along the shelf break and slope.	
National Marine Sanctuaries	Marianas Trench Marine National Monument (MTMNM)	Olympic Outer Coast NMS is located within the northern boundaries of the Pacific Northwest OPAREA along the Pacific coast of Washington.	There are no NMSs located within the boundaries of the GOA TMAA.	
Level of Fleet Activities	One multi-strike group type exercise in the summer each calendar year. Valiant Shield and nearshore explosive events are appropriate for marine mammal monitoring within the MIRC, with the understanding that major exercise undergo significant schedule changes based on real- world commitments which may or may not therefore limit the availability of monitoring within these major exercises. In the MIRC study area, the Navy intends to conduct 3 exercises during a 5-year period that may include both SURTASS LFA and MFA active sonar sources. The expected duration of this exercise, commonly referred to as a "combined exercise", is approximately 14 days. Based on an exercise of this length, an LFA system would be active (i.e., actually transmitting) for no more than approximately 25 hours.	The NWTRC Study Area is unique in that it offers training across the spectrum of naval missions in all weather conditions (including cold water operations) and over many varied environments from deep ocean to shallow inland waters and from coastal beaches to mountains in close proximity to the homeport of units in the Pacific Northwest.	Limited. The Proposed Action consists of Navy training activities that occur during the period between April and October in one or two major exercises or focused activity periods. These exercises or activity periods would each last up to 21 days and consist of multiple component training activities. During these focused activity periods, intermittent Navy Unit Level Training (ULT) could also occur. However, outside of these focused activity periods, during the other 46-49 weeks of the year, the Navy does not train within the TMAA or other areas of the GOA. [DEIS 12/2009]	

Navy Integrated Comprehensive Monitoring Program

2010 UPDATE dtd 20 Dec 2010

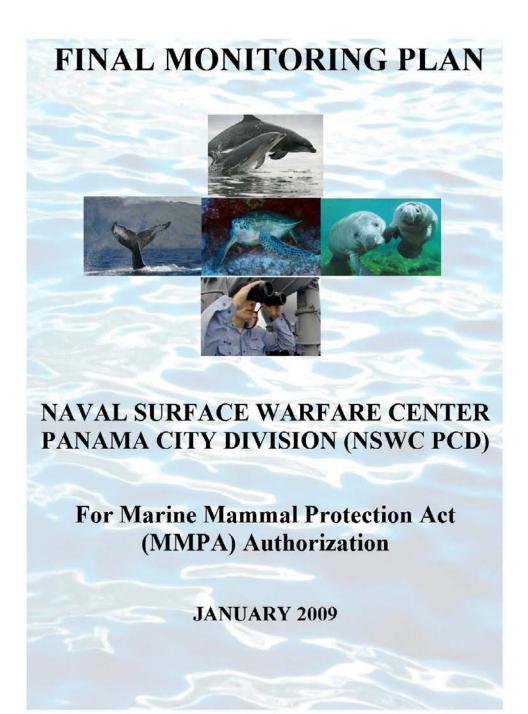
	DRAFT						
RANGE COMPLEX	MIRC	NWTRC	GOA				
Other Shipping	The proposed MIRC ASW areas are away from harbors but may include heavily traveled shipping lanes, although shipping lanes are a small portion of the overall range complex.	Commercial vessels enter and cross the Pacific Northwest OPAREA and Puget Sound Study Area on a routine basis. Along the western U.S. coast, commercial shipping routes are highly structured and controlled, even in open ocean areas. No major port cities are located along the outer coasts of northern California or Washington State; however, the Port of Portland is situated in northern Oregon and serves as a terminal for marine transportation along the western U.S. coast. Puget Sound represents the nation's third largest naval port complex and includes three major port cities in the regions' shared waters: Seattle, Vancouver, and Tacoma.	Two primary shipping lanes radiate from the Gulf of Alaska to Honolulu, Hawaii and San Francisco, California. The Alaska Marine Highway System operates a ferry network throughout Alaska and consists of nearly 14,500 km of coastal ocean routes. Important ports in the area include Kodiak, Alaska's largest commercial fishing port, and Valdez, the southern terminus of the 1,300-km trans- Alaska pipeline that originates in Prudhoe Bay.				
Unique range assets	The MIRC is of particular significance for the training of U.S. military forces in the Western Pacific because of its location. As the westernmost complex in U.S. territory, it provides the only opportunity for forward-deployed U.S. forces to train on U.Sowned lands without having to return to Hawaii or the continental United States. The premier capability of the MIRC is the combination of large ocean and airspace to support undersea, surface, air, and space warfare training combined with land-based ranges. Training may be conducted within a few miles of land masses so that battle situations may be realistically simulated. There is room and space to operate within proximity of land but at safe distances from other simultaneous training activities.	The NWTRC serves as the principle "backyard" training range for those units homeported in the Pacific Northwest area, including those aviation, surface ship, submarine, and Explosive Ordnance Disposal (EOD) units homeported at Naval Air Station (NAS) Whidbey Island, Naval Station (NAVSTA) Everett, Puget Sound Naval Shipyard, and Naval Base Kitsap (NBK) Bremerton, NBK-Bangor, formerly known as Submarine Base (SUBASE) Bangor. Additionally, the NWTRC supports other non- resident users and their training requirements to include Naval Special Warfare (NSW) units. Inshore ranges for underwater demolition training found at Crescent Harbor Underwater EOD Range, Indian Island Underwater EOD Range, and Floral Point Underwater EOD Range.					

Navy Integrated Comprehensive Monitoring Program

2010 UPDATE dtd 20 Dec 2010

	DRAFT	
RANGE COMPLEX	NUWC Keyport Division	NSWC Panama City Division
General Description	The NAVSEA NUWC Keyport Range Complex is composed of the Keyport Range Site, Dabob Bay Range Complex (DBRC) Site, and Quinault Underwater Tracking Range (QUTR) Site. Portions of the QUTR Site fall outside the 12-nautical mile (22- kilometer) Territorial Waters boundary established by Presidential Proclamation 5928. The combined waters of the Range Complex are less than 100 nm ² .	The NSWC PCD study area includes existing military operating areas within the Gulf of Mexico [W-151 (Pensacola OPAREA), W155 (Panama City OPAREA), and W-470] and St. Andrew's Bay (SAB) from the mean high water line (average high tide mark) out to 120 nautical miles [NM] offshore.
Occurrence of marine mammals	25 species of marine mammals are known to occur in Washington waters including 19 cetacean species, 5 pinniped species, and the sea otter (mustelid); however, several are seen only rarely. Seven marine mammal species listed as Federally-endangered under the Endangered Species Act (ESA) occur or have the potential to occur in the area.	29 marine mammal species may occur in the NSWC PCD Study Area (28 cetaceans and one sirenian species [manatees]). 21 of these marine mammal species regularly occur here. The other 8 are extralimital. Of those marine mammals potentially occurring in St. Andrew Bay and the NSWC PCD Study Area, seven marine mammal species are currently listed as endangered under the Endangered Species Act.
Seasonal migration patterns	The gray whale (Eschrichtius robustus) transits through the vicinity of NUWC Keyport during annual migrations between northern feeding grounds and breeding lagoons in Mexico. While gray whales can be found along the Washington coast year-round, they are more common during January and March when they are migrating along the coast.	Some baleen whale species, such as humpback and North Atlantic right whales, make extensive annual migrations to low-latitude mating and calving grounds in the winter and to high-latitude feeding grounds in the summer. However, given the relatively shallow waters of the NSWC PCD study area, of the mysticetes, only the Bryde's Whale might be expected to regularly occur. Long migrations are not typical of Bryde's whales.
Physical Geography / Bathymetry		Wide coastal shelf 52 NM distance offshore to 183 meters (m) (600 feet [ft]) water depth, including bays and harbors. Typically sand bottom.
Weather patterns		Subtropical. In general, summer weather conditions in the NSWC PCD study area are relatively consistent and stable with winds predominantly out of the southeast while winter weather conditions are more variable with winds predominantly from the east or northeast. No distinct seasonal variation in precipitation is evident in the northern Gulf. Seas less than 0.91 m (3 ft) 80 percent of the time (summer) and less than 0.91 m (3 ft) 50 percent of the time (winter).
Major Currents	For the QUTR site, the waters along the Washington coast are dominated by the southward flowing California Current and are considered to have the greatest volume of upwelling in North America.	Warm (>26°C) Caribbean Sea surface waters form the Yucatan Current, which flows into the GOMEX through the Yucatan Channel. The Gulf Stream Loop Current is the dominant surface current in the central and eastern GOMEX. The Florida Current is a strong, east-northeast flowing current that connects the Loop Current to the Gulf Stream at the entrance to the Florida Straits. Deep water circulation in the GOMEX is not nearly as well understood as surface water circulation.
National Marine Sanctuaries	QUTR Site is in the Olympic Coast National Marine Sanctuary (OCNMS).	None in the Study Area.

Navy Integrated Comprehensive Monitoring Program


2010 UPDATE dtd 20 Dec 2010

	DRAFT							
RANGE COMPLEX	NUWC Keyport Division	NSWC Panama City Division						
Level of Fleet Activities	NUWC Keyport schedules the Keyport Range Site to be used an average of 55 days/year, the DBRC Site an average of 200 days/year, and the QUTR Site an average of 14 days/year of offshore use and minimally for surf-zone activities.	NSWC PCD provides in-water RDT&E for expeditionary maneuver warfare, operations in extreme environments, mine warfare, maritime special operations, and coastal operations. A unique feature of NSWC PCD that is unduplicated in the U.S. is the natural operating environment provided by the ready access to the Gulf of Mexico (GOM) and its associated littoral and coastal regions. The GOM provides a surrogate environment for most of the littoral areas of the world in which the Navy will find itself operating for the foreseeable future						
Other Shipping	Commercial vessels enter and cross the Pacific Northwest OPAREA and Puget Sound Study Area on a routine basis. Puget Sound represents the nation's third largest naval port complex and includes three major port cities in the regions' shared waters: Seattle, Vancouver, and Tacoma. However, regular commercial shipping activity through the QUTR Site is not as busy as it is farther north into the Strait of San Juan de Fuca.	Seven of Florida's deepwater ports are located on the GOM, three of which are within the NSWC PCD Study Area: Port of Pensacola, Port of Panama City, and Port St. Joe. Port St. Joe in Gulf County is currently inactive. Approximately 45 percent of U.S. shipping tonnage passes through GOM ports.						
Unique range assets	Located adjacent to NUWC Keyport, the Keyport Range site provides approximately 1.5 square nautical miles (nm2) (5.1 square kilometers [km2]) of shallow underwater testing, including in-shore shallow water sites and a shallow lagoon to support integrated undersea warfare systems and vehicle maintenance and engineering activities.	Specialized surface craft to support the deployment and recovery of underwater unmanned vehicles (UUVs), sonobuoys, inert mines, mine-like objects (MLOs), Versatile Exercise Mine (VEM) systems, and other test systems. Specialized surface vessels are also utilized as a tow platform for systems that are designed to be deployed by helicopters.						

[This page intentionally left blank.]

Appendix B – NSWC PCD Mission Activities Monitoring Plan

THIS PAGE INTENTIONALLY BLANK

List of Acronyms and Abbreviations

LIST OF ACRONYMS AND ABBREVIATIONS

ATACT	
AFAST	Atlantic Fleet Active Sonar Training
ATOC	Acoustic Thermometry of Ocean Climate
BO	Biological Opinion
CNO-N45	Chief of Naval Operations Environmental Readiness Division
ESA	Endangered Species Act
FY	Fiscal year
HRC	Hawaii Range Complex
ICMP	Integrated Comprehensive Monitoring Plan
ITA	Incidental Take Authorization
LOA	Letter of Authorization
MCM	Mine countermeasures
MFAS	Mid-frequency active sonar
MMO	Marine Mammal Observer
MMPA	Marine Mammal Protection Act
NMFS	National Marine Fisheries Service
NSWC PCD	Naval Surface Warfare Center Panama City Division
R&D	Research and development
RDT&E	Research, development, test, and evaluation
SOCAL	Southern California
SURTASS	Surveillance Towed Array Sensor System
VACAPES	Virginia Capes

January 2010

Final Monitoring Plan NSWC PCD

Introduction

Naval Surface Warfare Center Panama City Division (NSWC PCD) Monitoring Plan

INTRODUCTION

This monitoring plan for the Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area has been developed to provide marine mammal and sea turtle monitoring as required under the Marine Mammal Protection Act (MMPA) of 1972 and the Endangered Species Act (ESA).

In order to issue an Incidental Take Authorization (ITA) for an activity, Section 101(a)(5)(a) of the MMPA states that National Marine Fisheries Service (NMFS) must set forth "requirements pertaining to the monitoring and reporting of such taking." The MMPA implementing regulations at 50 CFR Section 216.104(a)(13) note that a request for a Letter of Authorization (LOA) must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present (NMFS, 2005).

While the Endangered Species Act (ESA) does not have specific monitoring requirements, recent Biological Opinions (BOs) issued by the NMFS have included terms and conditions requiring the Navy to develop a monitoring program.

In addition to the NSWC PCD Monitoring Plan, a number of Navy range complex monitoring plans are being developed for protected marine species, primarily marine mammals and sea turtles, as part of the environmental planning and regulatory compliance process associated with a variety of activities. The goals of these monitoring plans are to assess the impacts of testing activities on marine species and the effectiveness of the Navy's current mitigation practices.

Navy-wide Integrated Comprehensive Monitoring Program (ICMP):

The Integrated Comprehensive Monitoring Program (ICMP) is Navy-wide and will provide the overarching structure and coordination that compiles data from range-specific monitoring plans. The NSWC PCD Plan is one component of the ICMP and many similar studies outlined here will also be implemented in other range complexes (Figure 1). The overall objective of the ICMP is to assimilate relevant data collected across Navy range complexes and action areas to answer questions pertaining to the impact of mid-frequency active sonar (MFAS) and explosives on marine mammals and sea turtles.

The primary objectives of the ICMP are to:

- Coordinate monitoring of Navy events, particularly those involving MFAS and underwater detonations (explosives), for compliance with the terms and conditions of ESA Section 7 consultations or MMPA authorizations;
- Coordinate data collection to support estimating the number of individual marine mammals and sea turtles exposed to sound levels above current regulatory thresholds;
- Assess the adequacy of the Navy's current marine species mitigation;
- Add to the knowledge base on potential behavioral and physiological effects to marine species from MFAS and underwater detonations; and

January 2010

Final Monitoring Plan NSWC PCD

Introduction

• Assess the practicality and effectiveness of a number of mitigation tools and techniques (some not yet in use).

Additional Navy funded research and development (R&D) studies and ancillary research collaborations with academia and other institutions will be integrated as available to enhance the data pool, and will be used in part to address objectives of the ICMP. Lastly, as an adaptive management strategy, the NSWC PCD Monitoring Plan will integrate elements from Navy-wide marine mammal research into the regional monitoring and data analysis proposed in this plan when new technologies and techniques become available.

NSWC PCD Monitoring Plan:

The NSWC PCD Monitoring Plan is one component of the overall effort the Navy is undertaking to understand its potential effects and the associated biological consequences to protected marine species. The NSWC PCD Monitoring Plan has been designed as a collection of focused "studies" to gather data that will allow NSWC PCD to address the following questions which are described fully in the following sections:

- What are the behavioral responses of marine mammals and sea turtles that are exposed to mid-frequency active/high frequency active (MFA/HFA) sonar and explosives at specific levels?
- 2. Is the Navy's suite of mitigation measures for MFA/HFA sonar and explosives effective at avoiding TTS, injury, and mortality of marine mammals and sea turtles?

Marine Species Within the NSWC PCD Study Area:

There are 20 marine mammal species or separate stocks with possible or confirmed occurrence in the NSWC PCD Study Area including whales, dolphins, and one manatee species (DON, 2007). The sperm whale is also protected under the ESA. Additionally, four species of threatened and endangered sea turtles exist in the NSWC PCD Study Area.

This monitoring plan has been designed to gather data on all species of marine mammals and sea turtles that are observed in the NSWC PCD Study Area. The plan recognizes that deep-diving and cryptic species of marine mammals such as beaked whales, sperm whales and minke whales, have low probabilities of visual detection (Barlow and Gisiner, 2006). Therefore, many methods will be utilized to attempt to address this issue (e.g., passive acoustic monitoring).

Data will be collected by Navy personnel, government contractors, academic institutions, or research organizations that will utilize qualified, professional marine mammal and sea turtle biologists. While annual reports will be prepared and provided to the NMFS in fulfillment of the MMPA LOA requirements, data collection, synthesis, and interpretation is expected to be an ongoing process over many years. It is not likely that firm conclusions can be drawn on most questions within a single year of monitoring effort due to the difficulty in achieving sufficient sample sizes for statistical analysis. The Navy will provide annual reports to the NMFS in fulfillment of the MMPA LOA requirements. The annual report will provide information on the amount and spatial/temporal distribution of monitoring effort as well as summaries of data collected and any preliminary results that may be available from analysis.

January 2010

Final Monitoring Plan NSWC PCD

MONITORING PLAN

The monitoring methods proposed for use during NSWC PCD research, development, test, and evaluation (RDT&E) activities include a combination of individual elements designed to allow a comprehensive assessment to be conducted. These elements include:

- Visual (vessel, and aerial surveys)
- Passive acoustic monitoring
- · Marine mammal observers on Navy platforms

Sonar operations associated with NSWC PCD RDT&E activities are in the mid- (1kHz to 10kHz) and high (above 10kHz) frequency ranges. Over 90 percent of all NSWC PCD RDT&E sonar activities encompass high frequency active (HFA) sonar systems while less then 10 percent encompass mid-frequency active (MFA) sonar systems. The various sonar systems tested within the NSWC PCD Study Area range in frequencies of 1 kHz to 5,000 kHz. The types of explosive events that occur within the NSWC PCD Study Area include: underwater detonations associated with mine countermeasures (MCM) systems, line charges, and projectile firing operations.

The proposed effort for conducting the NSWC PCD monitoring is shown in Table 1. While the effort presented in Table 1 represents the most realistic prediction of the amount of monitoring that can be accomplished per year, there may be instances within any given year where test event schedules shift, survey crew availability becomes limited, or extreme weather precludes effective sampling. In case of monitoring delay based on these conditions, monitoring effort will be rescheduled at the next available opportunity. In the event that a particular target activity is not available within the remainder of a particular year, monitoring may have to be made up in a following year.

Data collection and reporting will begin in FY10, once the NSWC PCD LOA is issued and the monitoring plan is finalized (See Table 1 for year by year implementation schedule). Data will also be collected from Navy range complex monitoring plans (i.e. Southern California [SOCAL] and Hawaii Range Complex [HRC]) and compiled in order to compare and analyze data from all the individual Navy monitoring efforts under the ICMP. All available data for the NSWC PCD Study Area will be included in the annual report to the NMFS including an evaluation of the effectiveness of any given element within the NSWC PCD monitoring program. All subsequent analysis shall be completed in time for Navy's five year report to NMFS.

The following subsections provide an overview for the studies to be performed through NSWC PCD monitoring.

STUDY 1

This study attempts to address the following question: What are the behavioral responses of marine mammals and sea turtles that are exposed to MFA/HFA sonar and explosives?

In order to address this question, there is a need to observe marine mammals and sea turtles not only at the surface, but to the extent possible in the water column. While shipboard surveys are preferable in many ways (slow speed, offshore survey ability and duration, close approaches), they do not allow for observation of animals that are below the ocean surface as do aerial surveys. Therefore, for this study, a combination of aerial surveys, vessel surveys, and passive acoustic monitoring may be used. For explosive events, current mitigation measures by Navy test event

January 2010

Final Monitoring Plan NSWC PCD

participants include monitoring the exclusion zone (size depends on the type and size of the explosives being used) prior to detonation and post detonation.

Methods

Visual Surveys:

In order to conduct visual surveys, the following requirements must be met: 1) the ability to conduct aerial or shipboard surveys in the vicinity of the detonation point; and 2) testing events that occur close enough to shore that re-fueling does not become an issue with the aerial survey team.

Given that there may be significant annual variability in which test events occur more frequently within the NSWC PCD Study Area, the Navy proposes to visually survey two HFA/MFA sonar activities and two different types of explosive test events per year. If the AN/SQS-53 C sonar is to be operated, it would be monitored as one of the HFA/MFA sonar activities. If a multiple detonation event occurs, it would be monitored as one of the explosive events. Due to logistics and safety reasons this may not be possible; nevertheless, the Navy is committed to monitoring four test events per year.

For specified NSWC PCD RDT&E activities, aerial or vessel surveys will be used one to two days prior to, during (if safely possible), and one to five days post detonation. The variation in the number of days after a test activity allows for the detection of animals that gradually return to an area, if they indeed do change their distribution in response to underwater detonation events.

Surveys will include any specified exclusion zone around a particular detonation point plus 2,000 yards (1,829 meters) beyond the exclusion zone. For vessel-based surveys a passive acoustic system (hydrophone or towed array) could be used to determine if marine mammals are in the area before and/or after a detonation event. Depending on animals sighted, it may be possible to conduct visual surveys of animals outside of the exclusion zone (detonations could be delayed if marine mammals or sea turtles are observed within the exclusion zone) to record behavioral responses to the detonations.

When conducting a particular survey, the survey team will collect:

- 1) Species identification and group size
- 2) Location and relative distance from the detonation site
- 3) The behavior of marine mammals and sea turtles including standard environmental and oceanographic parameters
- 4) Date, time and environmental and oceanographic conditions associated with each observation
- 5) Direction of travel relative to the detonation site; and
- 6) Duration of the observation.

Animal sightings and relative distance from a particular detonation site will be used post-survey to determine potential received energy and pressure (dB re 1 micro Pa-sec and pounds per square inch). This data will be used, post-survey, to estimate the number of marine mammals and sea turtles exposed to different received levels (energy and pressure based on distance to the source, bathymetry, oceanographic conditions and the type and size of detonation) and their corresponding behavior.

January 2010

Final Monitoring Plan NSWC PCD

Brief aerial- or vessel-based surveys of the detonation area, taking into account local oceanographic currents, will be conducted for stranded animals over a two day period post detonation event. If any distressed, injured or stranded animals are observed, an assessment of the animal's disposition (alive, injured, dead, or degree of decomposition) will be reported immediately to the NSWC PCD Environmental Office Point of Contact (POC) for appropriate action (notification to the NMFS Regional Stranding Coordinator).

All available data will be included in the Navy's annual report to NMFS. All subsequent analysis shall be completed in time for Navy's five year report to the NMFS.

Passive Acoustic Monitoring:

The Navy's goal is to use a hydrophone or towed array whenever shipboard surveys are being conducted. The towed array would be deployed during daylight hours for each of the days the ship is at sea for survey operations.

A hydrophone or array is towed from the boat and can detect and localize marine mammals that vocalize and would be used to supplement the ship-based systematic line-transect surveys (particularly for species such as beaked whales that are rarely seen). The ability of the hydrophone to detect marine mammals will depend on the speed of the boat, as well as the length and the frequency range of the hydrophone or towed array. The hydrophone or towed array would need to detect low frequency vocalizations (< 1,000 Hz) for baleen whales (McDonald and Fox, 1999; Mellinger and Clark, 2003) and relatively high frequency (up to 30 kHz) for odontocetes such as sperm whales (Watkins, 1980).

Marine Mammal Observers on Navy Platforms:

Marine mammal observers (MMOs) will be placed on a Navy platform during one of the test events being monitored per year. Qualifications must include expertise in species identification of regional marine mammal and sea turtle species and experience collecting behavioral data. Experience as a NMFS marine mammal observer is preferred, but not required. Navy biologists and contracted biologists will be used; contracted MMOs must have appropriate security clearance to board Navy platforms. MMOs will not be placed aboard Navy platforms for every Navy testing event, but during specifically identified opportunities deemed appropriate for data collection efforts. Additionally, the events selected for MMO participation will take into account safety, logistics, and operational concerns.

MMOs will observe from the same height above water as the RDT&E marine observers. Of note, these MMOs will not be part of the Navy's formal reporting chain of command during their data collection efforts; RDT&E marine observers will continue to serve as the primary reporting means within the Navy chain of command for marine mammal sightings. The only exception is that if an animal is observed by an MMO within the shutdown zone that has not been observed by the RDT&E marine observer, the MMO will inform the RDT&E marine observer of the sighting to take the appropriate action through the chain of command.

The MMOs will collect species identification, behavior, direction of travel relative to the Navy platform, and distance first observed. All MMO sighting will be conducted according to a standard operating procedure (SOP).

STUDY 2

This study attempts to address the following question: Is the Navy's suite of mitigation measures for MFA/HFA sonar and explosives effective at avoiding injury and mortality of marine mammals and sea turtles?

January 2010

Final Monitoring Plan NSWC PCD

It is the Navy's position that the suite of mitigation measures for explosives are effective at avoiding exposures of marine mammals to levels of energy or pressure from explosives that would result in harm or mortality of marine mammals. Through several methods, this study will provide the scientific data needed to support that position. The Navy will conduct aerial surveys before and after two HFA/MFA sonar activities and two explosive test events per year to determine whether animals have been injured in the NSWC PCD Study Area, and conduct a comparison of professional MMOs and RDT&E marine observers.

Methods

RDT&E Marine Observer Comparison:

RDT&E marine observers are provided with extensive training to detect anything in the water 360 degrees around Navy platforms. This includes marine mammals and sea turtles. The Navy feels strongly that despite the fact that RDT&E marine observers are not biologists trained to identify specific marine animal species, they do have the skills to reasonably detect all marine mammals and sea turtles that are visible at the surface. In order to provide the scientific data to support this position, the Navy will initiate a side-by-side comparison of Navy RDT&E marine observer's ability to detect marine mammals at sea with sightings made by professional MMOs. It is assumed that the abilities of RDT&E marine observers and professional MMOs will vary; therefore, it is important that data be collected from many locations, in many environmental conditions, with many different RDT&E marine observers and MMOs. Therefore, as part of the overall Navy monitoring effort, some of the data will be collected within the NSWC PCD Study Area. The goal is to perform the RDT&E marine observer comparison during one test event per year.

MMO qualifications must include expertise in species identification of regional marine mammal and sea turtle species and experience collecting behavioral data. Experience as a NMFS marine mammal observer is preferred, but not required. Navy biologists and contracted biologists will be used; contracted MMOs must have appropriate security clearance to board Navy platforms. As noted above, MMOs will not be placed aboard Navy platforms for every NSWC PCD RDT&E activity, but during specifically identified opportunities deemed appropriate for data collection efforts. Additionally, the activities selected for MMO participation will take into account safety, logistics, and operational concerns associated with such an endeavor. MMOs will observe from the same height above water as the RDT&E marine observers. RDT&E marine observers will officially be on duty and will maintain the same responsibilities (no more, no less). MMOs will not be part of the Navy's formal reporting chain of command during their data collection efforts; RDT&E marine observers will continue to serve as the primary reporting means within the Navy chain of command for marine mammal sightings. The only exception would be if an animal is observed by the MMO within the shutdown zone that has not been observed by the RDT&E marine observer, the MMO will inform the RDT&E marine observer of the sighting to take the appropriate action through the chain of command.

To the extent practicable, the MMO and test marine observer will avoid cueing each other when they observe a marine mammal. The MMOs will collect species identification, behavior, direction of travel relative to the Navy platform, and distance first observed. All MMO sighting will be conducted according to a SOP to allow for consolidation of data from all range complex monitoring plans. If needed based on NSWC PCD RDT&E requirements, two MMOs and/or RDT&E marine observers will be aboard, and work on rotating two hour shifts to avoid fatigue.

The following comparisons will be made between MMOs and the RDT&E marine observers:

1. Rate of detection: Comparison of the number of animals sighted per hour (or other appropriate sighting period)

January 2010

Final Monitoring Plan NSWC PCD

- 2. Distance of sighting: Comparison of the distance where the sighting was first made
- 3. Distance estimation: Consistency of sighting distance estimates
- 4. Animal size estimation: Comparison of animal size estimation (either by actual length or by grouping small or dolphin size, medium and large)
- 5. Direction of travel relative to the ship or by compass bearing
- 6. Behavior categorization: Comparison of the categorized behaviors.

Aerial surveys:

An aerial survey team will conduct pre- and post-aerial surveys, taking local oceanographic currents into account, of the NSWC PCD Study Area. These aerial surveys will be the same as those conducted for other NSWC PCD monitoring studies. However, for this study in particular, survey data will include identification of any distressed, injured or stranded animals in the NSWC PCD Study Area. The Navy proposes to conduct this type of monitoring during two sonar activities and two explosive test events per year.

Species composition of marine animals will be reported. If any distressed, injured or stranded animals are observed, an assessment of the animal's disposition (alive, injured, dead, or degree of decomposition) will be reported immediately to the NSWC PCD Environmental Office POC for appropriate action (notification to the NMFS Regional Stranding Coordinator).

January 2010

Final Monitoring Plan NSWC PCD

IMPLEMENTATION - ANALYSIS - REPORTING

For all field monitoring conducted in support of this plan, it will be the responsibility of any contracted researchers to obtain and maintain the appropriate permits.

Table 1 provides detail on how the NSWC PCD Monitoring Plan will be fully implemented from fiscal year 2010 to fiscal year 2014 (FY10 to FY14). The implementation of this monitoring plan will not officially commence until August 2009, after the issuance of the LOA. The NSWC PCD Monitoring Plan will be implemented gradually in the last few months of FY09, with full ramp up in 2010 as contracts are issued, SOPs are developed, and statisticians are consulted for input on sample size and analysis. Many of the study hours may overlap when implemented, allowing for data to be collected for more than one study simultaneously. Therefore, the hours in Table 1 represent those spent on each study, but are not necessarily an additive number of hours per method, per year. Collecting data concurrently for more than one study will only be initiated if the data integrity is not compromised.

The Navy will be investing significant funding and resources towards monitoring programs and intends to conduct the research in a scientifically valid and robust manner. The Navy is committed to conducting research until these questions have been addressed to the satisfaction of both the NMFS and the Navy. Therefore, it is in the best interest of the Navy to choose studies wisely in the NSWC PCD Study Area and Navy range complexes that are the most likely to collect large data sets, and will enable the Navy and the NMFS to answer the required questions. Some field methods may be applied throughout the NSWC PCD Study Area and Navy range complexes, while other methodologies may be specially selected for one or two areas within the NSWC PCD Study Area or Navy range complex that are most likely to produce the best quality data. For example, in Hawaii, there are some baseline data on odontocetes from previous tagging (Baird et al., 2006), which can be used to provide a context for any tagging data collected during test events.

Using the Acoustic Thermometry of Ocean Climate (ATOC) and Surveillance Towed Array Sensor System (SURTASS) Monitoring Programs as a guideline for success it is clear that the key to the success of the monitoring plan's execution and analysis is using scientific professionals that are the top of their field. It is the Navy's intention that monitoring be implemented by a team of qualified, professional marine mammal and sea turtle biologists who are experts in their field. This team of experts will include statistical analysts to analyze data and make recommendations as to when they are beginning to see a pattern in the data and/or when the study designs need to be altered for more robust data collection. This adaptive management process will provide a critical feedback loop to allow for adapting to new methods and evolving methodology. The process will be transparent to the public through annual reports to the NMFS under the MMPA permit as well as encouraging the scientific team to publish results as they become available.

New technology and techniques will be incorporated as part of the Navy's adaptive management strategy. Adaptive measures and feedback from the experts will allow flexibility within a given year and/or within years so as to best achieve monitoring plan goals and take into consideration shifting demands, inclement weather and other unforeseen events. For example, flexibility is incorporated to monitor an alternate but equal NSWC PCD RDT&E activity within the year and/or in a following year if test event schedule changes, is delayed or cancelled. This flexibility ensures monitoring will occur under optimal circumstances and conditions.

January 2010

Final Monitoring Plan NSWC PCD

Integrated Comprehensive Monitoring Program (ICMP):

The ICMP is currently in development by the Navy, with Chief of Naval Operations Environmental Readiness Division (CNO-N45) having the lead. The program does not duplicate the monitoring plans for individual areas (e.g. Atlantic Fleet Active Sonar Training [AFAST], HRC, SOCAL, Virginia Capes [VACAPES]); instead it is intended to provide the overarching coordination that will support compilation of data from NSWC PCD and range-specific monitoring plans as well as Navy funded research and development (R&D) studies. The ICMP will coordinate the monitoring programs' progress towards meeting its goals and develop a data management plan. A program review board is also being considered to provide additional guidance. The ICMP will be evaluated annually to provide a matrix for progress and goals for the following year, and will make recommendations on adaptive management for refinement and analysis of the monitoring methods.

Due to the complexity of the ICMP and large number of U.S. Navy range complexes and associated activities, the Navy is considering the dedication of a Program Manager to oversee the ICMP. Specific qualifications, roles and responsibilities are yet to be determined but may include the oversight and coordination of all Navy monitoring plans.

Reporting:

The Navy will provide monitoring reports to the NMFS Headquarters in fulfillment of the MMPA LOA requirements. The reports will provide information on the amount and spatial/temporal distribution of monitoring effort as well as summaries of data collected and any preliminary results that may be available from analysis. All subsequent analysis shall be completed in time for Navy's five year report to the NMFS.

Data collected from the NSWC PCD Monitoring Plan will be added to a Navy-wide analysis of monitoring from permitted Navy range complexes via the ICMP. All available data will be included in Navy's annual report and individual test event reports as detailed in the requirements specified in the NMFS MMPA LOA. All subsequent analysis shall be completed in time for Navy's five year report to the NMFS. The Navy's reports will provide information on the amount and spatial/temporal distribution of monitoring effort as well as summaries of data collected and any preliminary results that may be available from the analysis. All data will be considered predecisional during the course of the research studies to prevent premature conclusions from being drawn. While data will be prepared and analyzed over the course of the five years of the LOA, under no circumstances will conclusions be represented before the studies are completed. Final conclusions cannot be published nor information released outside of their organization without the written consent of the Secretary of the Navy or their designee.

January 2010

Final Monitoring Plan NSWC PCD

			ci ci brudy							
STUDY 1 (behavior	al responses)									
	FY10	FY11	FY12	FY13	FY14	FY15				
Aerial or Vessel surveys	Award monitoring contract, develop SOP, obtain permits	2 sonar activities and 2 explosive events per year								
Marine Mammal Observers	Opportunistic as staff and SOP developed	1 explosive event per year								
STUDY 2 (mitigation effectiveness)										
FY10 FY11 FY12 FY13 FY14 FY15										
Marine mammal observers/lookout comparison Opportunistic as staff and SOP developed 1 explosive event per year 1 explosive event per year 1 explosive event per year 1 explosive event per year 1 explosive event per year										
Vessel or Aerial surveys before and after training events	Award monitoring contract, develop SOP, obtain permits	2 sonar activities and 2 explosive events per year								

Table 1. Summary of studies planned each year within the NSWC PCD Study Area.

Note: Study 1 and 2 will be conducted simultaneously when possible

January 2010

Final Monitoring Plan NSWC PCD

References

REFERENCES

- Barlow, J. and R. Gisiner, 2006. Mitigating, monitoring and assessing the effects of anthropogenic sound on beaked whales. Journal of Cetacean Research and Management. 7:239-249.
- DON (Department of the Navy), 2007. Marine Resource Assessment for the Gulf of Mexico. Department of the Navy, U.S. Fleet Forces Command, Norfolk, VA. Final Report. Contract # N62470-02-D-9997, CTO 0030. Prepared by Geo Marine, Inc., Hampton, VA.
- McDonald, M. A., and C. G. Fox, 1999. Passive acoustic methods applied to fin whale population density estimation. Journal of the Acoustical Society of America. 105:2643-2651.
- Mellinger, D. K., and C. W. Clark. 2003. Blue whale (*Balaenoptera musculus*) sounds from the North Atlantic. Journal of the Acoustical Society of America. 114:1108-1119.
- NMFS (National Marine Fisheries Service), 2005. Office of Protected Resources. Marine Mammal Protection Act (MMPA) of 1972. Policy, guidance, and regulations documents. http://www.nmfs.noaa.gov/pr/pdfs/laws/mmpa_regs_216.pdf
- Watkins, W. A., 1980. Acoustics and the behavior of sperm whales. In R.-G. Busnel and J.F. Fish (eds.), Animal sonar systems. Plenum, New York. 1135 pp.

January 2010

Final Monitoring Plan NSWC PCD

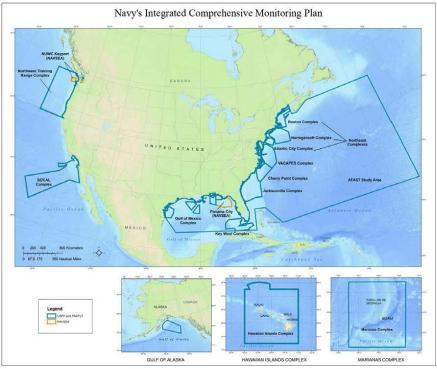


Figure 1. Range Complexes Included in the Integrated Comprehensive Monitoring Program

January 2010

Final Monitoring Plan NSWC PCD

Appendix C – April-May 2013 Aerial Monitoring Survey Trip Report

THIS PAGE INTENTIONALLY BLANK

Naval Surface Warfare Center Panama City Division (NSWC PCD)

Marine Species Monitoring

AERIAL MONITORING SURVEYS TRIP REPORT

September 2013

27 April-02 May 2013

ACRONYMS AND ABBREVIATIONS

0	degree(s)
BL	body length(s)
BSS	Beaufort Sea State
DON	Department of the Navy
ft	foot/feet
GIS	Geographic Information Systems
HFAS	high-frequency active sonar
hr	hour(s)
ICMP	Integrated Comprehensive Monitoring Program
km	kilometer(s)
km ²	square kilometer(s)
m	meter(s)
min	minute(s)
nmi	nautical mile(s)
nmi ²	square nautical mile(s)
NMFS	National Marine Fisheries Service
NSWC PCD	Naval Surface Warfare Center Panama City Division
OPAREA	operating area
Q-20	AN/AQS-20
SPUE	sightings per unit effort
U.S.	United States

27 April-02 May 2013

Table of Contents

ACRONYMS AND ABBREVIATIONS	ii
SECTION 1 INTRODUCTION	1
SECTION 2 METHODS	1
SECTION 4 ACKNOWLEDGEMENTS	18
SECTION 5 LIST OF PREPARERS	19
SECTION 6 LIST OF REFERENCES	19

Appendices

Appendix A. Environmental, Oceanographic, and Sighting Conditions	A-1
Appendix B. Focal-Follow Data	B-1

Figures

Figure 1. Pre-planned Tracklines for the Monitoring Effort for the Q-20 Sonar Test Event for 27 April-02 May 2013 in the NSWC PCD Study Area	2
Figure 2. Location of All Cetacean, Sea Turtle, and Hammerhead Shark Sightings Recorded Before the Scheduled Q-20 Sonar Test Event (27 April-02 May 2013)	5
Figure 3. Survey Flight Track Conducted Before the Scheduled Q-20 Sonar Test Event (27 April 2013)	6
Figure 4. Locations of Cetaceans, Sea Turtles, and Hammerhead Shark Recorded Before the Scheduled Q-20 Sonar Test Event (28 April 2013)	7
Figure 5. Locations of Sea Turtles Recorded Before the Scheduled Q-20 Sonar Test Event (29 April 2013)	8
Figure 6. Locations of Sea Turtles Recorded Before the Scheduled Q-20 Sonar Test Event (30 April 2013)	
Figure 7. Locations of Sea Turtles Recorded Before the Scheduled Q-20 Sonar Test Event (01 May 2013)	
Figure 8. Locations of Sea Turtles Recorded Before the Scheduled Q-20 Sonar Test Event (02 May 2013, Flight 1)	
Figure 9. Location of Sea Turtle Sightings Recorded Before the Scheduled Q-20 Sonar Test Event (02 May 2013 Flight 2).	

Tables

Table 1. Summary of Monitoring Effort for NSWC PCD Q-20 Sonar Test Event	3
Table 2. Observers and Roles	4
Table 3. Summary of Sightings	14
Table 4. Summary of Sightings Recorded During Monitoring for Q-20 Sonar Test Event	18
Table 5. Summary of Focal Follow Conducted During Monitoring for the Q-20 Sonar Test Event	18
Aerial Monitoring Surveys	iii

27 April-02 May 2013

THIS PAGE INTENTIONALLY LEFT BLANK

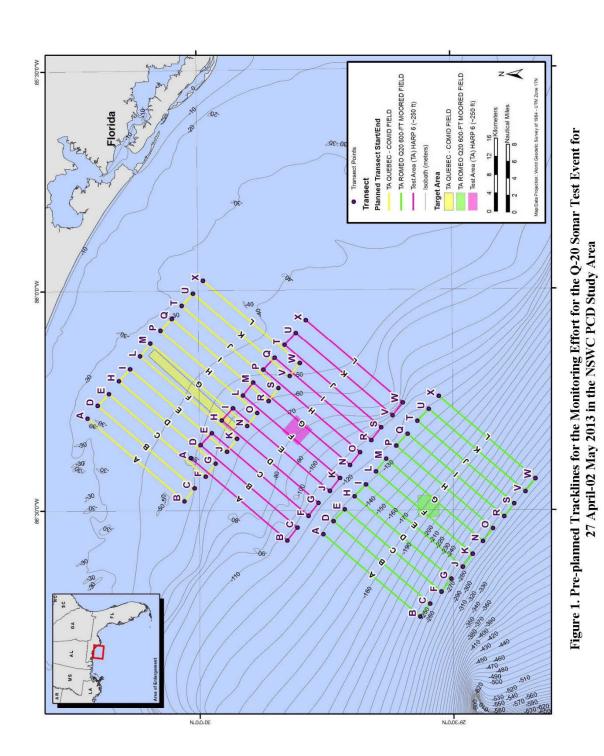
Aerial Monitoring Surveys

Section 1 Introduction

Aerial surveys for marine-species monitoring occurred during 27 April through 02 May 2013 for an AN/AQS-20 (Q-20) sonar system test event. These surveys were conducted off the west coast of Florida in the Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area in the Gulf of Mexico. The Q-20 is a high-frequency active sonar (HFAS) system used in mine detection and countermeasures.

As part of the requirements for compliance with the Marine Mammal Protection Act of 1972 and the Endangered Species Act of 1973, the United States (U.S.) Navy developed the Integrated Comprehensive Monitoring Program (ICMP; Department of the Navy [DON] 2010a). The ICMP applies by regulation to those activities on U.S. Navy training ranges and operating areas (OPAREAs) for which the U.S. Navy has sought and received incidental take authorizations. To support the U.S. Navy in meeting regulatory requirements for monitoring established under the NSWC PCD Final Rule (National Marine Fisheries Service [NMFS] 2010), and to provide a mechanism to assist with coordination of program objectives under the ICMP, monitoring of marine mammals and sea turtles (protected marine species) during these test events included visual surveys from a fixed-wing aircraft.

Section 2 Methods


Study Area

The NSWC PCD Study Area includes both territorial waters (between 0 and 22 kilometers [km]; 0 and 12 nautical miles [nmi]) and non-territorial waters (beyond the 22-km [12-nmi] limit). Monitoring conducted for protected marine species during the Q-20 sonar test event was focused within the Panama City OPAREA of the NSWC PCD Study Area (**Figure 1**). Q-20 test events were planned initially in three test areas: Quebec, Harp 6, and Romeo. However, only two of the Q-20 test areas (Quebec and Harp 6) were projected to be used by NSWC PCD immediately prior to initiation of monitoring. The Quebec and Harp 6 test areas for the Q-20 system are approximately 24 km (13 nmi) and 59 km (32 nmi) offshore, respectively. The Quebec and Harp 6 test areas for the Q-20 system cover an area approximately 47 square kilometers (km²) (14 square nautical miles [nmi²]) and 21 km² (6 nmi²) in size, respectively, and range in bottom depth from 35 to 85 meters (m) (115 to 279 feet [ft]).

Monitoring was conducted during 6 days before sonar tests commenced. Due to weather conditions occurring outside of optimum test conditions (i.e., seas of 1 m [3 ft] or less), the Q-20 was not tested as scheduled during the 27 April through 02 May 2013 time period. Therefore, the Q-20 sonar aerial monitoring survey was cancelled after 6 days of flights after the second sonar aerial monitoring flight on 02 May 2013 of the April/May 2013 test event.

Aerial-Based Monitoring

Aerial-based monitoring was performed over a 6-day period from 27 April through 02 May 2013 (**Table 1**). Survey methods were generally consistent with currently accepted Distance Sampling theory (Buckland et al. 2001) and followed a well-established protocol used for aerial surveys throughout all U.S. Navy range complexes (e.g., Smultea and Bacon 2012). A survey altitude and speed of approximately 305 m (1,000 ft) and 185 km/hour (hr) (100 knots) were maintained while on-effort, but might have varied slightly based on weather conditions in the area.

NSWC PCD 2013 Annual Marine Species Monitoring Report

Aerial Monitoring Surveys

27 April-02 May 2013

Date	Description	Start Time	Stop Time	Total Survey Time (min) [*]	Total On-Effort Time (min)	Trackline On-Effort Distance (km)	Trackline On-Effort Distance (nmi)
27 Apr	Transect Survey (Pre-Event: Harp 6)	14:43	15:42	59	50	170	92
28 Apr	Transect Survey (Pre-Event: Harp 6 and Quebec)	9:03	13:22	259	187	623	336
29 Apr	Transect Survey (Pre-Event: Harp 6 and Quebec)	11:35	14:29	174	145	484	261
30 Apr	Transect Survey (Pre-Event: Harp 6)	12:25	14:26	121	90	311	168
01 May	Transect Survey (Pre-Event: Quebec)	8:20	10:40	140	117	389	210
02 May	Transect Survey, Flight 1 (Pre-Event: Quebec)	9:24	11:46	142	117	391	211
02 May	Transect Survey, Flight 2 (Pre-Event: Harp 6)	13:06	14:57	111	93	334	180
	Total			1,006 (≈16.8 hr)	799 (≈13.3 hr)	2,702	1,458

Table 1. Summary of Monitoring Effort for NSWC PCD	Q-20 Sonar To	est Event
--	---------------	-----------

Key: hr = hour(s); km = kilometer(s); min = minute(s); nmi = nautical mile(s)

Notes: * Total Survey Time reflects minutes occupied in the range/area of interest and include both on-effort (systematic) and off-effort (connector/circling) total minutes. Total Survey Time may not match the difference between Start Time and Stop Time in the table due to differences in rounding.

Once a marine mammal sighting was made, a focal-follow circling session was attempted at 305 m (1,000 ft) or higher if conditions were appropriate (Smultea and Bacon 2012; refer to the survey methods on page 4 of this document). A lower altitude of approximately 210 to 250 m (700 to 800 ft) was established after focal-follow sessions for photographic purposes to provide sharper images required for species identification.

The observation platform was a Cessna T337H Turbo Skymaster aircraft operating out of Northwest Florida Beaches International Airport, Panama City Beach, Florida. Seven survey flights over 6 days were conducted following pre-planned tracklines covering the entire Q-20 sonar test area. The lines were defined by waypoints designed to extend beyond the entire range (if permitted by U.S. Air Force flight operations) during each survey day for a total flight-time window over 4 hr (**Table 1, Figure 1**). Aerial observers (**Table 2**) were experienced with trackline survey methodology, had experience in identification of marine mammal and sea turtle species, were knowledgeable of marine mammal biology and behavior, and had previous experience conducting marine mammal and sea turtle observations.

Survey effort was designed to include the entirety of the Q-20 test areas. Based on the update in the test event schedule immediately prior to initiation of monitoring, two sets of 12 parallel tracklines running approximately southwest to northeast, measuring 27.8 km (15.0 nmi) in

27 April-02 May 2013

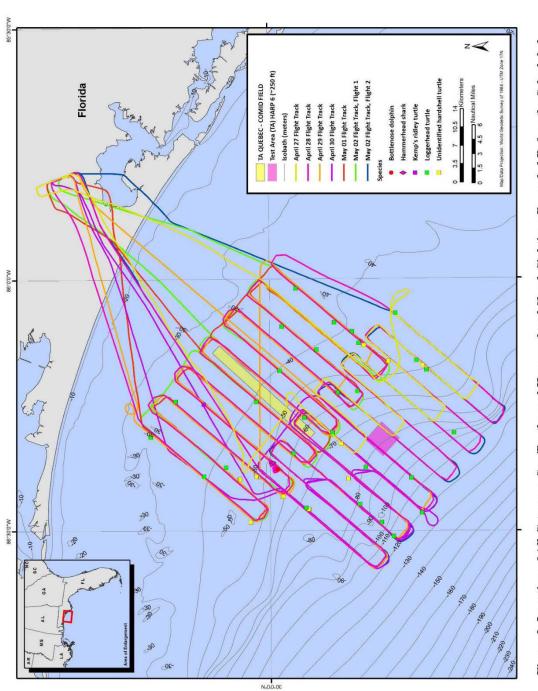
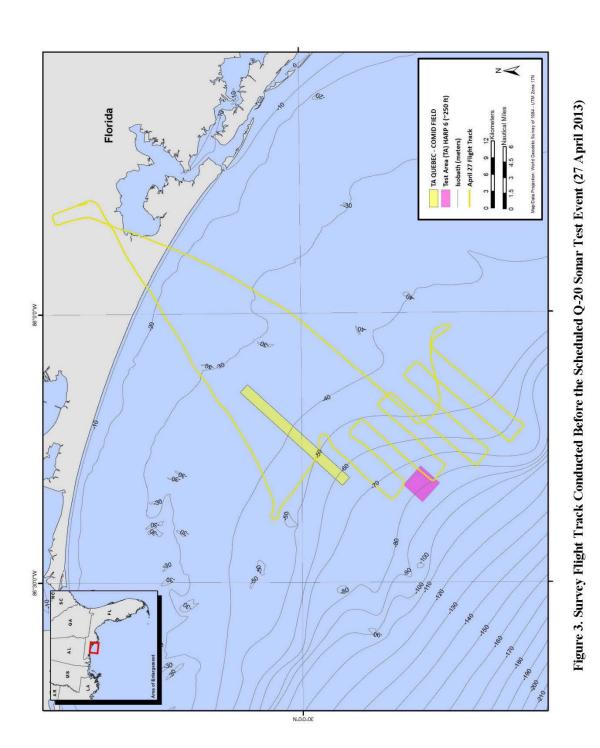

Observer	Role(s)	Dates of Participation
Jennifer Latusek-Nabholz	Chief Scientist, Observer	27 April - 02 May 2013
Mark Cotter	Observer	27 April - 02 May 2013

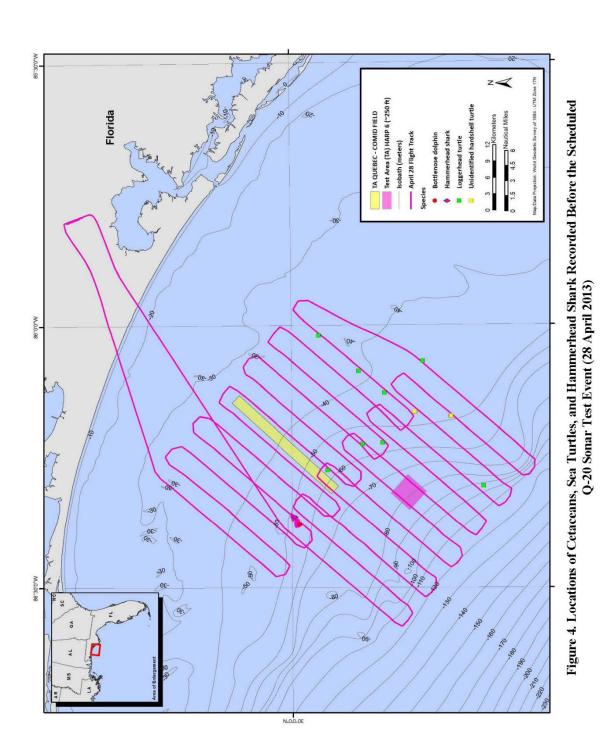
Table 2. Observers and Roles

length, and spaced approximately 3.7 km (2.0 nmi) apart, were flown during "systematic" efforts throughout the surveys. Based on the geometry of the Q-20 survey area (the visual area encompassed within the two sets of Q-20 monitoring tracklines), our total survey coverage area was 2,264 km2 (660 nmi²; **Figure 1**). Planned lines were followed when possible, but exact lines followed for each survey day were subject to modifications resulting from range exclusion by military airspace restrictions, unfavorable weather conditions in the Panama City OPAREA of the NSWC PCD Study Area, and/or changes in projected Q-20 test logistics (**Table 1, Figures 2 through 9**). Monitoring effort for 1 day on 30 April 2013 was restricted due to military restrictions. The restrictions resulted in about one-half of the HARP 6 Q-20 survey area being inaccessible to the observer team on these survey flights. Therefore, during these times, monitoring focused extra effort (i.e., repeating tracklines) in the non-restricted portions of the planned Q-20 survey area. Monitoring effort for 2 days on 27 and 29 April 2013 was restricted due to unfavorable weather conditions. On 01 and 02 May 2013, monitoring effort was reduced due to the change in the test schedule.

The following describe the general survey approach:

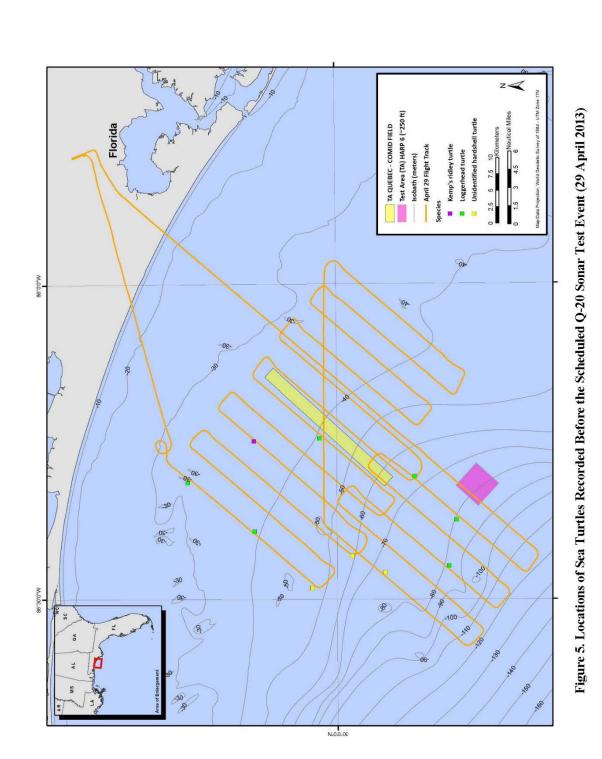
- 1. Followed pre-planned tracklines and waypoints using methods described by Smultea and Bacon (2012) until a sighting occurred. Variables such as sea state, glare, and visibility were recorded for each transect flown.
- 2. Upon sighting a marine mammal/sea turtle group, recorded basic sighting information per established protocol (Smultea and Bacon 2012). As outlined in the NSWC PCD Study Area Monitoring Plan (DON 2010b), information included: (1) species identification and group size; (2) location (relative to observation platform); (3) the behavior of marine mammals and sea turtles; (4) date, time, and environmental and oceanographic conditions associated with each observation; (5) animal/group direction of travel relative to true North; and (6) duration of the observation.
- 3. If the species appeared suitable for a focal follow, the aircraft increased altitude to approximately 365 to 455 m (1,200 to 1,500 ft) and radial distance increased approximately 0.5 to 1.0 km (0.3 to 0.5 nmi). Then, the aircraft circled the sighting to obtain detailed behavioral information as long as possible and logistically feasible (i.e., Beaufort Sea State [BSS], visibility, group size, behavior, dive times, aircraft considerations [e.g., fuel], etc.). Focal follows occurred for a minimum of 5 minutes (min) and included an observer taking digital photographs of the group when possible.
- 4. If the sighting was not selected for a focal follow, and species and group size were unknown, the aircraft circled the sighting to obtain digital photographs for confirmation of species identification and to estimate group size/composition.

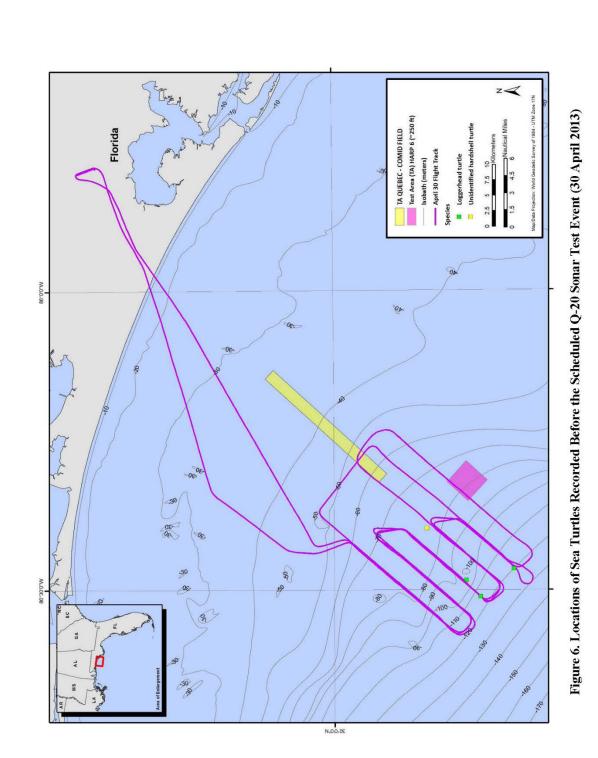




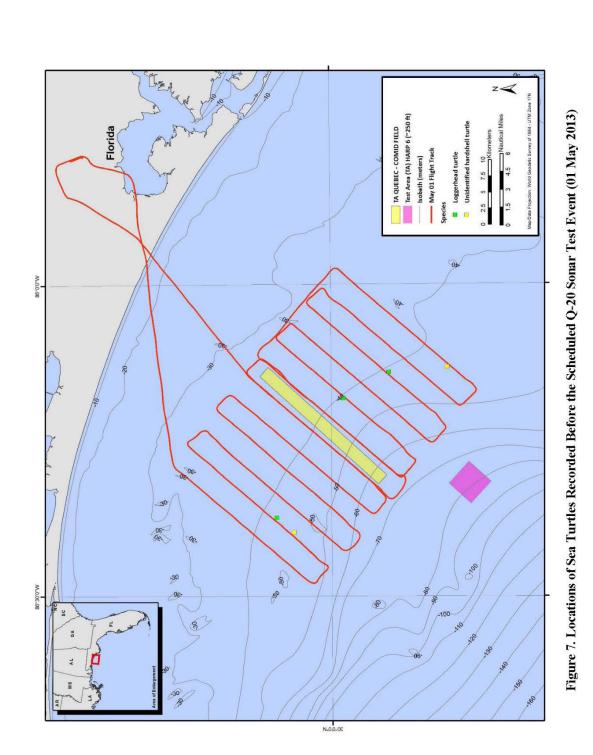
NSWC PCD 2013 Annual Marine Species Monitoring Report

Aerial Monitoring Surveys



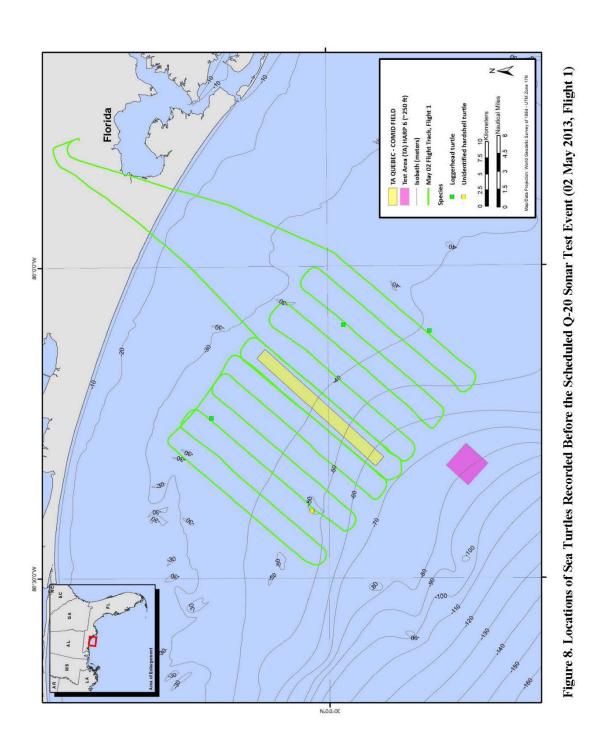

27 April-02 May 2013

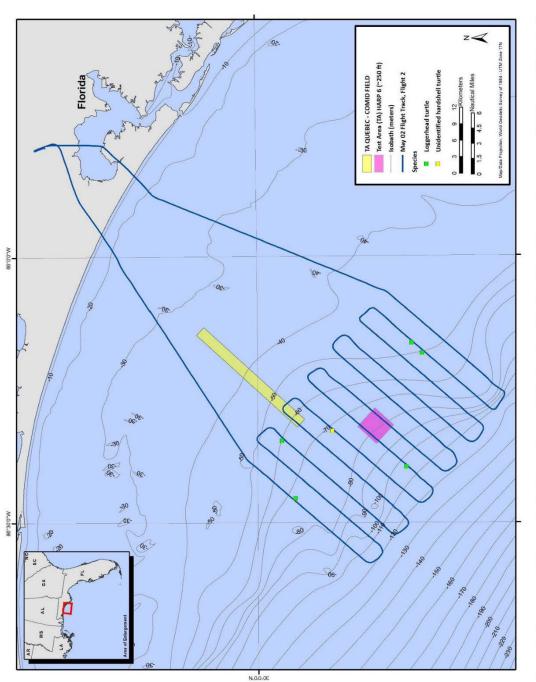
7



27 April-02 May 2013

Aerial Monitoring Surveys




27 April-02 May 2013

27 April-02 May 2013

10

September 2013

27 April-02 May 2013

Section 3 Results

Survey Effort

Observers visually surveyed 2,702 km (1,458 nmi) of on-effort tracklines and 3,433 km (1,854 nmi) of total trackline (including the systematic transects, cross-legs between transects, and circling for focal follows or species identification) during 6 days for 13.3 hr of on-effort status (**Table 1**). BSS ranged from 2 to 5, and all sightings were made in BSS between 2 and 5 (**Table 3**). **Appendix A** contains a detailed description of environmental, oceanographic, and sighting conditions. Survey results in the following subsection are reported as occurring before the sonar test event because the Q-20 was not tested as scheduled during the 27 April through 02 May 2013 time period due to unfavorable weather conditions.

Sightings

One sighting of cetaceans and 39 sightings of sea turtles were recorded during times of both oneffort and off-effort, which encompassed 16.8 hr of total survey flight time within the Q-20 survey area (**Figure 2, Table 3**).

No cetacean or sea turtle sightings were made on 27 April 2013 (Figure 3, Table 3). One sighting of cetaceans, 39 sightings of sea turtles, and 1 sighting of a hammerhead shark (*Sphyrna* sp.) were made before the test event on 28 April through 02 May 2013 (Figures 4 through 9, Table 3).

Sightings were comprised of 1 group of bottlenose dolphins (*Tursiops truncatus*); 1 sighting of a Kemp's ridley turtle (*Lepidochelys kempii*), 28 sightings of loggerhead turtles (*Caretta caretta*), 10 sightings of unidentified hardshell turtles, and 1 sighting of a hammerhead shark (**Figure 2**, **Table 3**). **Table 4** provides a summary of the sightings recorded, which includes group information and environmental data. Bottom depth for each sighting was estimated in 10-m (30-ft) ranges from the maps from Geographic Information System (GIS) plots of latitude and longitude for sightings.

Sightings per unit effort (SPUE) was calculated as the total number of cetacean (n=1) or sea turtle (n=38) sightings made on-effort divided by total survey on-effort (t=13.3 hr and d=3,433 km [1,854 nmi]), resulting in an estimate for the number of sightings per hr and number of sightings per km (or per nmi). For this monitoring event, the SPUE for cetaceans was equal to 0.08 sightings per hr or 0.0003 sightings per km (0.0005 sightings per nmi) and the SPUE for sea turtles was equal to 2.9 sightings per hr or 0.01 sightings per km (0.02 sightings per nmi).

Sighting No.	Date (Day/ Month/ Year)	Species		roup S /High		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track km (nmi)		Bottom Depth [†] m (ft)	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
	SWC PCD SWC PCD				0														
1	28/4/2013	CC	1	1	1	9 1 1 (10:02:32	×	3	29.883	-86.226	64	330	0.2 (0.1)	330	60 (197)	No/No		Loggerhead turtle resting at the surface. No disturbance detected.
2	28/4/2013	CC	1	1	1	ī	10:28:34	ł	2	29.683	-86.306	14	176	1.5 (0.8)	356	60 (197)	No/No		Loggerhead turtle resting at the surface. No disturbance detected.
3	28/4/2013	Unid HST	1	1	1	-	10:38:00	1-1	2	29.796	-86.165	32	297	0.5 (0.3)	236	50 (164)	No/No		Unidentified hardshell turtle resting at the surface. No disturbance detected.
4	28/4/2013	Unid HST	1	1	1	Ξ	10:44:24	-	2	29.737	-86.173	61	356	0.2 (0.1)	326	50 (164)	No/No	No	Unidentified hardshell turtle sub-surface travel. No disturbance detected.
5	28/4/2013	CC	1	1	1	-	10:58:59	Ĩ	2	29.783	-86.068	36	206	0.4 (0.2)	206	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
6	28/4/2013	CC	1	1	1	÷	11:08:24	1	2	29.955	-86.019	29	24	0.6 (0.3)	174	30 (98)	No/No	1000 (100) (1000 (100) (1000 (100) (1000 (100) (100) (100) (1000 (100) (Loggerhead turtle resting at the surface. No disturbance detected.
7	28/4/2013	CC	1	1	1	-	11:11:14	ł	2	29.889	-86.087	41	326	0.3 (0.2)	356	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
8	28/4/2013	CC	2	2	2	-	11:13:07		2	29.847	-86.128	39	326	0.4 (0.2)	296	40 (131)	No/No	NO	Two loggerhead turtles resting at the surface and interacting. No disturbance detected.
9	28/4/2013	CC	1	1	1	-	11:33:56	,	3	29.850	-86.223	42	356	0.3 (0.2)	326	60 (197)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
10	28/4/2013	CC	1	1	1	-	11:55:20	a a	2	29.941	-86.276	28	266	0.6 (0.3)	206	60 (197)	No/No	200000000	Loggerhead turtle resting at the surface. No disturbance detected.

Table 3. Summary of Sightings

27 April-02 May 2013

Sighting No.	Date (Day/ Month/ Year)	Species	Best	oup S /High/	Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track km (nmi)	Heading (°)	Bottom Depth [†] m (ft)	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
Before N	SWC PCD 28/4/2013	Q-20 Test	Even	t Sigl	itings 3	– 28 Ap	oril 2013 (0 12:29:45			29.988	-86.378	41	26	0.3 (0.2)	146	50 (164)	Yes/Yes	Yes	Group of three bottlenose dolphins traveling fast speed to SE. See Appendix B for focal follow data.
12	28/4/2013	SS	1	1	1	-	12:50:46	1-2	2	29.996	-86.365	-	-	-	-	50 (164)	No/No	No	Hammerhead shark seen. No behaviors noted in the field. Sighting made off effort.
Before N 1	SWC PCD 29/4/2013	Q-20 Test	Even 1	t Sigi	itings	– 29 Ap –	11:35:54		2	30.206	-86.314	35	350	0.4 (0.2)	20	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
2	29/4/2013	CC	1	1	1	-	11:39:51		2	30.114	-86.392	34	86	0.5 (0.3)	116	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
3	29/4/2013	Unid HST	1	1	1	e.	11:43:31	æ	2	30.034	-86.482	35	326	0.4 (0.2)	146	50 (164)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
4	29/4/2013	LK	1	1	1	1-	12:11:55	-0	3	30.115	-86.248	62	266	0.2 (0.1)	326	40 (131)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
5	29/4/2013	CC	ï	1	1	æ	12:29:54	-	3	30.024	-86.244	41	326	0.3 (0.2)	236	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
6	29/4/2013	Unid HST	1	1	1	. -	13:41:55	15 0	3	29.979	-86.432	22	327	0.8 (0.4)	147	60 (197)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
7	29/4/2013	Unid HST	1	1	1	÷	13:43:29	:= 0	3	29.934	-86.458	42	146	0.3 (0.2)	26	70 (230)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
8	29/4/2013	CC	1	1	1		14:05:36	-	3	29.846	-86.447	45	145	0.3 (0.2)	145	80 (262)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
9	29/4/2013	CC	1	1	1	ž	14:21:13	-	3	29.893	-86.305	66	146	0.2 (0.1)	326	70 (230)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

27 April-02 May 2013

Sighting No.	Date (Day/ Month/ Year)	Species		oup S /High/		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track km (nmi)	Heading (°)	Bottom Depth [†] m (ft)	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
10	SWC PCD 29/4/2013	CC	1	1	1	-	14:24:07	ontinued -	2	29.836	-86.374	31	341	0.5 (0.3)	56	80 (262)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
Before N	SWC PCD 30/4/2013	Q-20 Test	Even 1	t Sigh	1	– 30 Ap -	ril 2013 12:58:03	8	3	29.739	-86.464	61	35	0.2 (0.1)	155	120 (394)	No/No		Loggerhead turtle resting at the surface. No disturbance detected.
2	30/4/2013	CC	1	1	1	-	13:10:55	-	4	29.788	-86.511	34		0.5 (0.3)	π.	110 (361)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected. Sighting made off effort.
3	30/4/2013	Unid HST	1	1	1	-	14:00:59	9 . 20	3	29.866	-86.397	22	324	0.8 (0.4)	24	80 (262)	No/No		Unidentified hardshell turtle resting at the surface. No disturbance detected.
4	30/4/2013	CC	1	1	1	-	14:07:50	s - (4	29.809	-86.483	32	176	0.5 (0.3)	86	100 (328)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
Before N	SWC PCD	Q-20 Test	Even	t Sigh	itings	– 01 Ma	ny 2013												
1	1/5/2013	Unid HST	1	1	1	-	8:31:51	-	5	30.052	-86.398	32	176	0.5 (0.3)	206	50 (164)	No/No		Unidentified hardshell turtle resting at the surface. No disturbance detected.
2	1/5/2013	CC	1	1	1	-	8:32:57	-	5	30.076	-86.374	35	176	0.4 (0.2)	176	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
3	1/5/2013	CC	1	1	1	ī	9:34:03		5	29.983	-86.182	52	266	0.2 (0.1)	311	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
4	1/5/2013	CC	1	1	1	1	9:53:43		5	29.920	-86.141	49	161	0.3 (0.2)	296	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
5	1/5/2013	Unid HST	1	1	1	-	10:11:57	-	5	29.838	-86.132	54	296	0.2 (0.1)	236	40 (131)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
Before N	SWC PCD 2/5/2013	Q-20 Test	Even 1	t Sigh	1	– 02 Ma	y 2013, F 9:28:59	ight 1 -	5	29.858	-86.104	40	129	0.4 (0.2)	84	40 (131)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

27 April-02 May 2013

Sighting No.	Date (Day/ Month/ Year)	Species		°oup S /High		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Angle	Distance off Track km (nmi)	Heading (°)	Bottom Depth [†] m (ft)	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
Before N	SWC PCD	Q-20 Test	Even	t Sigl	ntings	- 02 Ma	y 2013, F	light 1 (c	ontin	ued)									
2	2/5/2013	CC	1	1	1	-	9:45:32	-	4	29.979	-86.094	50	328	0.3 (0.2)	298	40 (131)	No/No		Loggerhead turtle resting at the surface. No disturbance detected.
3	2/5/2013	Unid HST	1	1	1	-	10:53:54		5	30.024	-86.392	47	286	0.3 (0.2)	151	50 (164)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
4	2/5/2013	CC	1	1	1		11:00:36	ł	4	30.163	-86.243	64	146	0.2 (0.1)	146	30 (98)	No/No		Loggerhead turtle swimming at the surface. No disturbance detected.
Before N	SWC PCD	Q-20 Test	Even	it Sigl	ntings	– 02 Ma	ny 2013, F	light 2											
1	2/5/2013	CC	1	1	1	-	13:08:38		4	29.939	-86.454	42	116	0.3 (0.2)	116	60 (197)	No/No	No	Loggerhead turtle diving. No disturbance detected.
2	2/5/2013	CC	1	1	1	Э	13:26:47		5	29.960	-86.346	47	328	0.3 (0.2)	58	70 (230)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
3	2/5/2013	Unid HST	1	1	1	-	13:48:40		5	29.878	-86.328	37	26	0.4 (0.2)	56	70 (230)	No/No		Unidentified hardshell turtle resting at the surface. No disturbance detected.
4	2/5/2013	CC	1	1	1	19	13:57:24	-	5	29.757	-86.395	40	266	0.4 (0.2)	176	100 (328)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
5	2/5/2013	CC	1	1	1	1	14:44:24	25	3	29.747	-86.163	44	26	0.4 (0.2)	236	50 (164)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
6	2/5/2013	CC	1	1	1		14:44:58	-	3	29.731	-86.182	50	327	0.3 (0.2)	237	50 (164)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

Key: ft = foot/feet

m = meter(s)

 $^{\circ} = degree(s)$

TT = Bottlenose dolphin (*Tursiops truncatus*)CC = Loggerhead turtle (*Caretta caretta*)

LK = Kemp's ridley turtle (Lepidochelys kempii)

Unid HST = Unidentified hardshell turtle

SS = Hammerhead shark (*Sphyrna* sp.)

*No sightings were made before the NSWC PCD Q-20 test event on 27 April 2013.

†Bottom depths were estimated by mapped figures. Precise estimation is not listed here, but is available upon request.

Aerial Monitoring Surveys

Species	Number of Sightings	Bottom Depths m (ft) [†]
Bottlenose Dolphin	1	50 (164)
Kemp's Ridley Turtle	1	40 (131)
Loggerhead Turtle	28	30-120 (98-394)
Unidentified Hardshell Turtle	10	40-80 (131-262)
Hammerhead Shark	1	50 (164)

Table 4. Summary of Sightings Recorded During Monitoring for Q-20 Sonar Test Event

Notes: †Bottom depths were estimated from bathymetric contours on maps. Precise estimation is not listed here, but is available upon request

Key: ft = foot/feet; m = meter(s)

Behavior

No visible evidence of unusual behavior was observed during surveys before the test event for the Q-20 (**Table 3**). The team was able to attempt only one focal follow on 28 April 2013 before the test event. No focal follows were conducted on 27 April and from 29 April through 02 May 2013 before the test event. **Table 5** provides a summary of the focal follow conducted. Detailed behavioral observations made during the focal follow are presented in **Appendix B**. Photographs of suitable quality for species identification purposes were collected during the sighting of the dolphins. Video was also collected during the focal follow.

Table 5. Summary of Focal Follow Conducted During Monitoring for the Q-20 Sonar Test Event

Focal Follow	Date	Sighting Number	Event Type	Species	Approximate Number of Individuals	Duration of Focal Follow (min)
1	28/4/2013	11	Before	TT	3	19

Key:

min = minute(s)

TT = Bottlenose dolphin (*Tursiops truncatus*)

Section 4 Acknowledgements

We would like to thank Orion Aviation's Director Ed Coffman and pilots Dave Huddle and Graham Hill. These data were obtained under NMFS permit No. 14451 issued to Joseph R. Mobley, Jr.

27 April-02 May 2013

Section 5 List of Preparers

Jennifer Latusek-Nabholz	Dagmar Fertl
HDR	HDR
Project Manager/Chief Scientist/Observer	Technical Reviewer
Mark Cotter	Dan Engelhaupt, PhD
HDR	HDR
Observer	U.S. Navy Monitoring Program Manager
Cathy Bacon	Cheryl Myers
HDR	HDR
Data Analyst/Author	Document Formatting and Production
Chip Chadbourne HDR GIS Nick Stadille HDR GIS	Robert D. Kenney, PhD University of Rhode Island, Graduate School of Oceanography Technical Reviewer Christopher McJetters HDR Technical Editor

Section 6 List of References

Buckland et al. 2001	Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. <i>Introduction to Distance Sampling: Estimating</i> <i>Abundance of Biological Populations</i> . Oxford University Press, New York.
DON 2010a	Department of the Navy (DON). 2010a. United States Navy Integrated Comprehensive Monitoring Program. 2010 Update. U.S. Navy, Chief of Naval Operations, Operational Readiness Division, Washington, D.C.
DON 2010b	2010b. Final Monitoring Plan for Marine Mammal Protection Act (MMPA) Authorization. Prepared by Naval Surface Warfare Center Panama City Division for National Marine Fisheries Service, Silver Spring, Maryland. January 2010.
NMFS 2010	National Marine Fisheries Service (NMFS). 2010. Final Rule: Taking and Importing Marine Mammals; U.S. Naval Surface Warfare Center Panama City Division Mission Activities. <i>Federal Register</i> 75: 3395-3416.
Smultea and Bacon 2012	Smultea, M.A., and C.E. Bacon. 2012. A Comprehensive Report of Aerial Marine Mammal Monitoring in the Southern California Range Complex: 2008-2012. Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, Hawaii. Submitted to Naval Facilities Engineering Command Southwest (NAVFAC SW), EV5 Environmental, San Diego, 92132 under Contract No. N62470-10-D-3011 issued to HDR, Inc., San Diego, California.

27 April-02 May 2013

THIS PAGE INTENTIONALLY LEFT BLANK

27 April-02 May 2013

APPENDIX A

Environmental, Oceanographic, and Sighting Conditions

Table A-1 shows the environmental, oceanographic, and sighting conditions encountered before the Q-20 sonar test event.

Table A-1. Environmental, Oceanographic, and Sighting Conditions During Monitoria	Table A-1. Environmental,	Oceanographic, and	l Sighting Condition	s During Monitorin
---	---------------------------	--------------------	----------------------	--------------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
	Survey	y Before NSW	C PCD Q-20 Sona	r Test Even	t on 27 Ap	ril 2013	
14:43:41	3	2	1 (0.5)	3	4	1 (0.5)	100
14:53:22	3	2	1 (0.5)	3	4	1 (0.5)	70
14:59:56	3	4	1 (0.5)	3	3	1 (0.5)	0
15:05:49	4	2	1.25 (0.7)	4	4	1 (0.5)	0
15:13:15	4	3	1 (0.5)	4	4	0.75 (0.4)	10
15:20:24	4	2	1.25 (0.7)	4	5	0.75 (0.4)	20
15:28:29	4	3	1 (0.5)	4	5	0.5 (0.3)	90
15:42:42	4	3	0.75 (0.4)	4	5	0.5 (0.3)	85
	Survey	v Before NSW	C PCD Q-20 Sona	r Test Even	t on 28 Ap	ril 2013	
9:03:01	3	2	2(1)	3	3	1.5 (0.8)	25
9:13:03	3	5	0.75 (0.4)	3	4	1 (0.5)	25
9:22:38	3	1	2(1)	3	3	1.5 (0.8)	25
9:32:41	3	5	0.75 (0.4)	3	2	1.5 (0.8)	25
9:42:05	3	1	2.5 (1.3)	3	3	1.5 (0.8)	25
9:52:39	3	4	1 (0.5)	3	2	1.5 (0.8)	25
10:01:57	3	1	2(1)	3	3	1.5 (0.8)	25
10:12:25	3	4	1 (0.5)	3	3	1.5 (0.8)	25
10:21:23	2	1	2(1)	2	4	1.5 (0.8)	20
10:31:51	2	4	1 (0.5)	2	3	1.5 (0.8)	20
10:41:24	2	2	2(1)	2	3	1.5 (0.8)	20
10:51:16	2	4	1 (0.5)	2	3	1.5 (0.8)	20
11:06:27	2	1	2(1)	2	3	1.5 (0.8)	20
11:16:14	2	5	0.5 (0.3)	2	4	1 (0.5)	20
11:25:25	3	1	2(1)	3	4	1 (0.5)	20
11:35:20	3	5	0.5 (0.3)	3	3	1 (0.5)	20
11:44:19	2	2	2.5 (1.3)	2	3	1.5 (0.8)	20
11:54:02	2	5	0.75 (0.4)	2	3	1.5 (0.8)	20
12:02:58	2	2	2(1)	2	3	1.5 (0.8)	100

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	urvey Befo	re NSWC PC	D Q-20 Sonar Test	Event on 2	8 April 201	13 (continued)	· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:12:45	2	4	1 (0.5)	2	3	1.5 (0.8)	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:21:53	2	2	2.5 (1.3)	2	4	1 (0.5)	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:53:46	3	3	1 (0.5)		4	0.75 (0.4)	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:56:10	1. 0.00		2 (1)	2	3	1 (0.5)	90
13:14:56 2 3 2(1) 2 4 1(0.5) 75 Survey Before NSWC PCD Q-20 Sonar Test Event on 29 April 2013 11:35:00 2 2 2(1) 2 4 1(0.5) 95 11:45:22 3 3 1.5 (0.8) 3 3 1.5 (0.8) 90 11:54:58 3 4 1 (0.5) 3 4 1 (0.5) 85 12:05:35 3 2 1.25 (0.7) 3 4 1 (0.5) 85 12:15:37 2 1 2 (1) 2 4 1 (0.5) 95 12:19:05 3 2 1.5 (0.8) 3 4 1 (0.5) 95 12:26:00 3 3 1 (0.5) 3 4 1 (0.5) 85 12:35:21 3 4 1 (0.5) 3 4 1 (0.5) 86 13:03:50 3 2 1.25 (0.7) 3 3 1 (0.5) 86 <th< td=""><td>13:02:36</td><td>2</td><td></td><td>1.5 (0.8)</td><td>2</td><td>3</td><td>1 (0.5)</td><td>90</td></th<>	13:02:36	2		1.5 (0.8)	2	3	1 (0.5)	90
Survey Before NSWC PCD Q-20 Sonar Test Event on 29 April 201311:35:002222(1)241(0.5)9511:45:22331.5 (0.8)331.5 (0.8)9011:54:58341 (0.5)341 (0.5)8512:05:35321.25 (0.7)341 (0.5)8512:15:37212 (1)241 (0.5)9512:19:05321.5 (0.8)341 (0.5)9512:26:00331 (0.5)331 (0.5)8512:35:21341 (0.5)341 (0.5)8612:45:29311.75 (0.9)341 (0.5)8613:03:50321.22 (0.7)331 (0.5)8613:12:28331 (0.5)341 (0.5)9013:21:42321.6 (0.8)321.5 (0.8)9213:50:26321.5 (0.8)341 (0.5)1013:59:54311.75 (0.9)341 (0.5)1014:19:49321.5 (0.8)321.5 (0.8)1014:19:49321.5 (0.8)331.5 (0.8)1014:19:49321.5 (0.8)341 (0.5)7512:33:46341 (0.5) <td>13:05:16</td> <td></td> <td></td> <td>1.5 (0.8)</td> <td></td> <td>4</td> <td>1 (0.5)</td> <td>90</td>	13:05:16			1.5 (0.8)		4	1 (0.5)	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:14:56	500 C	(258					75
11:45:22331.5 (0.8)331.5 (0.8)9011:54:58341 (0.5)341 (0.5)8512:05:35321.25 (0.7)341 (0.5)8512:15:37212 (1)241 (0.5)9512:19:05321.5 (0.8)341 (0.5)9512:26:00331 (0.5)331 (0.5)9512:26:00331 (0.5)331 (0.5)7512:45:29311.75 (0.9)341 (0.5)8612:55:03321.25 (0.7)331 (0.5)8613:03:50321.25 (0.7)331 (0.5)9613:12:28331 (0.5)341 (0.5)9613:21:42321.5 (0.8)321.5 (0.8)9513:50:26321.5 (0.8)341 (0.5)1013:59:54311.75 (0.9)341 (0.5)1014:10:04321.5 (0.8)321.5 (0.8)1014:29:15221.5 (0.8)231.5 (0.8)1014:29:15221.5 (0.8)341 (0.5)7512:33:46341 (0.5)341 (0.5)7512:48:4733 <th></th> <th>Survey</th> <th>Before NSW</th> <th>C PCD Q-20 Sona</th> <th>r Test Even</th> <th>t on 29 Ap</th> <th>ril 2013</th> <th></th>		Survey	Before NSW	C PCD Q-20 Sona	r Test Even	t on 29 Ap	ril 2013	
11:54:58341 (0.5)341 (0.5)8512:05:35321.25 (0.7)341 (0.5)8512:15:37212 (1)241 (0.5)9512:19:05321.5 (0.8)341 (0.5)9512:26:00331 (0.5)331 (0.5)8512:26:00331 (0.5)331 (0.5)8512:35:21341 (0.5)341 (0.5)7512:45:29311.75 (0.9)341 (0.5)8612:55:03321.25 (0.7)331 (0.5)8613:03:50321.25 (0.7)331 (0.5)8613:12:28331 (0.5)341 (0.5)9613:21:42321.5 (0.8)321.5 (0.8)9513:50:26321.5 (0.8)341 (0.5)1013:59:54311.75 (0.9)341 (0.5)1014:19:49321.5 (0.8)321.5 (0.8)1014:29:15221.5 (0.8)231.5 (0.8)1014:29:15221.5 (0.8)341 (0.5)7512:33:46341 (0.5)341 (0.5)7512:48:4733 <td< td=""><td>11:35:00</td><td>2</td><td>2</td><td>2 (1)</td><td>2</td><td>4</td><td>1 (0.5)</td><td>95</td></td<>	11:35:00	2	2	2 (1)	2	4	1 (0.5)	95
12:05:35321.25 (0.7)341 (0.5)8512:15:37212 (1)241 (0.5)9512:19:05321.5 (0.8)341 (0.5)9512:26:00331 (0.5)331 (0.5)8512:35:21341 (0.5)341 (0.5)7512:45:29311.75 (0.9)341 (0.5)8612:55:03321.25 (0.7)331 (0.5)8613:03:50321.25 (0.7)331 (0.5)8613:12:28331 (0.5)341 (0.5)9013:21:42321.5 (0.8)321.5 (0.8)9213:50:26321.5 (0.8)341 (0.5)10013:59:54311.75 (0.9)341 (0.5)10014:19:49321.5 (0.8)321.5 (0.8)10014:29:15221.5 (0.8)321.5 (0.8)10014:29:15221.5 (0.8)341 (0.5)7512:33:46331.5 (0.8)341 (0.5)7512:48:47331.5 (0.8)341 (0.5)7512:48:47331.5 (0.8)341 (0.5)7512:48:473 <td< td=""><td>11:45:22</td><td>3</td><td>3</td><td>1.5 (0.8)</td><td>3</td><td>3</td><td>1.5 (0.8)</td><td>90</td></td<>	11:45:22	3	3	1.5 (0.8)	3	3	1.5 (0.8)	90
12:15:37212(1)241(0.5)9512:19:05321.5 (0.8)341 (0.5)9512:26:00331 (0.5)331 (0.5)8512:35:21341 (0.5)341 (0.5)7512:45:29311.75 (0.9)341 (0.5)8612:55:03321.25 (0.7)331 (0.5)8613:03:50321.25 (0.7)331 (0.5)8613:12:28331 (0.5)341 (0.5)9613:21:42321.5 (0.8)321.5 (0.8)9613:30:26321.5 (0.8)341 (0.5)1013:59:54311.75 (0.9)341 (0.5)1014:10:04321.5 (0.8)321.5 (0.8)1014:19:49321.5 (0.8)321.5 (0.8)1014:29:15221.5 (0.8)231.5 (0.8)1014:29:15221.5 (0.8)341 (0.5)7512:33:46341 (0.5)341 (0.5)7512:48:47331.5 (0.8)341 (0.5)7512:48:47331.25 (0.7)341 (0.5)7512:48:4733 <td>11:54:58</td> <td></td> <td></td> <td>1 (0.5)</td> <td></td> <td></td> <td>1 (0.5)</td> <td>85</td>	11:54:58			1 (0.5)			1 (0.5)	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:05:35	3	2	1.25 (0.7)	NO 790	4	1 (0.5)	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:15:37		1	2 (1)		4	1 (0.5)	95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:19:05	1		1.5 (0.8)	17.0	12	1 (0.5)	95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:26:00	3	3	1 (0.5)		3	1 (0.5)	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:35:21		4	1 (0.5)		4	1 (0.5)	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:45:29	3	1	1.75 (0.9)	3	4	1 (0.5)	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:55:03	2		1 (0.5)			1 (0.5)	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:03:50	3	20 m	1.25 (0.7)	2.234	3	1 (0.5)	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:12:28	3	3	1 (0.5)	3	4	1 (0.5)	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:21:42			1 (0.5)			1 (0.5)	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:40:12	3	2	1.5 (0.8)	57.56	2	1.5 (0.8)	95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13:50:26		2	1.5 (0.8)		4	1 (0.5)	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13:59:54			1.75 (0.9)			1 (0.5)	100
14:22:32 2 2 1.5 (0.8) 2 2 1.5 (0.8) 10 14:29:15 2 2 1.5 (0.8) 2 3 1.5 (0.8) 10 Survey Before NSWC PCD Q-20 Sonar Test Event on 30 April 2013 12:25:13 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:33:46 3 4 1 (0.5) 3 4 1 (0.5) 75 12:41:43 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:48:47 3 3 1.25 (0.7) 3 4 1 (0.5) 75	14:10:04	at the second seco		1.5 (0.8)			1.5 (0.8)	100
14:29:15 2 2 1.5 (0.8) 2 3 1.5 (0.8) 10 Survey Before NSWC PCD Q-20 Sonar Test Event on 30 April 2013 12:25:13 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:33:46 3 4 1 (0.5) 3 4 1 (0.5) 75 12:41:43 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:48:47 3 3 1.25 (0.7) 3 4 1 (0.5) 75	14:19:49		2	1.5 (0.8)	3	2	1.5 (0.8)	100
Survey Before NSWC PCD Q-20 Sonar Test Event on 30 April 2013 12:25:13 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:33:46 3 4 1 (0.5) 3 4 1 (0.5) 75 12:41:43 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:48:47 3 3 1.25 (0.7) 3 4 1 (0.5) 75	14:22:32	2		1.5 (0.8)			1.5 (0.8)	100
12:25:13 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:33:46 3 4 1 (0.5) 3 4 1 (0.5) 75 12:33:46 3 4 1 (0.5) 3 4 1 (0.5) 75 12:41:43 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:48:47 3 3 1.25 (0.7) 3 4 1 (0.5) 75	14:29:15	45.00	(7777) N		C	(m)		100
12:33:46 3 4 1 (0.5) 3 4 1 (0.5) 75 12:41:43 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:48:47 3 3 1.25 (0.7) 3 4 1 (0.5) 75		Survey	y Before NSW	'C PCD Q-20 Sona	r Test Even	t on 30 Ap	ril 2013	
12:41:43 3 3 1.5 (0.8) 3 4 1 (0.5) 75 12:48:47 3 3 1.25 (0.7) 3 4 1 (0.5) 75		5						75
<u>12:48:47</u> <u>3</u> <u>3</u> <u>1.25 (0.7)</u> <u>3</u> <u>4</u> <u>1 (0.5)</u> <u>75</u>		1. 255		and American In				75
	ALL	9.63	1000	141 (AUROSCA) 1572 157 167	50.00	18	Set and becau	75
	00 27° 08 52 0800000			and many works			as this cold	75
		100 B						75
							da da da	75
								75 75

Aerial Monitoring Surveys

A-2

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
S	urvey Befo	re NSWC PC	D Q-20 Sonar Test	Event on 3	0 April 201	l3 (continued)	s-
13:17:21	3	2	1.5 (0.8)	3	3	1 (0.5)	75
13:24:12	3	2	1.5 (0.8)	3	3	1 (0.5)	75
13:37:36	3	2	1.5 (0.8)	3	3	1 (0.5)	75
13:46:51	4	3	0.75 (0.4)	4	4	0.75 (0.4)	75
13:57:06	3	3	2 (1)	3	4	1 (0.5)	75
14:06:31	4	3	1 (0.5)	4	4	0.75 (0.4)	75
14:13:07	4	3	1 (0.5)	4	4	0.75 (0.4)	75
14:19:58	4	2	1.25 (0.7)	4	3	1 (0.5)	75
		y Before NSW	C PCD Q-20 Sona			and show how	1014.00
8:20:00	4	1	1 (0.5)	4	3	1 (0.5)	95
8:29:40	5	2	0.75 (0.4)	5	3	0.75 (0.4)	100
8:39:41	5	2	0.75 (0.4)	5	3	0.75 (0.4)	100
8:49:04	5	2	0.5 (0.3)	5	3	0.5 (0.3)	100
8:58:57	5	2	0.5 (0.3)	5	4	0.5 (0.3)	100
9:09:09	5	2	0.5 (0.3)	5	4	0.5 (0.3)	100
9:19:25	5	2	0.5 (0.3)	5	4	0.5 (0.3)	100
9:29:36	5	2	0.5 (0.3)	5	4	0.5 (0.3)	100
9:40:00	5	2	0.5 (0.3)	5	4	0.5 (0.3)	100
9:50:11	5	3	0.5 (0.3)	5	3	0.5 (0.3)	100
10:00:15	5	3	0.5 (0.3)	5	3	0.5 (0.3)	100
10:10:19	5	3	0.5 (0.3)	5	3	0.5 (0.3)	100
10:23:18	5	3	0.5 (0.3)	5	4	0.5 (0.3)	100
10:33:29	5	3	0.5 (0.3)	5	3	0.5 (0.3)	100
	Survey Bet	fore NSWC P	CD Q-20 Sonar Te	est Event on	02 May 20)13, Flight 1	
9:23:59	4	3	1 (0.5)	4	2	1 (0.5)	100
9:32:54	5	3	1 (0.5)	5	3	1 (0.5)	100
9:43:22	4	4	0.75 (0.4)	4	3	1 (0.5)	100
9:52:07	5	4	0.75 (0.4)	5	3	1 (0.5)	100
10:03:19	4	3	1 (0.5)	4	4	1 (0.5)	100
10:11:56	5	3	1 (0.5)	5	3	1 (0.5)	100
10:23:01	5	3	1 (0.5)	5	4	1 (0.5)	100
10:32:12	5	3	1 (0.5)	5	3	1 (0.5)	100
10:43:01	4	4	0.75 (0.4)	4	3	1 (0.5)	95
10:52:11	5	3	0.75 (0.4)	5	3	1 (0.5)	95
11:02:44	4	3	1 (0.5)	4	3	1 (0.5)	80
11:11:48	5	3	0.75 (0.4)	5	3	1 (0.5)	75
11:26:59	4	3	1 (0.5)	4	3	1 (0.5)	75

Aerial Monitoring Surveys

A-3

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Surve	ey Before N	SWC PCD Q-	-20 Sonar Test Eve	ent on <mark>02</mark> M	ay 2013, Fl	ight 1 (continue	d)
11:36:32	5	3	0.75 (0.4)	5	4	0.5 (0.3)	60
	Survey Bet	fore NSWC P	CD Q-20 Sonar Te	st Event on	02 May 20	013, Flight 2	
13:05:57	4	3	1 (0.5)	4	3	1.25 (0.7)	55
13:15:21	5	3	1 (0.5)	5	4	1 (0.5)	40
13:26:08	5	3	1 (0.5)	5	4	1 (0.5)	60
13:35:39	5	4	0.75 (0.4)	5	3	1 (0.5)	80
13:46:09	5	3	1 (0.5)	5	4	1 (0.5)	90
13:55:44	5	3	1 (0.5)	5	2	1 (0.5)	80
14:06:02	4	4	1 (0.5)	4	3	1.5 (0.8)	70
14:15:14	5	3	1 (0.5)	5	3	1 (0.5)	80
14:24:32	3	3	1.25 (0.7)	3	4	1 (0.5)	80
14:33:30	4	3	1.25 (0.7)	4	2	1.5 (0.8)	60
14:42:06	3	3	1 (0.5)	3	4	1 (0.5)	70
14:50:05	3	4	1 (0.5)	3	2	1.25 (0.7)	70

Key:

km = kilometer(s) nmi = nautical mile(s) ¹0 = 0% glare; 1 = 1-19%; 2 = 20-39%; 3 = 40-59%; 4 = 60-79%; 5 = 80-100%

APPENDIX B

Focal-Follow Data

Table B-1 shows focal-follow behavioral data from the 27 April through 02 May 2013 monitoring efforts before the Naval Surface Warfare Center Panama City Division (NSWC PCD) AN/AQS-20 (Q-20) sonar test event. One focal-follow event was conducted throughout the monitoring effort for the Q-20 sonar test event. The focal follow was conducted on 28 April 2013 and consisted of one group of bottlenose dolphins (*Tursiops truncatus*), which was part of the surveys conducted before the first NSWC PCD Q-20 sonar test event within the Q-20 survey area. No focal follows occurred on 27 April or 29 April through 02 May 2013, which were also part of the surveys conducted before the NSWC PCD Q-20 test event.

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior			
Sighting Number 11 for 28 April 2013								
Species: Tu	ursiops trunca	tus. Group size:	3					
1	12:31:44	4/28/2013	29.990	-86.373	Fast travel. Minimum (Min) Dispersal = 0.5, Maximum (Max) Dispersal = 0.5. Mother-calf pair in echelon position.			
2	12:34:06	4/28/2013	29.991	-86.385	Sub-surface fast travel.			
3	12:34:52	4/28/2013	29.996	-86.384	Fast travel. Min Dispersal = 0.5, Max Dispersal = 6. Mother-calf and another adult has joined group.			
4	12:37:08	4/28/2013	29.995	-86.373	Medium travel. Min Dispersal = 0.5, Max Dispersal = 0.5. Third animal not sighted; just mother-calf pair traveling in echelon.			
5	12:39:00	4/28/2013	29.989	-86.377	Medium travel. Min Dispersal = 0.5, Max Dispersal = 0.5. Mother-calf pair again; surfacing frequently - every 6 seconds.			
6	12:41:42	4/28/2013	29.996	-86.374	Medium travel. Single animal sighted.			
7	12:43:12	4/28/2013	29.994	-86.375	Medium travel. Min Dispersal = 0.5, Max Dispersal = 3. Stopping pictures and now taking video; all 3 animals sighted.			
8	12:44:06	4/28/2013	29.992	-86.368	Medium travel. Min Dispersal = 0.5, Max Dispersal = 8. One dove; one at surface now and dispersing a little.			
9	12:45:14	4/28/2013	29.993	-86.375	Medium travel. One dolphin at surface.			
10	12:46:33	4/28/2013	29.991	-86.375	Medium travel. Min Dispersal = 0.5, Max Dispersal = 0.5. Just mother-calf pair sighted.			
11	12:47:10	4/28/2013	29.989	-86.371	Mother-calf just dove.			
12	12:49:39	4/28/2013	30.004	-86.362	Haven't seen dolphins since last entry. End of focal.			

 Table B-1. Focal-Follow Behavioral Data Collected During Monitoring

Key:

BL = body length(s)

Max Dispersal = maximum dispersal (distance estimated in number of body lengths for animals in the group located farthest apart from one another)

Min Dispersal = minimum dispersal (distance estimated in number of body lengths for animals in the group located closest together to one another)

27 April-02 May 2013

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix D – June 2013 Aerial Monitoring Survey Trip Report

THIS PAGE INTENTIONALLY BLANK

Naval Surface Warfare Center Panama City Division (NSWC PCD)

Marine Species Monitoring

AERIAL MONITORING SURVEYS TRIP REPORT

September 2013

22-28 June 2013

ACRONYMS AND ABBREVIATIONS

0	degree(s)
BL	body length(s)
BOSS	Buried Object Scanning Sonar
BSS	Beaufort sea state
DON	Department of the Navy
ft	foot/feet
hr	hour(s)
ICMP	Integrated Comprehensive Monitoring Program
km	kilometer(s)
km ²	square kilometer(s)
m	meter(s)
min	minute(s)
nmi	nautical mile(s)
nmi ²	square nautical mile(s)
NMFS	National Marine Fisheries Service
NSWC PCD	Naval Surface Warfare Center Panama City Division
OPAREA	operating area
SPUE	sightings per unit effort
SSAM2	Small Synthetic Aperture Minehunter 2
U.S.	United States

22-28 June 2013

Table of Contents

ACRONYMS AND ABBREVIATIONS	ii
SECTION 1 INTRODUCTION	1
SECTION 2 METHODS	1
SECTION 3 RESULTS	
SECTION 4 ACKNOWLEDGEMENTS	
SECTION 5 LIST OF PREPARERS	
SECTION 6 LIST OF REFERENCES	

Appendices

Appendix A. Environmental, Oceanographic, and Sighting Conditions	A-1
Appendix B. Focal-Follow Data	.B-1

Figures

Figure 1. Pre-planned Tracklines for the Monitoring Effort for the SSAM2 and BOSS Sonar Test Event for 22-28 June 2013 in the NSWC PCD Study Area	2
Figure 2. Location of All Cetacean, Sea Turtle, Whale Shark, and Unidentified Ray Sightings Recorded Throughout the SSAM2 and BOSS Survey Period (22-28 June 2013)	5
Figure 3. Locations of Cetaceans and Sea Turtles Recorded Before the SSAM2 and BOSS Sonar Test Event (22 June 2013)	6
Figure 4. Locations of Cetaceans and Sea Turtles Recorded Before the SSAM2 and BOSS Sonar Test Event (23 June 2013)	7
Figure 5. Locations of Cetaceans and Sea Turtles Recorded During the SSAM2 and BOSS Test Event (24 June 2013)	8
Figure 6. Locations of Cetaceans and Sea Turtles Recorded During the SSAM2 and BOSS Test Event (25 June 2013)	9
Figure 7. Locations of Cetaceans, Sea Turtles, and Whale Shark Recorded During the SSAM2 and BOSS Test Event (26 June 2013)	10
Figure 8. Locations of Cetaceans, Sea Turtles, and Unidentified Ray Recorded During the SSAM2 and BOSS Test Event (27 June 2013)	11
Figure 9. Locations of Sea Turtles Recorded After the SSAM2 and BOSS Test Event (28 June 2013)	12

NSWC PCD	Marine	Species	Monitorina	Trin	Report
100000000	manno	opeores	moning	inp	rioport

22-28 June 2013

Tables

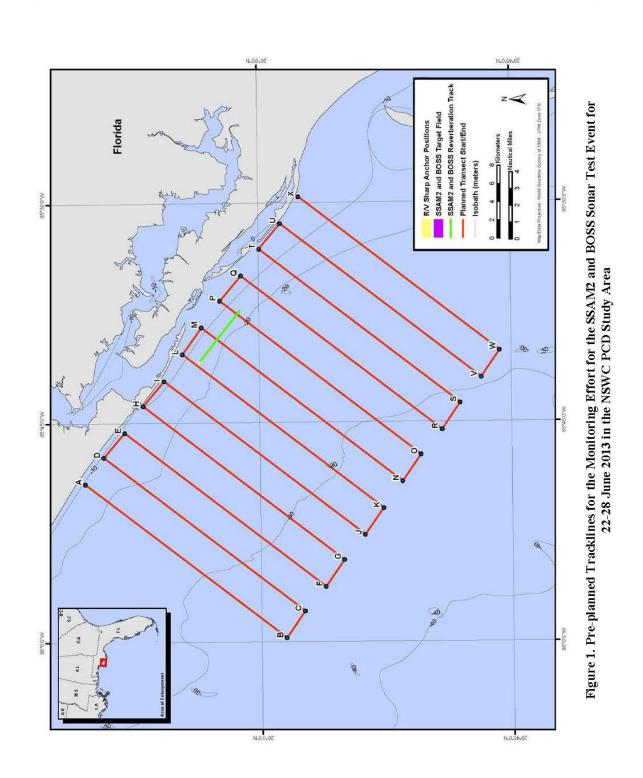
Table 1. Summary of Monitoring Effort for NSWC PCD SSAM2 and BOSS Test Event	3
Table 2. Observers and Roles	3
Table 3. Summary of Sightings	14
Table 4. Summary of Sightings Recorded During Monitoring for the SSAM2 and BOSS Test Event	31
Table 5. Summary of Focal Follows Conducted During Monitoring for the SSAM2 and BOSS Test Event	31

Section 1 Introduction

Aerial surveys for marine-species monitoring occurred during 22 through 28 June 2013 for a Small Synthetic Aperture Minehunter 2 (SSAM2) and Buried Object Scanning Sonar (BOSS) test event. These surveys were conducted off the west coast of Florida in the Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area in the Gulf of Mexico. The SSAM2 is a bottom-mapping and mine-hunting sonar developed for use in shallow-water and nearshore environments. The BOSS is a sonar system that images buried objects.

As part of the requirements for compliance with the Marine Mammal Protection Act of 1972 and the Endangered Species Act of 1973, the United States (U.S.) Navy developed the Integrated Comprehensive Monitoring Program (ICMP; Department of the Navy [DON] 2010a). The ICMP applies by regulation to those activities on U.S. Navy training ranges and operating areas (OPAREAs) for which the U.S. Navy has sought and received incidental take authorizations. To support the U.S. Navy in meeting regulatory requirements for monitoring established under the NSWC PCD Final Rule (National Marine Fisheries Service [NMFS] 2010), and to provide a mechanism to assist with coordination of program objectives under the ICMP, monitoring of marine mammals and sea turtles (protected marine species) during the test event included visual surveys from a fixed-wing aircraft.

Section 2 Methods


Study Area

The NSWC PCD Study Area includes both territorial waters (between 0 and 22 kilometers [km]; 0 and 12 nautical miles [nmi] from the shore) and non-territorial waters (beyond the 22-km [12-nmi] limit). Monitoring conducted for protected marine species during the SSAM2 and BOSS test event was focused within the Panama City OPAREA of the NSWC PCD Study Area (**Figure 1**). The test area for the SSAM2 and BOSS systems is approximately 3 km (2 nmi) offshore, covers an area approximately 0.08 square kilometers (km²) (0.02 square nautical miles [nmi²]) in size and ranges in bottom depth from 12 to 17 meters (m) (39 to 56 feet [ft]). The SSAM2 and BOSS reverberation track is a length of approximately 7 km (4 nmi).

Monitoring was conducted 2 days before, 4 days during, and 1 day after the SSAM2 and BOSS sonar test event, which occurred on 24 through 27 June 2013. The use of sonar during each date of testing commenced at 0830 Central Daylight Time and ended at 1330 Central Daylight Time.

Aerial-Based Monitoring

Aerial-based monitoring was performed over a 7-day period from 22 through 28 June 2013 (**Table 1**). Survey methods were generally consistent with currently accepted Distance Sampling theory (Buckland et al. 2001) and followed a well-established protocol used for aerial surveys throughout all U.S. Navy range complexes (e.g., Smultea and Bacon 2012). A survey altitude and speed of approximately 305 m (1,000 ft) and 185 km/hour (hr) (100 knots) were maintained while on-effort, but might have varied slightly based on weather conditions in the area. Once a marine mammal sighting was made, a focal-follow circling session was attempted at 305 m (1,000 ft) or higher if conditions were appropriate (Smultea and Bacon 2012; refer to the survey methods on page 4 of this document). A lower altitude of approximately 210 to 250 m (700 to 800 ft) was established after focal-follow sessions for photographic purposes to provide sharper images required for species identification.

22-28 June 2013

22-28 June 2013

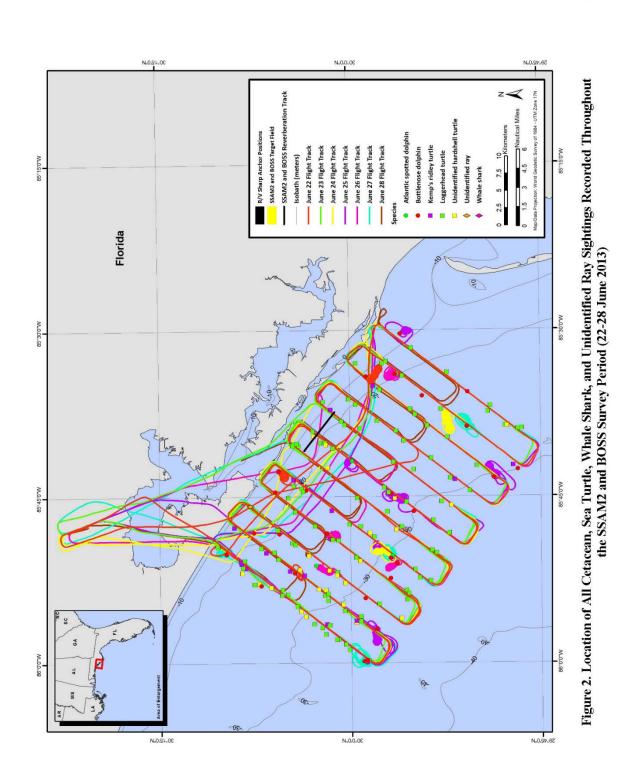
Date	Description	Start Time	Stop Time	Total Survey Time [*] (min)	Total On- Effort Time (min)	Trackline On-Effort Distance (km)	Trackline On-Effort Distance (nmi)
22 June	Transect Survey (Before Event)	9:04	13:26	262	169	548	296
23 June	Transect Survey (Before Event)	8:29	12:06	217	173	553	299
24 June	Transect Survey (During Event)	8:41	13:27	286	168	562	303
25 June	Transect Survey (During Event)	8:33	13:43	310	127	418	226
26 June	Transect Survey (During Event)	8:38	13:22	284	147	504	272
27 June	Transect Survey (During Event)	8:33	13:32	299	152	504	272
28 June	Transect Survey (After Event)	11:31	14:31	180	135	476	257
	Total			1,838 (≈30.6 hr)	1,071 (≈17.9 hr)	3,565	1,925

Key: hr = hour(s); km = kilometer(s); min = minute(s); nmi = nautical mile(s)

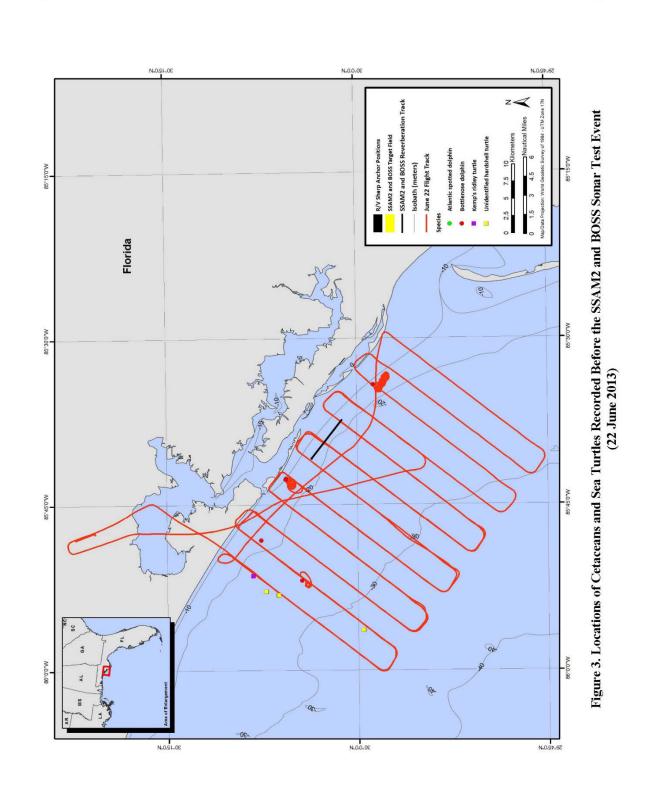
Notes: * Total Survey Time reflects minutes occupied in the range/area of interest and include both on-effort (systematic) and offeffort (connector/circling) total minutes. Total Survey Time may not match the difference between Start Time and Stop Time in the table due to differences in rounding.

The observation platform was a Cessna T337H Turbo Skymaster aircraft operating out of Northwest Florida Beaches International Airport, Panama City Beach, Florida. Seven surveys were conducted following pre-planned tracklines covering the entire SSAM2 and BOSS test area. The lines were defined by waypoints designed to extend beyond the entire range (if permitted by U.S. Air Force flight operations) during each survey day for a total flight-time window of over 5 hr (**Table 1, Figure 1**). Aerial observers (**Table 2**) were experienced with trackline survey methodology, had experience in identification of marine mammal and sea turtle species, were knowledgeable of marine mammal biology and behavior, and had previous experience conducting marine mammal and sea turtle observations.

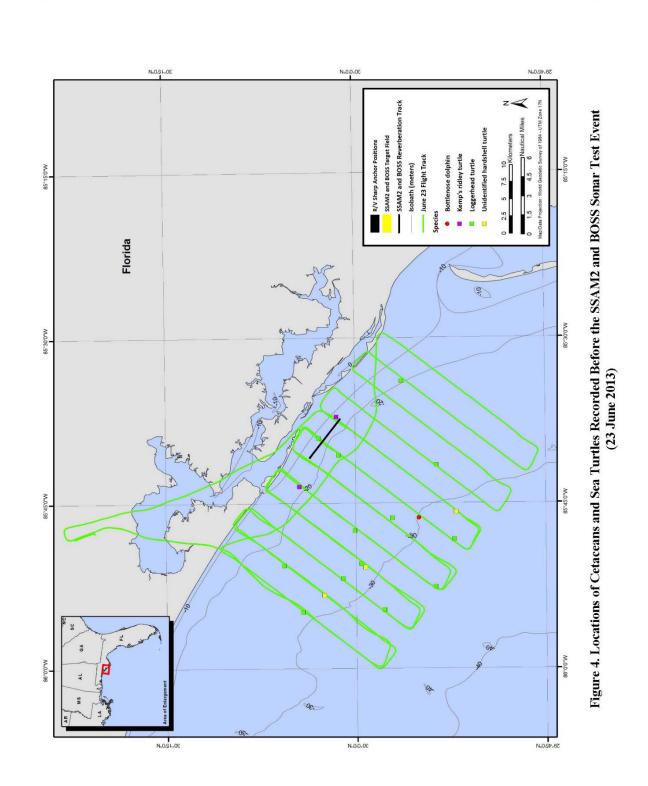
Table 2.	Observers	and	Roles


Observer	Role(s)	Dates of Participation				
Lenisa Blair	Chief Scientist, Observer	22-28 June 2013				
Mark Cotter	Observer	22-25 June 2013				
Jennifer Latusek-Nabholz	Observer	26-28 June 2013				

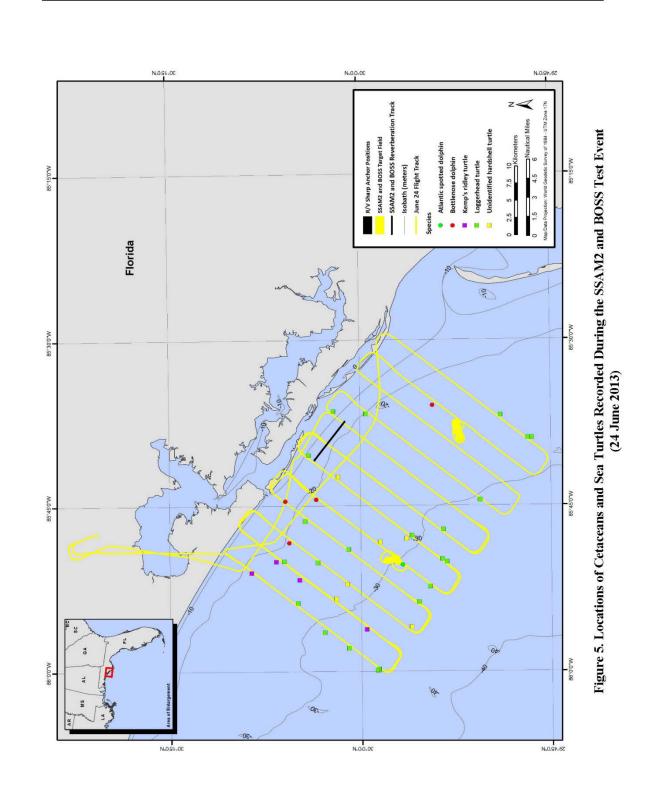
22-28 June 2013


Survey effort was designed to include the entirety of the SSAM2 and BOSS test area. Twelve parallel tracklines running approximately southwest to northeast, measuring 27.8 km (15.0 nmi) in length, and spaced approximately 3.7 km (2.0 nmi) apart, were flown during "systematic" efforts throughout the surveys. Based on the geometry of the SSAM2 and BOSS survey area (the visual area encompassed within the SSAM2 and BOSS tracklines), our total survey coverage area was 1,132 km² (330 nmi²; Figure 1). Planned lines were followed when possible, but exact lines followed for each survey day were subject to modifications resulting from range exclusion by military airspace restrictions and/or unfavorable weather conditions in the Panama City OPAREA of the NSWC PCD Study Area (Table 1, Figures 2 through 9). Monitoring effort for 2 days—1 day of during-sonar test event on 26 June 2013 and 1 day of post-sonar test event monitoring on 28 June 2013-was restricted. During these time periods, the observer team did not generally have clearance during a large portion of flights for Bravo 1 airspace due to other ongoing U.S. Department of Defense activities. These restrictions resulted in about one-third of the SSAM2 and BOSS survey area being inaccessible to the observer team on these survey flights. Therefore during these times, monitoring focused extra effort (i.e., repeating tracklines) in the non-restricted portions of the planned SSAM2 and BOSS survey area.

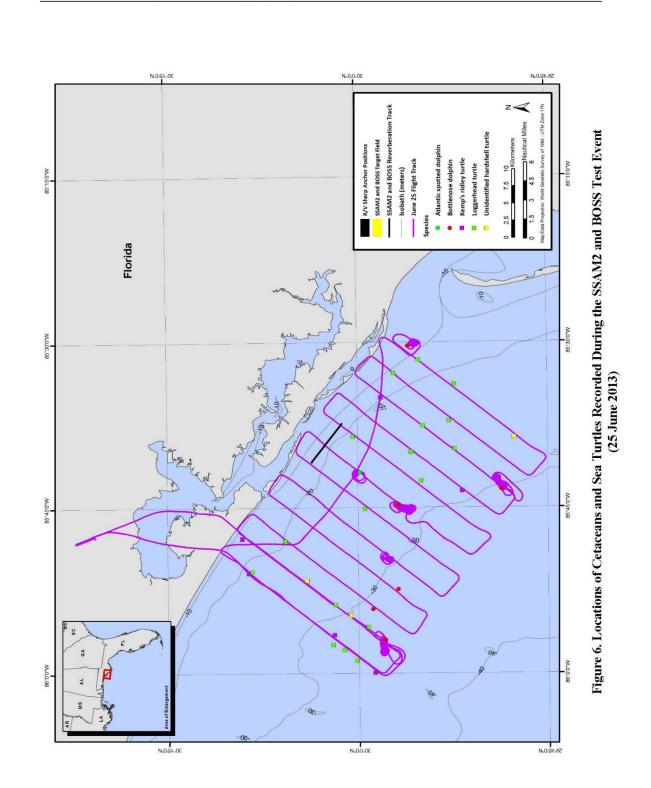
The following describe the general survey approach:


- 1. Followed pre-planned tracklines and waypoints using methods described by Smultea and Bacon (2012) until a sighting occurred. Variables such as Beaufort sea state (BSS), glare, and visibility were recorded for each transect flown.
- 2. Upon sighting a marine mammal/sea turtle group, recorded basic sighting information per established protocol (Smultea and Bacon 2012). As outlined in the NSWC PCD Study Area Monitoring Plan (DON 2010b), information included: (1) species identification and group size; (2) location (relative to observation platform); (3) the behavior of marine mammals and sea turtles; (4) date, time, and environmental and oceanographic conditions associated with each observation; (5) animal/group direction of travel relative to true North; and (6) duration of the observation.
- 3. If the species appeared suitable for a focal follow, the aircraft increased altitude to approximately 365 to 455 m (1,200 to 1,500 ft) and radial distance increased approximately 0.5 to 1.0 km (0.3 to 0.5 nmi). Then, the aircraft circled the sighting to obtain detailed behavioral information as long as possible and logistically feasible (i.e., BSS, visibility, group size, behavior, dive times, aircraft considerations [e.g., fuel], etc.). Focal follows occurred for a minimum of 5 minutes (min) and included an observer taking digital photographs of the group when possible.
- 4. If the sighting was not selected for a focal follow, and species and group size were unknown, the aircraft circled the sighting to obtain digital photographs for confirmation of species identification and to estimate group size/composition.

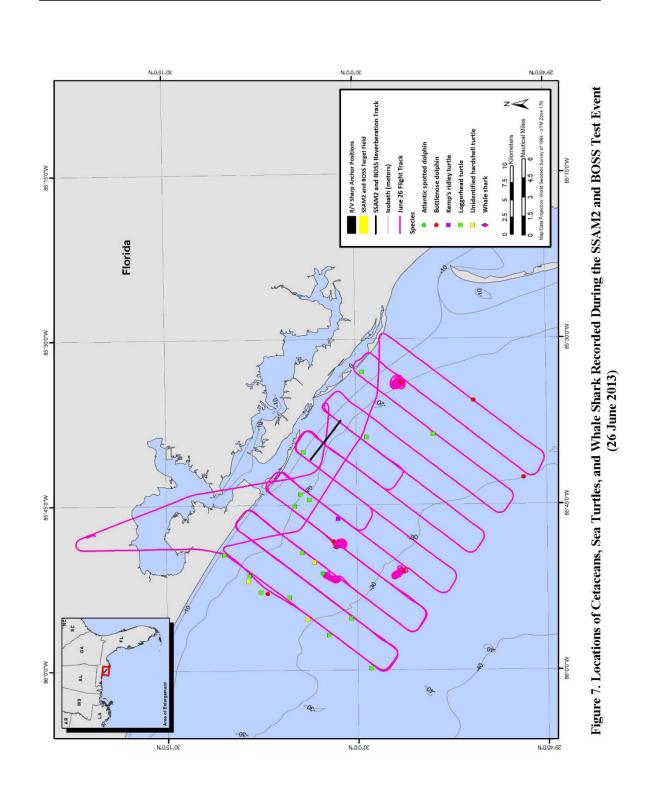
22-28 June 2013

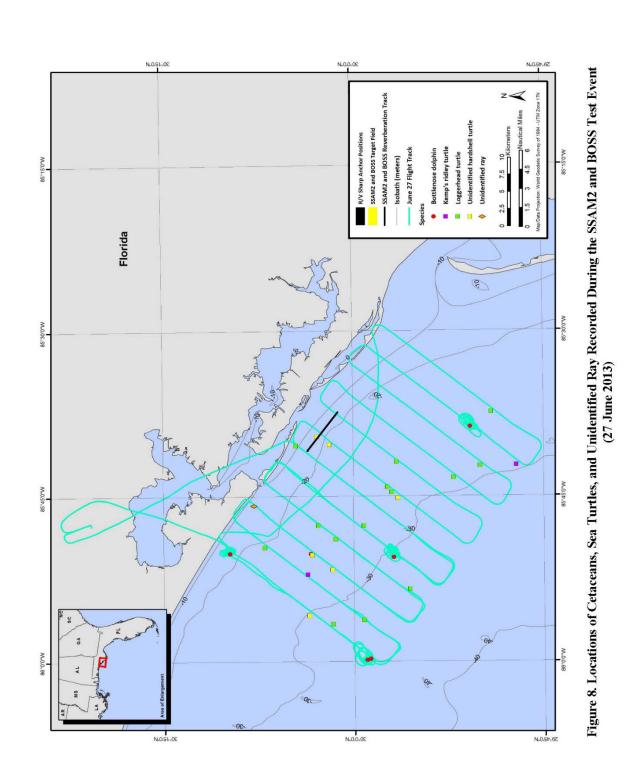


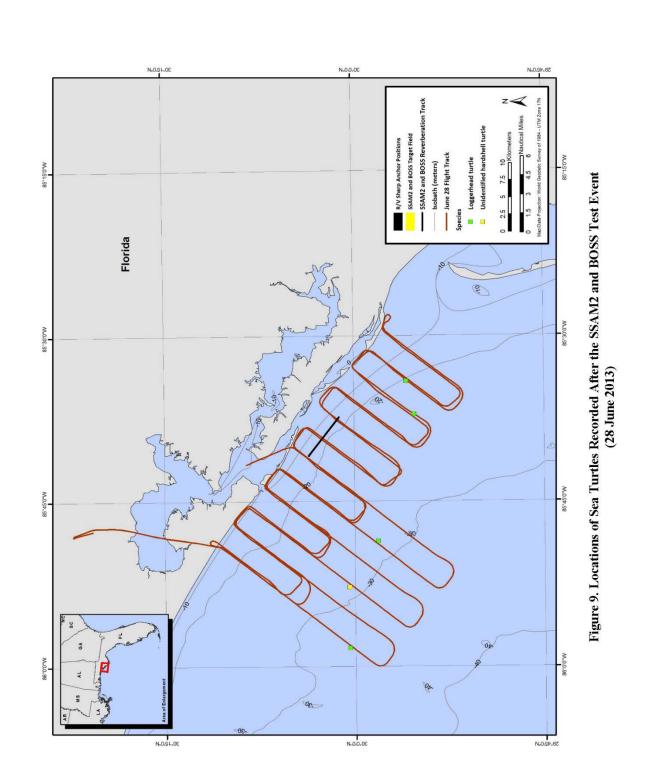
22-28 June 2013



7


22-28 June 2013


22-28 June 2013


22-28 June 2013

22-28 June 2013

22-28 June 2013

22-28 June 2013

22-28 June 2013

Section 3 Results

Survey Effort

Observers visually surveyed 3,565 km (1,925 nmi) of on-effort tracklines and 5,949 km (3,212 nmi) of total trackline (including the systematic transects, cross-legs between transects, and circling for focal follows or species identification) during 7 days for 17.9 hr of on-effort status (**Table 1**). BSS ranged from 1 to 5, and all sightings were made in BSS between 1 and 5 (**Table 3**). Appendix A contains a detailed description of environmental, oceanographic, and sighting conditions. Survey results in the following subsection are reported based on requirements outlined in NMFS (2010), as a monitoring event constitutes effort conducted 2 days before the test event, the days (4 in this instance) during the test event, and 1 day after the test event.

Sightings

Thirty-one sightings of cetaceans and 145 sightings of sea turtles were recorded during times of both on-effort and off-effort, which encompassed 30.6 hr of total survey flight time within the SSAM2 and BOSS survey area (**Figure 2, Table 3**).

Six sightings of cetaceans and 41 sightings of sea turtles were made before the test event on 22 and 23 June 2013 (**Figures 3 and 4, Table 3**). Twenty-five sightings of cetaceans, 99 sightings of sea turtles, 1 sighting of an unidentified ray, and 1 sighting of a whale shark were made during the test event from 24 through 27 June 2013. Five sightings of sea turtles were made after the test event on 28 June 2013.

Sightings were comprised of 28 groups of bottlenose dolphins (*Tursiops truncatus*), 3 groups of Atlantic spotted dolphins (*Stenella frontalis*), 16 sightings of Kemp's ridley turtles (*Lepidochelys kempii*), 104 sightings of loggerhead turtles, 25 sightings of unidentified hardshell turtles, 1 sighting of an unidentified ray, and 1 sighting of a whale shark (*Rhincodon typus*) (Figure 2, Table 3). Table 4 provides a summary of the sightings recorded, which includes group information and environmental data. Bottom depth for each sighting was estimated in 10-m (30-ft) ranges from the maps from Geographic Information System plots of latitude and longitude for sightings.

Sightings per unit effort (SPUE) was calculated as the total number of cetacean (n=30) or sea turtle (n=145) sightings made on-effort divided by total survey on-effort (t=17.9 hr and d=3,565 km [1,925 nmi]), resulting in an estimate for the number of sightings per hr and number of sightings per km (or per nmi). For this monitoring event, the SPUE for cetaceans was equal to 1.68 sightings per hr or 0.008 sightings per km (0.016 sightings per nmi) and the SPUE for sea turtles was equal to 8.10 sightings per hr or 0.04 sightings per km (0.08 sightings per nmi).

Behavior

No visible evidence of unusual behavior was observed during surveys before, during, or after the test event for the SSAM2 and BOSS (**Table 3**). The team was able to attempt a total of 16 focal follows: 2 on 22 June 2013 before the test event and 14 on 24 through 27 June during the test event. No focal follows were conducted on 23 June 2013 before the test event or on 28 June after the test event. **Table 5** provides a summary of the focal follows conducted. Detailed behavioral observations made during the focal follows are presented in **Appendix B**. Photographs of suitable quality for species identification purposes were collected during several sightings of dolphins. Video also was collected during the focal follows, as feasible.

22-28 June 2013

Sighting No.	Date (Day/ Month/ Year)	Species		oup S High	Size /Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (ී)	Vert. Angle (°)		Distance off Track m (ft)	Heading (°)	Bottom Depth [†] km (nmi)*	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes⁄ No)	Behavioral Summary
							Before	NSWC P	CD S	SAM2 and	I BOSS Tes	t Event	Sighting	s – 22 Jun	e 2013				
1	22/6/13	CC	1	1	1	,	9:07:35	1	3	30.09	-85.898	52	322	0.2 (0.1)	54	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
2	22/6/13	CC	1	1	1	(f	9:17:03	A.	4	30.03	-85.906	34	292	0.5 (0.3)	52	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
3	22/6/13	CC	1	1	1		9:34:09	Ŧ	4	29.926	-85.905	32	317	0.5 (0.3)	263	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
4	22/6/13	TT	1	1	1	1	9:44:08	8	3	30.094	-85.711	28	322	0.6 (0.3)	83	10 (33)	No/No	No	One bottlenose dolphin traveling slowly to the E.
5	22/6/13	CC	1	1	1	×	9:45:13	÷	3	30.064	-85.738	32	323	0.5 (0.3)	83	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
6	22/6/13	CC	1	1	1	ř,	9:51:14		3	29.915	-85.86	44	141	0.3 (0.2)	53	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
7	22/6/13	CC	1	1	1	ï	10:02:17	i	3	30.074	-85.671	36	185	0.4 (0.2)	328	10 (33)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
8	22/6/13	CC	1	1	1	i i	10:04:38	i.	2	30.039	-85.669	23	322	0.8 (0.4)	53	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
9	22/6/13	CC	2	2	2	Ŕ	10:04:49	S	2	30.033	-85.669	35	352	0.4 (0.2)	233	20 (66)	No/No	No	Two loggerhead turtles resting at the surface. No disturbance detected.
10	22/6/13	CC	2	2	2	-	10:08:56	-	2	29.927	-85.758	64	143	0.2 (0.1)	113	30 (98)	No/No	No	Two loggerhead turtles resting at the surface. No disturbance detected.
11	22/6/13	CC	1	1	1	121	10:15:00		3	29.881	-85.758	33	294	0.5 (0.3)	233	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

Table 3. Summary of Sightings

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

Sighting	Date		Gr	oup S	Size		Start	Stop		Latitude	Longitude	Vert.	Bearing	Distance	Heading	Bottom Depth ^{\dagger}	Photos/ Video	Focal Follow	
No.	(Day/ Month/ Year)	Species	Best/	High	/Low	Calves	Time	Time	BSS	(°)	(°)	Angle (°)	Angle (°)	off Track m (ft)	(°)	km (nmi)	Taken (Yes/ No)	(Yes/ No)	Behavioral Summary
						Be	fore NSW	C PCD S	SAM2	and BOS	S Test Even	t Sight	ings – 22 .	June 2013	(continue	d)			
12	22/6/13	CC	1	1	1	-	10:20:41	÷	3	30.011	-85.637	60	263	0.2 (0.1)	233	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
13	22/6/13	CC	1	1	1	-	10:24:20	ĩ	2	30.001	-85.604	32	351	0.5 (0.3)	231	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
14	22/6/13	CC	1	1	1	-	10:25:50	1	2	29.964	-85.637	29	353	0.6 (0.3)	203	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
15	22/6/13	CC	1	1	1	-	10:26:32	3	2	29.939	-85.652	50	142	0.3 (0.2)	352	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
16	22/6/13	CC	1	1	1	-	10:40:06	ŧ	3	29.96	-85.59	45	323	0.3 (0.2)	263	10 (33)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
17	22/6/13	TT	11	15	11	-	10:40:58	11:12:00	3	29.978	-85.57	42	19	0.3 (0.2)	267	10 (33)	Yes/Yes	Yes	Group of 11 bottlenose dolphins traveling medium speed to the W. See Appendix B for focal- follow data.
18	22/6/13	CC	1	1	1	-	11:16:26	÷	2	29.957	-85.55	38	320	0.4 (0.2)	83	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
19	22/6/13	CC	1	1	1	~	11:26:48	ž	3	29.797	-85.644	35	293	0.4 (0.2)	263	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
20	22/6/13	LK	1	1	1	-	11:48:17	3	2	30.137	-85.858	32	353	0.5 (0.3)	113	20 (66)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
21	22/6/13	Unid HST	1	1	1		11:49:06	1	2	30.12	-85.881	20	324	0.8 (0.4)	53	20 (66)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
22	22/6/13	Unid HST	1	1	1	-	11:49:37	-	2	30.104	-85.886	40	352	0.4 (0.2)	82	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

September 2013

NSWC PCD Marine Species Monitoring Trip Report

			Gr	oup S	Size											D (1	Photos/		
Sighting No.	Date (Day/ Month/ Year)	Species	Best/			Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track m (ft)	Heading (°)	Bottom Depth [†] km (nmi) [*]	Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
						Be	fore NSW	C PCD S	SAM2	and BOS	S Test Even	t Sight	ings – 22 .	June 2013	(continue	d)			
23	22/6/13	Unid HST	1	1	1	÷	11:57:48	÷	3	29.993	-85.939	30	293	0.5 (0.3)	233	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
24	22/6/13	CC	1	1	1	Ŧ	11:59:30	i.	3	30.034	-85.899	47	323	0.3 (0.2)	233	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
25	22/6/13	TT	2	2	2	Ŧ	12:01:10	1	3	30.074	-85.865	40	323	0.4 (0.2)	259	30 (98)	No/No	No	Group of 2 bottlenose dolphins traveling slowly to the W.
26	22/6/13	TT	1	1	1	R.	12:09:31	i.	3	30.127	-85.804	22	143	0.8 (0.4)	143	20 (98)	No/No	No	One bottlenose dolphin traveling fast to the SE.
27	22/6/13	CC	1	1	1	÷	12:14:28	16	2	30.076	-85.82	24	353	0.8 (0.4)	52	20 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
28	22/6/13	TT	10	15	5		12:36:00	12:45:42	2	30.094	-85.712	35	8	0.4 (0.2)	153	10 (33)	Yes/No	Yes	Group of 10 bottlenose dolphins traveling slowly to the S and SE. See Appendix B for focal- follow data. Sighting made off effort.
							Before	NSWC P	CD S	SAM2 and	I BOSS Test	t Event	Sighting	s – 23 Jun	e 2013				
1	23/6/13	CC	1	1	1	Ŷ	8:34:27	-	3	30.07	-85.915	34	327	0.5 (0.3)	57	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
2	23/6/13	Unid HST	1	1	1	1	8:44:02	-	3	30.042	-85.889	61	233	0.2 (0.1)	203	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
3	23/6/13	CC	1	1	1		8:45:58	÷	3	30.095	-85.844	54	263	0.3 (0.2)	143	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
4	23/6/13	CC	1	1	1	•	8:55:44	-	3	30.017	-85.864	53	83	0.3 (0.2)	353	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
5	23/6/13	CC	1	1	1	-	8:58:11	- 1	3	29.963	-85.912	52	113	0.2 (0.1)	113	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

NSWC PCD Marine Species Monitoring Trip Report

Group Size Photos/ Bottom Date Focal Bearing Distance Vert. Video Heading Sighting Longitude Depth Follow (Day/ Start Stop Latitude Calves BSS off Track **Behavioral Summary** Species Angle Angle Taken No. Time Time (Yes/ Month/ $(^{\circ})$ $(^{\circ})$ $(^{\circ})$ Best/High/Low km (°) (°) m (ft) (Yes/ No) Year) (nmi) No) Before NSWC PCD SSAM2 and BOSS Test Event Sightings - 23 June 2013 (continued) Unidentified hardshell Unid 23/6/13 9:03:46 3 29.988 -85.847 55 293 0.2 (0.1) 233 30 (98) No/No turtle resting at the surface. 6 1 1 1 No -HST No disturbance detected. Kemp's ridley turtle LK 9:11:42 3 60 7 23/6/13 1 1 30.074 -85.725 293 0.2(0.1)203 20 (66) No/No No resting at the surface. No 1 . disturbance detected. Loggerhead turtle resting 8 23/6/13 CC 1 1 9:15:13 3 30.001 -85.792 39 322 0.4 (0.2) 23 30 (98) No/No No at the surface. No 1 -disturbance detected. Two loggerhead turtles resting at the surface. No 9 23/6/13 CC 2 2 2 9:19:55 3 29.895 -85.877 52 0.2 (0.1) 350 30 (98) 110 No/No No . disturbance detected. Loggerhead turtle resting 10 23/6/13 CC 1 1 9:33:48 3 29.952 -85.772 33 0.5 (0.3) 293 30 (98) No/No at the surface. No 1 113 No -disturbance detected. Group of 2 bottlenose 2 11 23/6/13 TT 2 2 9:38:03 3 29,917 -85.772 50 293 0.3(0.2)23 30 (98) No/No No dolphins traveling slowly to the N and NE. Loggerhead turtle resting CC 1 9:40:02 3 -85.805 48 30 (98) No/No at the surface. No 12 23/6/13 1 1 29.871 113 0.3 (0.2) 83 No disturbance detected. Unidentified hardshell Unid 23/6/13 1 9:43:25 3 29.868 -85.764 55 0.2 (0.1) 30 (98) turtle resting at the surface. 13 1 1 234 204 No/No No 1 . HST No disturbance detected. Loggerhead turtle resting 14 23/6/13 CC 1 1 9:58:06 3 29.894 -85.693 63 113 0.2 (0.1) 53 30 (98) No/No No at the surface. No 1 -disturbance detected. Loggerhead turtle resting 15 23/6/13 CC 1 10:31:56 3 29.939 -85.566 0.3 (0.2) 144 20 (66) No/No at the surface. No 1 41 294 No 1 disturbance detected. Loggerhead turtle resting 16 23/6/13 CC 1 1 1 11:19:27 4 29.993 -85.842 40 233 0.4 (0.2) 293 20 (66) No/No No at the surface. No disturbance detected.

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

	Date		Gr	oup S	lize							Next	Dessie	Distance		Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species	Best/	High	/Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track m (ft)	Heading (°)	Depth [†] km (nmi)*	Video Taken (Yes/ No)	Follow (Yes/ No)	Behavioral Summary
						Be	fore NSW	C PCD S	SAM2	and BOS	S Test Even	t Sight	ings – 23 .	June 2013	(continue	d)			
17	23/6/13	CC	1	1	1		11:47:45	-	3	30.049	-85.652	52	357	0.3 (0.2)	87	10 (33)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
18	23/6/13	CC	1	1	1		11:48:56	~	3	30.023	-85.678	54	323	0.3 (0.2)	203	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
19	23/6/13	LK	1	1	1	8,511	12:05:38	-	3	30.025	-85.619	51	140	0.3 (0.2)	20	10 (33)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
							During	NSWC I	PCD S	SAM2 an	d BOSS Tes	t Event	Sighting	s – 24 Jun	e 2013				
1	24/6/13	CC	1	1	1	-	8:45:01	-	2	30.083	-85.897	40	113	0.4 (0.2)	83	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
2	24/6/13	CC	1	1	1	-	8:53:10	-	3	29.977	-85.997	65	323	0.2 (0.1)	4	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
3	24/6/13	Unid HST	1	1	1		8:55:04	-	3	30.033	-85.89	50	112	0.3 (0.2)	-	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
4	24/6/13	LK	1	1	1	-	8:58:07	-	3	30.111	-85.834	36	292	0.4 (0.2)	112	20 (66)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
5	24/6/13	TT	2	4	2	2	9:03:36	28	2	30.094	-85.806	36	293	0.4 (0.2)	143	20 (66)	No/No	No	Group of 2 bottlenose dolphins traveling medium speed to the S and SE.
6	24/6/13	CC	1	1	1	-	9:05:11	-	2	30.057	-85.835	50	292	0.3 (0.2)	-	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
7	24/6/13	Unid HST	1	1	1		9:14:22	3 9	3	29.934	-85.933	28	80	0.6 (0.3)	260	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
8	24/6/13	TT	3	3	2	8	9:20:09	×	3	30.098	-85.743	54	173	0.3 (0.2)	323	10 (33)	No/No	No	Group of 3 bottlenose dolphins traveling slowly to the N and NW.

	Date		Gr	oup S	ize											Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species	Best/	High/	Low	Calves	Start Time	Stop Time	BSS	Latitude (ෆ)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track m (ft)	Heading (°)	Depth [†] km (nmi)*	Video Taken (Yes/ No)	Follow (Yes/ No)	Behavioral Summary
	2	aw s				Du	ring NSW	C PCD S	SAM2	2 and BOS	S Test Ever	it Sight	ings – 24	June 2013	(continue	d)			
9	24/6/13	Unid HST	1	1	1	-	9:27:08	3	2	29.975	-85.805	33	83	0.5 (0.3)	83	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
10	24/6/13	SF	10	15	6	2	9:28:28	9:59:15	2	29.945	-85.839	64	292	0.2 (0.1)	112	30 (98)	Yes/Yes	Yes	Group of 10 Atlantic spotted dolphins seen foraging to the E and SE. See Appendix B for focal- follow data.
11	24/6/13	Unid HST	1	1	1		10:07:22	15	2	29.94	-85.8	31	293	0.5 (0.3)	353	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
12	24/6/13	CC	1	1	1	-	10:32:18	•	2	30.067	-85.673	40	114	0.4 (0.2)	234	10 (33)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
13	24/6/13	СС	1	1	1	-	10:33:41	3	2	30.035	-85.608	38	143	0.4 (0.2)	23	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
14	24/6/13	СС	1	1	1	-	10:36:31	t.	2	29.992	-85.612	45	292	0.3 (0.2)	202	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
15	24/6/13	CC	1	1	1	-	10:42:44	ł	2	29.843	-85.742	65	293	0.2 (0.1)	293	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
16	24/6/13	TT	15	20	14	1	11:00:18	11:40:41	2	29.905	-85.599	30	293	0.5 (0.3)	263	30 (98)	Yes/Yes	Yes	Group of 15 bottlenose dolphins milling. See Appendix B for focal- follow data.
17	24/6/13	CC	1	1	1	-	11:47:42	ť	2	29.775	-85.648	28	112	0.6 (0.3)	22	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
18	24/6/13	CC	1	1	1	÷	11:48:11	1	2	29.78	-85.649	50	114	0.3 (0.2)	24	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
19	24/6/13	CC	1	1	1	-	11:49:21	-	2	29.816	-85.614	36	113	0.4 (0.2)	23	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

22-28 June 2013

Sighting No.	Date (Day/ Month/ Year)	Species	Gro Best/	oup S High/		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track m (ft)	Heading (°)	Bottom Depth [†] km (nmi)*	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
						Du	ring NSW	C PCD S	SAM	2 and BOS	S Test Even	it Sight	tings – 24	June 2013	(continue	d)			
20	24/6/13	LK	1	1	1		12:09:31	原	2	30.143	-85.851	60	293	0.2 (0.1)	53	20 (66)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
21	24/6/13	CC	1	1	1	×.	12:13:40		2	30.048	-85.941	25	292	0.7 (0.4)	22	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
22	24/6/13	CC	1	1	1	-	12:14:55	16	2	30.017	-85.965	42	292	0.3 (0.2)	232	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
23	24/6/13	CC	1	1	1	-	12:16:29	-	2	29.979	-85.999	41	294	0.3 (0.2)	144	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
24	24/6/13	LK	1	1	1	-	12:19:56	-	2	29.993	-85.937	39	263	0.4 (0.2)	23	30 (98)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
25	24/6/13	LK	1	1	1	12	12:23:34	-	2	30.08	-85.862	34	293	0.5 (0.3)	353	20 (66)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
26	24/6/13	CC	1	1	1	-	12:24:35	-	2	30.1	-85.833	58	113	0.2 (0.1)	53	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
27	24/6/13	Unid HST	1	1	1		12:33:38		2	30.018	-85.868	62	292	0.2 (0.1)	52	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
28	24/6/13	CC	1	1	1	-	12:39:24	-	2	29.924	-85.895	59	110	0.2 (0.1)	50	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
29	24/6/13	CC	1	1	1	-	12:43:15	-	2	30.016	-85.816	65	113	0.2 (0.1)	23	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
30	24/6/13	CC	1	1	1	-	12:45:28	-	2	30.072	-85.773	38	293	0.4 (0.2)	113	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
31	24/6/13	TT	3	3	3	3 2 7	12:55:06		2	30.058	-85.74	44	322	0.3 (0.2)	142	30 (98)	No/No	No	Group of 3 bottlenose dolphins traveling S and SE.

Aerial Monitoring Surveys

22-28 June 2013

	Date		Gr	oup S	ize											Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species	Best/	High	Low	Calves	Start Time	Stop Time	BSS	Latitude (ී	Longitude (°)	Vert. Angle (°)		Distance off T rack m (ft)	Heading (°)	Depth [†] km (nmi)*	Video Taken (Yes/ No)	Follow (Yes/ No)	Behavioral Summary
						Du	ring NSW	C PCD S	SAM	2 and BOS	S Test Ever	it Sight	ings – 24	June 2013	(continue	d)		29	103
32	24/6/13	CC	1	1	1	8	12:57:02		2	29.91	-85.872	49	292	0.3 (0.2)	322	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
33	24/6/13	CC	1	1	1	-	12:59:38	-	2	29.887	-85.835	43	118	0.3 (0.2)	89	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
34	24/6/13	CC	1	1	1	-	12:59:52	-	2	29.893	-85.831	62	117	0.2 (0.1)	147	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
35	24/6/13	CC	1	1	1	-	13:03:34	-	2	29.933	-85.795	56	113	0.2 (0.1)	143	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
36	24/6/13	Unid HST	1	1	1	-	13:05:32	1	2	30.029	-85.706	36	113	0.4 (0.2)	113	30 (66)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
37	24/6/13	CC	1	1	1	2	13:16:16	<u>12</u>	3	29.891	-85.786	40	113	0.4 (0.2)	203	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
							During	NSWC I	PCDS	SAM2 an	d BOSS Tes	t Event	Sighting	s – 25 Jun	e 2013				
1	25/6/13	CC	1	1	1	÷	8:39:22	-	3	30.033	-85.957	31	294	0.5 (0.3)	204	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
2	25/6/13	CC	1	1	1	3	8:39:54	2	3	30.019	-85.965	50	292	0.3 (0.2)	142	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
3	25/6/13	CC	1	1	1	-	8:40:38	-	3	30.003	-85.981	42	293	0.3 (0.2)	23	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
4	25/6/13	CC	1	1	1	-	8:50:02	-	3	30.03	-85.896	64	173	0.2 (0.1)	53	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
5	25/6/13	LK	ï	1	1	ŝ	8:52:12	2	3	30.152	-85.796	45	290	0.3 (0.2)	200	10 (33)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

Group Size Photos/ Date Bottom Focal Bearing Distance Video Vert. Heading Latitude Longitude Depth Sighting (Day/ Start Follow Stop Calves BSS off Track Taken **Behavioral Summary** Species Angle Angle No. Month/ Time Time (°) (Yes/ (°) (°) Best/High/Low km m (ft) (Yes/ (°) $(^{\circ})$ No) Year) (nmi) No) During NSWC PCD SSAM2 and BOSS Test Event Sightings - 25 June 2013 (continued) Loggerhead turtle resting 25/6/13 CC 1 1 8:55:32 2 30.095 -85.8 58 294 0.2(0.1)84 20 (66) No/No No at the surface. No 6 1 1 disturbance detected. One bottlenose dolphin logging at the surface 7 25/6/13 TT 1 1 9:00:40 3 29.981 -85.903 49 0.3(0.2)22 30 (98) No/No 1 292 No heading N and NE. One bottlenose dolphin 8 25/6/13 TT 1 1 1 9:19:59 3 29.948 -85.873 42 115 0.3(0.2)25 30 (98) Yes/No No traveling slowly to the N 1 and NE. Loggerhead turtle resting 25/6/13 CC 1 1 9:39:13 29,991 -85.752 39 293 0.4 (0.2) No/No at the surface. No 9 1 3 22 20 (66) No disturbance detected. Group of 5 Atlantic spotted dolphins seen 25/6/13 SF 5 6 9:47:19 9:58:22 2 29,998 -85.697 50 23 0.3 (0.2) 270 20 (66) Yes/No Yes traveling slowly to the W. 10 4 1 See Appendix B for focalfollow data. Group of 16 bottlenose dolphins traveling slowly 11 25/6/13 TT 16 20 14 2 10:01:11 10:30:48 2 29.947 -85.746 40 358 0.4(0.2)180 30 (98) Yes/Yes Yes to the S. See Appendix B for focal-follow data. Loggerhead turtle resting 12 25/6/13 CC 1 10:40:25 3 29.917 -85.71 25 143 0.7(0.4) 353 30 (98) No/No at the surface. No 1 1 -4 -No disturbance detected. Loggerhead turtle resting CC 13 25/6/13 1 1 1 10:43:55 3 30.007 -85.642 43 323 0.3(0.2)53 20 (66) No/No No at the surface. No disturbance detected. Loggerhead turtle resting CC 10:51:10 29.93 52 0.2 (0.1) at the surface. Dove when 25/6/13 1 2 -85.666 292 22 20 (66) No/No No 14 1 1 plane flew over. Kemp's ridley turtle 25/6/13 LK 1 10:54:09 resting at the surface. No 15 1 1 2 29.863 -85.725 55 323 0.2 (0.1) 202 30 (98) No/No No 100 1 disturbance detected.

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

Group Size Photos/ Date Bottom Focal Bearing Distance Video Vert. Heading Longitude Sighting Start Follow (Day/ Stop Latitude Depth Calves BSS off Track **Behavioral Summary** Species Angle Angle Taken No. Month/ Time Time ()) (Yes/ $(^{\circ})$ (°) km Best/High/Low (°) (°) m(ft) (Yes/ No) Year) (nmi) No) During NSWC PCD SSAM2 and BOSS Test Event Sightings - 25 June 2013 (continued) Group of 12 bottlenose dolphins traveling medium 25/6/13 TT 12 15 12 3 10:58:05 11:31:27 2 29.811 -85.722 55 258 0.2(0.1)90 30 (98) Yes/No Yes 16 speed to E. See Appendix B for focal-follow data. Loggerhead turtle resting CC 1 11:37:47 2 50 at the surface. No 17 25/6/13 1 1 -29.872 -85.661 113 0.3 (0.2) 23 30 (98) No/No No disturbance detected. Loggerhead turtle resting CC 1 11:39:44 -85.627 18 25/6/13 2 29.914 40 203 0.4(0.2)263 20 (66) No/No No at the surface. No 1 1 12 disturbance detected. Kemp's ridley turtle 19 25/6/13 LK 1 11:41:57 2 29.969 -85.583 42 293 0.3 (0.2) 143 20 (66) No/No resting at the surface. No 1 1 -No disturbance detected. Loggerhead turtle resting 20 25/6/13 CC 1 11:46:10 2 29.952 -85.547 62 27 0.2(0.1)147 10 (33) No/No No at the surface. No 1 1 disturbance detected. Loggerhead turtle resting CC 21 25/6/13 1 11:49:29 2 29.88 -85.619 39 293 0.4(0.2)143 20 (66) No/No No at the surface. No 1 1 disturbance detected Unidentified hardshell Unid 25/6/13 1 11:57:09 2 -85.644 45 30 (98) turtle diving. No 22 29.794 265 0.3 (0.2) 114 No/No No 1 1 2 -HST disturbance detected. Loggerhead turtle resting CC 1 12:00:36 23 25/6/13 1 1 2 29.872 -85.564 38 113 0.4 (0.2) 143 20 (66) No/No No at the surface. No disturbance detected Loggerhead turtle resting 24 25/6/13 CC1 12:02:33 2 29.919 -85.527 62 173 0.2 (0.1) 143 10 (33) No/No No at the surface. No 1 1 -1 disturbance detected Group of 3 bottlenose dolphins traveling E. See 3 12:26:28 TT 3 3 2 29.933 -85.506 22 Yes/Yes 25 25/6/13 12:03:24 143 0.8 (0.4) 90 10 (33) Yes -Appendix B for focalfollow data. Kemp's ridley turtle 25/6/13 LK 1 1 12:44:42 2 30.144 -85.848 56 329 0.2 (0.1) 239 20 (66) No/No resting at the surface. No 26 1 No disturbance detected.

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

Group Size Photos/ Bottom Date Focal Bearing Distance Vert. Video Heading Sighting Latitude Longitude Depth Follow (Day/ Start Stop Calves BSS off Track **Behavioral Summary** Species Angle Angle Taken No. Time Time (Yes/ Month/ $(^{\circ})$ $(^{\circ})$ $(^{\circ})$ Best/High/Low km (°) (°) m (ft) (Yes/ No) Year) (nmi) No) During NSWC PCD SSAM2 and BOSS Test Event Sightings – 25 June 2013 (continued) Loggerhead turtle resting 27 25/6/13 CC 1 12:44:45 2 30.139 -85.846 43 118 0.3(0.2)208 20 (66) No/No at the surface. No 1 1 No -disturbance detected. Kemp's ridley turtle LK 1 12:49:40 2 30.032 -85.942 40 0.4 (0.2) 322 30 (98) resting at the surface. No 28 25/6/13 1 1 112 No/No No disturbance detected. Kemp's ridley turtle 12:52:12 29 25/6/13 LK 1 1 2 29.979 -85.999 38 290 0.4 (0.2) 110 30 (98) No/No No resting at the surface. No 1 -disturbance detected. Group of 7 bottlenose dolphins surface-active 7 travel to the N and NE. See 30 25/6/13 TT 10 4 12:54:49 13:32:32 1 29.967 -85.949 26 143 0.6 (0.3) 45 30 (98) Yes/Yes Yes Appendix B for focalfollow data. Loggerhead turtle resting CC 31 25/6/13 1 1 13:36:08 2 29.987 -85.93 55 114 0.2 (0.1) 294 30 (98) No/No No at the surface. No 1 -disturbance detected. Unidentified hardshell Unid 32 25/6/13 1 13:37:11 2 -85.913 50 0.3 (0.2) 19 30 (98) turtle resting at the surface. 1 1 30.01 169 No/No No HST No disturbance detected. Unidentified hardshell Unid 33 25/6/13 13:39:43 2 30.067 -85.86 31 143 0.5 (0.3) 53 20 (66) No/No turtle resting at the surface. 1 1 No 1 HST No disturbance detected. During NSWC PCD SSAM2 and BOSS Test Event Sightings - 26 June 2013 Loggerhead turtle resting 26/6/13 CC 8:40:36 -85.857 35 0.4(0.2)at the surface. No 2 30.141 290 20 20 (66) No/No No 1 1 1 1 disturbance detected. Loggerhead turtle resting 2 26/6/13 CC 8:42:32 30.089 -85.89 36 0.4(0.2)353 20 (66) at the surface. No 1 1 1 2 113 No/No No disturbance detected. Group of 11 bottlenose dolphins traveling slowly to the S and SW. See 3 26/6/13 TT 11 11 11 9:26:44 9:51:16 2 29.939 -85.85 31 333 0.5 (0.3) 198 30 (98) Yes/Yes Yes 1 Appendix B for focalfollow data.

	Date		Gr	oup S	ize											Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species	Best/	High	/Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)		Distance off Track m (ft)	Heading (°)	+	Video Taken (Yes⁄ No)	Follow (Yes/ No)	Behavioral Summary
			Ser	s		Du	ring NSW	C PCD S	SAM	2 and BOS	S Test Ever	it Sight	ings – 26	June 2013	(continue	d)			a.
4	26/6/13	CC	1	1	1	8	10:39:46	Э	3	29.898	-85.644	38	232	0.4 (0.2)	142	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
5	26/6/13	CC	1	1	1	-	10:43:41	-	3	29.992	-85.55	30	113	0.5 (0.3)	203	10 (33)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
6	26/6/13	ТТ	3	3	3	-	10:47:16	11:09:00	3	29.94	-85.566	35	295	0.4 (0.2)	25	20 (66)	Yes/Yes	Yes	Group of 3 bottlenose dolphins traveling N and NE. See Appendix B for focal-follow data.
7	26/6/13	TT	1	1	1	-	11:17:46	-	3	29.78	-85.71	33	293	0.5 (0.3)	53	30 (98)	No/No	No	One bottlenose dolphin traveling N and NE.
8	26/6/13	TT	1	1	1		11:23:06	÷	3	29.845	-85.594	28	195	0.6 (0.3)	353	20 (66)	No/No	No	One bottlenose dolphin traveling N.
9	26/6/13	CC	1	1	1	-	11:40:47	-	2	30.174	-85.825	35	327	0.4 (0.2)	207	10 (33)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
10	26/6/13	Unid HST	1	1	1	-	11:42:18		2	30.143	-85.864	24	300	0.8 (0.4)	πo	20 (66)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
11	26/6/13	CC	1	1	1	-	11:42:59	-	2	30.126	-85.882	25	291	0.7 (0.4)	201	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
12	26/6/13	TT	1	1	1	-	11:43:15	-	2	30.118	-85.884	40	289	0.4 (0.2)	259	20 (66)	No/No	No	One bottlenose dolphin traveling W.
13	26/6/13	Unid HST	1	1	1	-	11:45:19	-	2	30.066	-85.922	46	292	0.3 (0.2)	22	30 (98)	No/No	No	Unidentified hardshell turtle diving. No disturbance detected.
14	26/6/13	CC	1	1	1	-	11:46:30	-	2	30.038	-85.947	44	292	0.3 (0.2)	292	30 (98)	No/No	No	Loggerhead turtle traveling. No disturbance detected.
15	26/6/13	CC	1	1	1	-	11:48:49	-	2	29.982	-85.997	40	293	0.4 (0.2)	53	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

	Date		Gre	oup S	ize											Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species	Best/	High/	'Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)		Distance off Track m (ft)	Heading (°)	Depth [†] km (nmi)*	Video Taken (Yes⁄ No)	Follow (Yes/ No)	Behavioral Summary
						Du	ring NSW	C PCD S	SAM	2 and BOS	S Test Even	it Sight	ings – 26	June 2013	(continue	d)			
16	26/6/13	CC	1	1	1	-	11:53:09		2	30.008	-85.922	38	232	0.4 (0.2)	52	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
17	26/6/13	CC	1	1	1	-	12:03:22	1	2	30.072	-85.822	45	293	0.3 (0.2)	202	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
18	26/6/13	Unid HST	1	1	1	-	12:04:04	ų.	2	30.056	-85.836	47	292	0.3 (0.2)	142	20 (66)	No/No	No	Unidentified hardshell turtle diving. No disturbance detected.
19	26/6/13	SF	7	8	6		12:04:04	12:28:29	2	30.046	-85.854	20	292	0.8 (0.4)	180	30 (98)	Yes/Yes	Yes	Group of 7 Atlantic spotted dolphins seen traveling to the S. See Appendix B for focal- follow data.
20	26/6/13	ТТ	50	50	40	7	12:39:03	12:56:47	2	30.031	-85.805	42	330	0.3 (0.2)	270	30 (98)	Yes/Yes	Yes	Group of 50 bottlenose dolphins traveling W. See Appendix B for focal- follow data.
21	26/6/13	RT	1	1	1	-	12:40:35	-	2	30.027	-85.814	45		0.3 (0.2)	-	30 (98)	No/No	No	One whale shark seen while circling a group of bottlenose dolphin.
22	26/6/13	CC	1	1	1	-	12:59:45	÷	2	30.081	-85.752	29	113	0.6 (0.3)	23	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
23	26/6/13	CC	1	1	1	-	13:03:20		2	30.074	-85.734	22	290	0.8 (0.4)	200	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
24	26/6/13	CC	1	1	1	-	13:03:49	-	2	30.062	-85.742	25	292	0.7 (0.4)	202	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
25	26/6/13	LK	1	1	1	ч	13:05:23	1	2	30.024	-85.771	42	293	0.3 (0.2)	203	20 (66)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
26	26/6/13	CC	1	1	1	258	13:11:19	-	2	30.07	-85.67	34	110	0.5 (0.3)	290	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

NSWC PCD Marine Species Monitoring Trip Report

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

Group Size Photos/ Bottom Date Focal Bearing Distance Video Vert. Heading Sighting Latitude Longitude Depth Follow (Day/ Start Stop Calves BSS off Track **Behavioral Summary** Species Angle Angle Taken No. Time Time (Yes/ Month/ (°) (°) (°) Best/High/Low km (°) (°) m (ft) (Yes/ No) Year) (nmi) No) During NSWC PCD SSAM2 and BOSS Test Event Sightings - 26 June 2013 (continued) Loggerhead turtle resting 27 26/6/13 CC 13:20:41 2 29.987 -85.648 25 143 0.7(0.4)23 20 (66) No/No at the surface. No 1 1 No disturbance detected. During NSWC PCD SSAM2 and BOSS Test Event Sightings - 27 June 2013 Group of 2 bottlenose 27/6/13 TT 2 2 2 8:41:58 29.983 -85.998 30 299 0.5 (0.3) 29 dolphins traveling N and 20 (66) No/No No 1 4 NF Loggerhead turtle resting 2 27/6/13 CC 1 1 8:54:16 4 29.987 -85.937 42 241 0.3 (0.2) 151 30 (98) No/No No at the surface. No 1 disturbance detected. Unidentified ray. No Unid 59 3 27/6/13 9:03:24 3 30.131 -85.764 291 0.2(0.1)10 (33) No/No No 1 disturbance detected. Ray One bottlenose dolphin 4 27/6/13 TT 1 1 9:06:56 3 30.057 -85.837 41 293 0.3(0.2)113 20 (66) No/No No traveling slowly to the E 1 and SE. Unidentified hardshell Unid 5 27/6/13 1 9:07:00 3 30.055 -85.838 41 293 0.3 (0.2) No/No turtle resting at the surface. 1 20 (66) No -1 -HST No disturbance detected. Unidentified hardshell Unid 27/6/13 9:08:16 3 30.028 -85.861 30 352 0.5 (0.3) 292 30 (98) No/No turtle traveling. No 6 1 1 1 No HST disturbance detected. Loggerhead turtle resting 7 27/6/13 CC 1 1 9:14:19 3 29.927 -85.891 30 144 0.5(0.3)294 30 (98) No/No No at the surface. No disturbance detected. Loggerhead turtle resting 27/6/13 CC 1 1 9:18:15 3 -85.815 at the surface. No 8 1 . -30.024 49 263 0.3(0.2)232 30 (98) No/No No disturbance detected. Loggerhead turtle resting 9 27/6/13 CC 1 1 9:19:22 3 30.047 -85.794 47 232 0.3(0.2)142 20 (66) No/No No at the surface. No 1 disturbance detected. Group of 10 bottlenose dolphins traveling S and 10 29.948 -85.842 10 27/6/13 TT 10 8 9:30:35 9:59:01 3 28 325 0.6 (0.3) 205 30 (66) Yes/Yes Yes SW. See Appendix B for focal-follow data.

Aerial Monitoring Surveys

NSWC PCD Marine Species Monitoring Trip Report

Group Size Photos/ Bottom Date Focal Bearing Distance Video Vert. Heading Depth Sighting Latitude Longitude Follow (Day/ Start Stop Calves BSS Species Angle Angle off Track Taken **Behavioral Summary** No. Time Time (Yes/ Month/ (°) () (°) Best/High/Low km $(^{\circ})$ (°) m (ft) (Yes/ No) Year) (nmi) No) During NSWC PCD SSAM2 and BOSS Test Event Sightings - 27 June 2013 (continued) Loggerhead turtle resting 27/6/13 CC 1 10:13:16 3 30.075 -85.673 40 238 0.4(0.2)208 10 (33) No/No at the surface. No 11 1 1 No disturbance detected. Unidentified hardshell Unid 27/6/13 3 22 turtle traveling. No 12 1 10:15:35 30.048 -85.66 328 0.8 (0.4) 118 20 (66) No/No No 1 1 -HST disturbance detected. Unidentified hardshell Unid 13 27/6/13 1 1 10:16:06 2 30.032 -85.672 39 295 0.4(0.2)20 (66) No/No No turtle resting at the surface 1 -HST No disturbance detected. Loggerhead turtle resting CC 27/6/13 1 10:19:18 2 29.955 -85.736 59 0.2 (0.1) 10 30 (98) at the surface. No 14 1 1 323 No/No No disturbance detected. Loggerhead turtle resting 15 27/6/13 CC 1 1 10:19:33 2 29.95 -85.744 42 292 0.3 (0.2) 262 30 (98) No/No at the surface. No 1 No disturbance detected. Unidentified hardshell Unid 16 27/6/13 1 1 1 10:20:01 2 29.942 -85.753 29 324 0.6 (0.3) 54 30 (98) No/No No turtle resting at the surface HST No disturbance detected. Loggerhead turtle resting CC 1 10:29:43 2 29.943 -85.698 0.4(0.2)30 (98) at the surface. No 17 27/6/13 1 1 38 232 142 No/No No disturbance detected. Loggerhead turtle resting 27/6/13 CC 1 10:42:22 2 -85.722 36 0.4(0.2) 23 30 (98) at the surface. No 18 29.869 323 No/No No 1 1 disturbance detected. Loggerhead turtle resting 19 27/6/13 CC 1 1 10:47:26 2 29.834 -85.704 37 264 0.4(0.2)234 30 (98) No/No No at the surface. No 1 disturbance detected. Group of 2 bottlenose 27/6/13 TT 2 2 2 11:02:04 2 29.847 -85.645 59 293 0.2 (0.1) 203 30 (98) No/No dolphins traveling S and 20 No SW. Kemp's ridley turtle 21 27/6/13 LK 1 1 1 11:15:10 2 29.786 -85.704 38 294 0.4(0.2)144 30 (98) No/No No resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

22-28 June 2013

Sighting No.	Date (Day/ Month/	Species	7.002002	oup S Hick		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle	Angle	Distance off Track	Heading (°)	Bottom Depth [†] km	Photos/ Video Taken	Focal Follow (Yes/	Behavioral Summary
	Year)		Deser	mgil	LUW							C	C	m (ft)	4.4	(nmi) [*]	(Yes/ No)	No)	
	_					Du	ring NSW	C PCD S	SAM	2 and BOS	S Test Ever	it Sight	tings – 27	June 2013	(continue	d)			· · · · ·
22	27/6/13	CC	1	1	1	-	11:19:32		2	29.819	-85.623	36	264	0.4 (0.2)	234	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
23	27/6/13	TT	6	6	6	÷	11:40:56	12:08:02	3	30.163	-85.836	35	334	0.4 (0.2)	154	20 (66)	Yes/Yes	Yes	Group of 6 bottlenose dolphins traveling S and SE. See Appendix B for focal-follow data.
24	27/6/13	Unid HST	1	1	1	7.	12:14:05		3	30.059	-85.93	29	292	0.6 (0.3)	22	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.
25	27/6/13	CC	1	1	1	-	12:15:15	-	3	30.028	-85.943	27	83	0.6 (0.3)	263	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
26	27/6/13	TT	10	10	10	-	12:17:30	12:39:38	3	29.979	-85.996	55	353	0.2 (0.1)	113	30 (98)	Yes/Yes	Yes	Group of 10 bottlenose dolphins traveling E and SE. See Appendix B for focal-follow data.
27	27/6/13	LK	1	1	1	-	12:48:35	-	4	30.061	-85.868	31	172	0.5 (0.3)	292	30 (98)	No/No	No	Kemp's ridley turtle resting at the surface. No disturbance detected.
28	27/6/13	CC	1	1	1	÷	12:50:40	-	4	30.117	-85.827	35	263	0.4 (0.2)	173	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
29	27/6/13	CC	1	1	1	-	13:18:40	-	4	29.987	-85.794	36	83	0.4 (0.2)	323	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
							After	NSWC P	CD S	SAM2 and	BOSS Test	Event	Sightings	– 28 June	2013				
1	28/6/13	CC	1	1	1	Ŧ	11: 3 9:49		5	30.007	-85.972	50	322	0.3 (0.2)	82	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
2	28/6/13	Unid HST	1	1	1	-	11:57:31	-	5	30.008	-85.88	39	322	0.4 (0.2)	82	30 (98)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

22-28 June 2013

Sighting No.	Date (Day/ Month/ Year)	Species		oup S High/		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)		Distance off Track m (ft)		Bottom	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
						Af	ter NSWC	PCD SS	AM2	and BOSS	S Test Event	Sighti	ngs – 28 J	une 2013	(continued)			
3	28/6/13	CC	1	1	1	÷	12:16:06	-	5	29.969	-85.81	40	113	0.4 (0.2)	293	30 (98)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
4	28/6/13	CC	1	1	1	-	13:09:42	×.	5	29.931	-85.569	45	293	0.3 (0.2)	23	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.
5	28/6/13	CC	1	1	1	-	13:16:25		5	29.92	-85.619	38	112	0.4 (0.2)	172	20 (66)	No/No	No	Loggerhead turtle resting at the surface. No disturbance detected.

Key:

ft = foot/feet

m = meter(s)

 $^{\circ} = degree(s)$

SF = Atlantic spotted dolphin (Stenella frontalis)

TT = Bottlenose dolphin (*Tursiops truncatus*) CC = Loggerhead turtle (*Caretta caretta*) LK = Kemp's ridley turtle (Lepidochelys kempii)

Unid HST = Unidentified hardshell turtle

RT = Whale shark (Rhincodon typus)

Unid ray = Unidentified ray

*Bottom depths were estimated by mapped figures. Precise estimation is not listed here, but is available upon request.

Table 4. Summary of Sightings Recorded During Monitoring for the SSAM2 and BOSS Test Event

Species	Number of Sightings	Bottom Depths [†] m (ft)
Atlantic Spotted Dolphin	3	20-30 (66-98)
Bottlenose Dolphin	28	10-30 (33-98)
Kemp's Ridley Turtle	16	10 - 30 (33 - 98)
Loggerhead Turtle	104	10 - 30 (33 - 98)
Unidentified Hardshell Turtle	25	20 - 30 (66 - 98)
Unidentified Ray	1	10 (33)
Whale Shark	1	30 (98)

Notes: †Bottom depths were estimated from bathymetric contours on maps. Precise estimation is not listed here, but is available upon request.

Key: ft = foot/feet; m = meter(s)

Table 5. Summary of Focal Follows Conducted During Monitoring for the SSAM2 and BOSS Test Event

Focal Follow	Date	Sighting Number	Event Type	Species	Approximate Number of Individuals	Duration of Focal Follow (min)
1	22/6/2013	17	Before	TT	11	26
2	22/6/2013	28	Before	TT	10	4
3	24/6/2013	10	During	SF	15	28
4	24/6/2013	16	During	TT	15	37
5	25/6/2013	10	During	SF	6	7
6	25/6/2013	11	During	TT	16	26
7	25/6/2013	16	During	TT	12	30
8	25/6/2013	25	During	TT	3	15
9	25/6/2013	30	During	TT	7	33
10	26/6/2013	3	During	TT	11	23
11	26/6/2013	6	During	TT	3	20
12	26/6/2013	19	During	SF	6	23
13	26/6/2013	20	During	TT	50	16
14	27/6/2013	10	During	TT	10	26
15	27/6/2013	23	During	TT	6	24
16	27/6/2013	26	During	TT	10	21

Key:

min = minute(s)

TT = Bottlenose dolphin (*Tursiops truncatus*) SF = Atlantic spotted dolphin (*Stenella frontalis*)

22-28 June 2013

Section 4 Acknowledgements

We would like to thank Orion Aviation's Director Ed Coffman and pilots Dave Huddle and Jason Clay. These data were obtained under NMFS permit No. 14451 issued to Joseph R. Mobley, Jr.

Section 5 List of Preparers

Jennifer Latusek-Nabholz	Dagmar Fertl
HDR	HDR
Project Manager/Observer/Author	Technical Reviewer
Lenisa Blair	Dan Engelhaupt, PhD
HDR	HDR
Chief Scientist/Observer	U.S. Navy Monitoring Program Manager
Mark Cotter	Cheryl Myers
HDR	HDR
Observer	Document Formatting and Production
Cathy Bacon HDR Data Analyst Chip Chadbourne HDR GIS	Robert D. Kenney, PhD University of Rhode Island, Graduate School of Oceanography Technical Reviewer Christopher McJetters HDR Technical Editor

Section 6 List of References

Buckland et al. 2001	Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 2001. <i>Introduction to Distance Sampling: Estimating</i> <i>Abundance of Biological Populations</i> . Oxford University Press, New York.
DON 2010a	Department of the Navy (DON). 2010a. United States Navy Integrated Comprehensive Monitoring Program. 2010 Update. U.S. Navy, Chief of Naval Operations, Operational Readiness Division, Washington, D.C.
DON 2010b	2010b. Final Monitoring Plan for Marine Mammal Protection Act (MMPA) Authorization. Prepared by Naval Surface Warfare Center Panama City Division for National Marine Fisheries Service, Silver Spring, Maryland. January 2010.
NMFS 2010	National Marine Fisheries Service (NMFS). 2010. Final Rule: Taking and Importing Marine Mammals; U.S. Naval Surface Warfare Center Panama City Division Mission Activities. <i>Federal Register</i> 75: 3395-3416.

22-28 June 2013

Smultea andSmultea, M.A., and C.E. Bacon. 2012. A Comprehensive Report of AerialBacon 2012Marine Mammal Monitoring in the Southern California Range Complex: 2008-
2012. Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, Hawaii.
Submitted to Naval Facilities Engineering Command Southwest (NAVFAC
SW), EV5 Environmental, San Diego, 92132 under Contract No. N62470-10-
D-3011 issued to HDR, Inc., San Diego, California.

22-28 June 2013

THIS PAGE INTENTIONALLY LEFT BLANK

22-28 June 2013

APPENDIX A

Environmental, Oceanographic, and Sighting Conditions

Table A-1 shows the environmental, oceanographic, and sighting conditions encountered before, during, and after the SSAM2 and BOSS sonar test event.

Table A-1. Environmental, Oceanographic, and Sighting Conditions Duri	ng Monitoring
---	---------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
	Survey l	Before NSW	C PCD SSAM2 and	l BOSS Tes	t Event on 2	22 June 2013	
9:04:11	3	3	1.5 (0.8)	3	3	1.5 (0.8)	40
9:14:11	4	2	2 (1)	4	5	1 (0.5)	50
9:21:22	3	2	2 (1)	3	5	1 (0.5)	45
9:24:19	3	4	1 (0.5)	3	3	1.5 (0.8)	60
9:34:00	4	2	1.25 (0.67)	4	5	1 (0.5)	50
9:41:09	3	2	1.5 (0.8)	3	5	1 (0.5)	10
9:43:53	3	4	1 (0.5)	3	3	1 (0.5)	20
9:53:59	3	2	0 (0)	3	5	1 (0.5)	5
10:03:44	2	4	1.5 (0.8)	2	3	1.5 (0.8)	15
10:11:07	3	4	1.25 (0.67)	3	3	1.5 (0.8)	30
10:13:37	3	2	1.5 (0.8)	3	5	1 (0.5)	30
10:23:32	2	4	1.25 (0.67)	2	3	1.5 (0.8)	5
10:27:20	3	4	1 (0.5)	3	3	1.5 (0.8)	5
10:33:31	3	2	1.5 (0.8)	3	5	1 (0.5)	10
11:13:37	3	2	1.5 (0.8)	3	5	1 (0.5)	75
11:15:38	2	4	1 (0.5)	2	3	1.5 (0.8)	75
11:20:24	3	4	1 (0.5)	3	3	1.5 (0.8)	60
11:25:36	3	Ĩ.	2 (1)	3	5	1 (0.5)	0
11:31:08	2	2	1.5 (0.8)	2	5	1 (0.5)	90
11:46:54	2	4	1 (0.5)	2	3	1.5 (0.8)	15
11:56:35	3	3	1 (0.5)	3	4	1 (0.5)	0
12:06:47	3	3	1 (0.5)	3	4	1 (0.5)	0
12:11:53	2	4	1 (0.5)	2	4	1 (0.5)	0
12:22:03	3	3	1.25 (0.67)	3	4	1 (0.5)	30
12:31:43	2	3	1.5 (0.8)	2	4	1.5 (0.8)	80
12:46:36	3	3	1.25 (0.67)	3	4	1 (0.5)	80

NSWC PCD	Marine Species	Monitoring	Trip Report
----------	----------------	------------	-------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Su	rvey Before	NSWC PCI	SSAM2 and BOS	S Test Ever	nt on 22 Jun	e 2013 (continued	l)
12:55:10	3	3	2(1)	3	4	1.5 (0.8)	90
13:05:09	2	3	1.5 (0.8)	2	4	1 (0.5)	90
13:15:21	3	4	1 (0.5)	3	4	1 (0.5)	100
13:24:59	3	4	1 (0.5)	3	3	1.5 (0.8)	70
	Survey l	Before NSW	C PCD SSAM2 and	l BOSS Tes	t Event on 2	23 June 2013	
8:29:34	3	3	1.5 (0.8)	3	4	1 (0.5)	95
8:40:40	3	1	2 (1)	3	5	1 (0.5)	90
8:50:17	3	4	1 (0.5)	3	4	1 (0.5)	100
9:01:15	3	2	1.5 (0.8)	3	5	1 (0.5)	90
9:10:41	3	4	1 (0.5)	3	4	1 (0.5)	90
9:21:33	3	2	1.5 (0.8)	3	5	1 (0.5)	85
9:31:21	3	4	1 (0.5)	3	4	1 (0.5)	90
9:42:21	3	2	1.5 (0.8)	3	5	1 (0.5)	90
9:52:12	3	4	1.25 (0.67)	3	4	1 (0.5)	90
10:03:43	3	2	1.5 (0.8)	3	5	1 (0.5)	90
10:13:16	3	4	1.5 (0.8)	3	3	1.5 (0.8)	90
10:24:07	3	2	1.5 (0.8)	3	5	1 (0.5)	90
10:44:42	3	1	1.5 (0.8)	3	4	1 (0.5)	95
10:56:00	4	2	1 (0.5)	4	5	1 (0.5)	100
11:05:19	4	2	1 (0.5)	4	4	1 (0.5)	100
11:16:19	4	2	1 (0.5)	4	5	1 (0.5)	100
11:26:07	3	2	2 (1)	3	3	1.5 (0.8)	100
11:36:53	3	1	2 (1)	3	5	1 (0.5)	100
11:47:14	3	3	1 (0.5)	3	4	1 (0.5)	100
11:58:12	3	1	2 (1)	3	5	1 (0.5)	100
	Survey I	Ouring NSW	C PCD SSAM2 and	d BOSS Te	st Event on 2	24 June 2013	
8:41:25	2	4	1 (0.5)	2	2	2(1)	10
8:51:36	3	3	1 (0.5)	3	4	1 (0.5)	15
9:01:54	2	4	1 (0.5)	2	1	2 (1)	10
9:12:12	3	3	1.5 (0.8)	3	3	1 (0.5)	15
9:22:12	2	4	1 (0.5)	2	1	1 (0.5)	10
9:30:40	2	4	1 (0.5)	2	1	1 (0.5)	10
10:00:52	2	4	1 (0.5)	2	1	1 (0.5)	10
10:04:50	2	4	1 (0.5)	2	4	1 (0.5)	10

Aerial Monitoring Surveys

A-2

NSWC PCE	Marine Species	Monitoring	Trip Report
----------	----------------	------------	-------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Sur	vey During	NSWC PCI	OSSAM2 and BOS	S Test Ever	nt on 24 Jur	ne 2013 (continued	d)
10:14:47	2	4	1 (0.5)	2	1	2(1)	10
10:25:09	2	3	1.5 (0.8)	2	4	1 (0.5)	10
10:35:21	2	4	1 (0.5)	2	1	2.25	10
10:45:32	2	3	2 (1)	2	4	1 (0.5)	15
10:55:44	2	3	2 (1)	2	1	2.25 (1.21)	15
10:59:03	2	4	1 (0.5)	2	1	2.25 (1.21)	15
11:00:29	2	4	1 (0.5)	2	1	2.25 (1.21)	40
11:42:05	2	4	1 (0.5)	2	1	2.25 (1.21)	40
11:47:08	2	3	2 (1)	2	3	2(1)	40
12:08:09	2	4	1 (0.5)	2	2	2(1)	70
12:18:28	2	3	1 (0.5)	2	3	1.5 (0.8)	40
12:28:24	2	4	1 (0.5)	2	3	1.5 (0.8)	35
12:39:06	2	3	2 (1)	2	4	1 (0.5)	30
12:48:53	2	4	1 (0.5)	2	3	2(1)	45
12:59:16	2	4	1 (0.5)	2	3	2(1)	35
13:08:52	3	4	1 (0.5)	3	3	1 (0.5)	65
13:19:30	2	4	1 (0.5)	2	3	2(1)	30
13:24:34	3	4	1 (0.5)	3	3	1.5 (0.8)	65
	Survey I	During NSW	C PCD SSAM2 and	d BOSS Tes	st Event on 2	25 June 2013	
8:33:04	3	5	1 (0.5)	3	1	2(1)	20
8:43:58	2	3	1.5 (0.8)	2	3	1 (0.5)	40
8:47:26	3	3	1.5 (0.8)	3	3	1 (0.5)	50
8:53:53	2	4	1 (0.5)	2	1	2.25 (1.21)	30
8:57:28	3	4	1 (0.5)	3	1	2 (1)	30
9:04:09	2	4	1 (0.5)	2	4	1 (0.5)	60
9:05:42	3	3	1.5 (0.8)	3	4	1 (0.5)	45
9:15:00	2	4	1 (0.5)	2	2	1.5 (0.8)	20
9:18:36	3	4	1 (0.5)	3	2	1.5 (0.8)	20
9:30:11	3	4	1 (0.5)	3	2	1.5 (0.8)	20
9:34:21	3	3	1.5 (0.8)	3	4	1 (0.5)	20
9:44:33	2	3	1.5 (0.8)	2	1	1 (0.5)	10
9:59:11	2	3	1.5 (0.8)	2	1	1 (0.5)	10
10:32:45	3	4	1 (0.5)	3	1	1.5 (0.8)	20
10:36:43	3	3	1 (0.5)	3	5	0.5 (0.3)	50

NSWC PCD	Marine Species	Monitoring	Trip Report
----------	----------------	------------	-------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Sur	vey During	NSWC PCI	OSSAM2 and BOS	S Test Ever	nt on 25 Jur	e 2013 (continued	ł)
10:46:59	2	4	1 (0.5)	2	1	2.5 (1.3)	10
10:57:29	2	3	1.5 (0.8)	2	5	1 (0.5)	30
11:34:45	2	3	1.5 (0.8)	2	5	1 (0.5)	50
11:45:01	2	3	1.5 (0.8)	2	1	2.5 (1.3)	30
11:55:44	2	4	1 (0.5)	2	5	1 (0.5)	25
12:27:50	2	4	1 (0.5)	2	5	1 (0.5)	35
12:43:12	2	4	1 (0.5)	2	1	1 (0.5)	15
12:54:04	1	4	1 (0.5)	2	1	2 (1)	60
13:34:54	2	3	1 (0.5)	2	1	2 (1)	65
	Survey I	During NSW	C PCD SSAM2 and	d BOSS Tes	st Event on 2	26 June 2013	
8:39:18	2	3	2 (1)	2	3	1.5 (0.8)	30
8:49:23	2	3	2 (1)	2	5	1 (0.5)	60
8:59:42	3	4	1.5 (0.8)	3	3	1.5 (0.8)	50
9:09:20	3	4	1.5 (0.8)	3	5	0.5 (0.3)	40
9:19:57	2	4	1.5 (0.8)	2	3	1.5 (0.8)	40
9:55:22	2	3	1.5 (0.8)	2	5	1 (0.5)	60
10:05:25	2	3	1.5 (0.8)	2	3	2(1)	40
10:15:37	3	4	0.75 (0.40)	3	5	0.5 (0.3)	60
10:25:03	3	3	1.5 (0.8)	3	3	2(1)	50
10:35:39	3	4	0.75 (0.40)	3	5	0.5 (0.3)	40
10:45:26	3	4	0.75 (0.40)	3	3	2(1)	30
11:19:04	3	3	0.75 (0.40)	3	5	0.5 (0.3)	30
11:40:41	2	3	1.5 (0.8)	2	3	2(1)	20
11:50:57	2	3	1.5 (0.8)	2	4	1 (0.5)	30
12:00:38	2	4	1 (0.5)	2	3	1.5 (0.8)	20
12:33:54	2	4	1 (0.5)	2	4	1 (0.5)	30
13:02:13	2	3	1.5 (0.8)	2	3	1 (0.5)	30
13:07:49	2	3	1.5 (0.8)	2	3	1.5 (0.8)	40
13:13:03	2	3	1.5 (0.8)	2	3	1.5 (0.8)	30
13:18:37	2	3	1.5 (0.8)	2	3	1.5 (0.8)	40
	Survey I	During NSW	C PCD SSAM2 and	d BOSS Tes	st Event on 2	27 June 2013	
8:33:37	3	3	1.5 (0.8)	3	4	1 (0.5)	70
8:52:48	4	4	0.5 (0.3)	4	5	0.5 (0.3)	40
9:03:11	3	4	0.75 (0.40)	3	4	1 (0.5)	50

Aerial Monitoring Surveys

A-4

NSWC PCE	Marine Species	Monitoring	Trip Report
----------	----------------	------------	-------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Su	rvey During	g NSWC PCI	O SSAM2 and BOS	S Test Ever	nt on 27 Jun	e 2013 (continued	I)
9:13:49	3	4	0.5 (0.3)	3	5	0.5 (0.3)	60
9:23:52	3	4	1 (0.5)	3	3	1.5 (0.8)	50
10:04:42	3	4	0.5 (0.3)	3	5	0.5 (0.3)	50
10:15:54	2	5	0.5 (0.3)	2	4	1 (0.5)	70
10:25:21	2	4	1 (0.5)	2	5	0.5 (0.3)	40
10:35:37	2	4	1 (0.5)	2	4	1 (0.5)	40
10:46:08	2	4	1 (0.5)	2	5	0.5 (0.3)	30
10:56:12	2	3	1.5 (0.8)	2	3	1.5 (0.8)	40
11:17:09	2	3	1.5 (0.8)	2	5	1.5 (0.8)	40
11:40:06	3	4	1 (0.5)	3	3	1 (0.5)	40
12:43:53	3	3	1.5 (0.8)	3	5	0.5 (0.3)	40
12:53:36	4	4	0.5 (0.3)	4	3	1 (0.5)	50
13:04:06	4	3	1 (0.5)	4	4	1 (0.5)	50
13:13:52	4	3	1 (0.5)	4	4	1 (0.5)	60
13:24:29	3	4	1 (0.5)	3	4	1 (0.5)	60
	Survey	After NSWC	CPCD SSAM2 and	BOSS Test	Event on 2	8 June 2013	
11:31:45	5	5	0.25 (0.13)	5	3	0.75 (0.40)	95
11:43:06	5	4	0.5 (0.3)	5	4	0.5 (0.3)	95
11:51:29	5	5	0.25 (0.13)	5	4	0.5 (0.3)	95
12:02:11	5	4	0.5 (0.3)	5	4	0.5 (0.3)	95
12:10:34	5	4	0.5 (0.3)	5	3	0.75 (0.40)	95
12:20:59	5	4	0.5 (0.3)	5	4	0.5 (0.3)	95
12:30:01	5	5	0.25 (0.13)	5	4	0.5 (0.3)	95
12:35:35	5	4	0.5 (0.3)	5	3	0.75 (0.40)	95
12:40:33	5	4	0.5 (0.3)	5	4	0.5 (0.3)	95
12:46:14	5	4	0.5 (0.3)	5	4	0.5 (0.3)	95
	-					226 6	
12:51:06	5	4	0.5 (0.3)	5	3	0.75 (0.40)	95
12:51:06 12:56:50	5 5	3	1.24 1.22	5 5	3 4	0.75 (0.40) 0.5 (0.3)	95 95
	5		0.5 (0.3)				
12:56:50	5 5	3	0.5 (0.3) 0.75 (0.40)	5	4	0.5 (0.3)	95
12:56:50 13:02:45	5 5 5	3 3	0.5 (0.3) 0.75 (0.40) 0.75 (0.40)	5 5	4 4	0.5 (0.3) 0.5 (0.3)	95 95
12:56:50 13:02:45 13:08:02	5 5 5 5 5	3 3 3	0.5 (0.3) 0.75 (0.40) 0.75 (0.40) 0.75 (0.40)	5 5 5	4 4 4	0.5 (0.3) 0.5 (0.3) 0.5 (0.3)	95 95 95
12:56:50 13:02:45 13:08:02 13:13:04	5 5 5 5 5 5	3 3 3 3	0.5 (0.3) 0.75 (0.40) 0.75 (0.40) 0.75 (0.40) 0.75 (0.40)	5 5 5 5	4 4 4 3	0.5 (0.3) 0.5 (0.3) 0.5 (0.3) 0.75 (0.40)	95 95 95 95

Aerial Monitoring Surveys

A-5

NSWC PCD Marine Species	Monitoring	Trip Report
-------------------------	------------	-------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Su	rvey After	NSWC PCD	SSAM2 and BOS	S Test Even	t on 28 June	e 2013 (continued))
13:34:34	4	4	0.75 (0.40)	4	4	1 (0.5)	85
13:39:49	4	4	0.75 (0.40)	4	3	1 (0.5)	85
13:44:27	4	3	1 (0.5)	4	3	1 (0.5)	75
13:49:33	4	4	1 (0.5)	4	4	1 (0.5)	75
13:53:36	4	3	1 (0.5)	4	4	0.75 (0.40)	75
13:59:20	4	4	0.75 (0.40)	4	3	1 (0.5)	75
14:03:11	4	4	1 (0.5)	4	4	1 (0.5)	75
14:08:58	4	4	0.75 (0.40)	4	3	1 (0.5)	75
14:13:35	4	4	0.75 (0.40)	4	4	1 (0.5)	75
14:18:54	4	4	0.5 (0.3)	4	4	1 (0.5)	80
14:22:53	4	3	1 (0.5)	4	3	1 (0.5)	80
14:26:51	5	3	0.75 (0.40)	5	3	1 (0.5)	80
14:28:42	5	4	0.5 (0.3)	5	4	0.5 (0.3)	80

 $^{-1}0 = 0\%$ glare; 1 = 1.19%; 2 = 20.39%; 3 = 40.59%; 4 = 60.79%; 5 = 80.100%

22-28 June 2013

Appendix B Focal-Follow Data

Table B-1 shows focal-follow behavioral data from 22 through 28 June 2013 monitoring efforts before, during, and after the Naval Surface Warfare Center Panama City Division (NSWC PCD) SSAM2 and BOSS sonar test event. Sixteen focal-follow events were conducted throughout the monitoring effort for the SSAM2 and BOSS test event. Two focal follows were conducted on 22 June 2013, which were part of the surveys conducted before the first NSWC PCD SSAM2 and BOSS test event within the SSAM2 and BOSS survey area. They were both for groups of bottlenose dolphins (Tursiops truncatus). No focal follows occurred on 23 June 2013, which was part of the surveys conducted before the NSWC PCD SSAM2 and BOSS test event. Two focal follows occurred on 24 July, which was part of the survey conducted during the SSAM2 and BOSS test event; they were for a group of Atlantic spotted dolphins (Stenella frontalis) and a group of bottlenose dolphins within the SSAM2 and BOSS survey area. Five focal follows occurred on 25 June 2013, which was part of the survey conducted during the SSAM2 and BOSS test event; they were for four groups of bottlenose dolphins and one group of Atlantic spotted dolphins. Four focal follows occurred on 26 June, which was part of the survey conducted during the SSAM2 and BOSS test event; they were for three groups of bottlenose dolphins and one group of Atlantic spotted dolphins. Three focal follows occurred on 27 June, which was part of the survey conducted during the SSAM2 and BOSS test event; they were for groups of bottlenose dolphins. No focal follows occurred on 28 June 2013, which was part of the surveys conducted after the NSWC PCD SSAM2 and BOSS test event.

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior						
Sighting N	Sighting Number 17 for 22 June 2013										
Species: Tu	Species: Tursiops truncatus. Group size: 11										
1	10:44:07	6/22/2013	29.971	-85.582	Medium travel. Minimum (Min) Dispersal = 1, Maximum (Max) Dispersal = 6.						
2	10:48:13	6/22/2013	29.967	-85.572	Medium travel. Min Dispersal = 1, Max Dispersal = 7. 2 dolphins traveling within 1 body length (BL) and 6 BL away from rest of the group, which is tighter.						
3	10:49:51	6/22/2013	29.968	-85.575	Medium travel. Min Dispersal = 0.5, Max Dispersal = 15.						
4	10:51:31	6/22/2013	29.972	-85.574	Medium subsurface travel. Min Dispersal = 1, Max Dispersal = 20.						
5	10:53:37	6/22/2013	29.964	-85.568	Medium travel. Min Dispersal = 1, Max Dispersal = 20. Two animals in subgroup still lagging behind main group.						
6	10:55:36	6/22/2013	29.968	-85.570	Medium subsurface travel. Min Dispersal = 1, Max Dispersal = 40. Nine animals in first group, 2 animals still traveling behind main group about 40 BL behind.						

Table B-1. Focal Follow Behavioral Data Collected During Monitoring

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 17 fo	r 22 June 201	.3 (continued)	
7	10:57:24	6/22/2013	29.970	-85.564	Fast travel. Min Dispersal = 1, Max Dispersal = 40. All animals returning to surface now.
8	10:58:38	6/22/2013	29.962	-85.564	Fast travel. Min Dispersal = 2, Max Dispersal = 40. Nine animals in first group are in line abreast formation.
9	10:59:55	6/22/2013	29.968	-85.560	Fast travel. Min Dispersal = 2, Max Dispersal = 40. All animals have dove.
10	11:00:30	6/22/2013	29.963	-85.568	Medium travel. Min Dispersal = 2, Max Dispersal = 40. Back up to the surface. Still traveling east.
11	11:01:57	6/22/2013	29.960	-85.563	Medium travel. Min Dispersal = 2, Max Dispersal = 35. Nine animals in main subgroup are still line abreast. All dolphins within 2 BL. 2 other animals are behind, but maintaining distance more or less. All animals dove.
12	11:03:13	6/22/2013	29.967	-85.559	Medium travel. Min Dispersal = 2, Max Dispersal = 35. Animals are back up.
13	11:04:16	6/22/2013	29.960	-85.558	Medium travel. Min Dispersal = 2, Max Dispersal = 35. The 9 animals swimming abreast have now changed into more of a clumped distribution, but are still 2 BL between each other.
14	11:07:03	6/22/2013	29.963	-85.563	Medium travel. Min Dispersal = 1, Max Dispersal = 35. 8 animals now clumped together, while 1 animal separated and now halfway between both the main group and the subgroup of 2. (~12-15 BL).
15	11:09:11	6/22/2013	29.957	-85.557	Medium travel. Min Dispersal = 1, Max Dispersal = 35. Animals have all dove.
16	11:09:56	6/22/2013	29.959	-85.554	Medium travel. Min Dispersal = 1, Max Dispersal = 25. Back to surface. Still traveling east. The two animals together have closed the gap between the two groups.
		r 22 June 201			
Species: Tr	ursiops trunca	<i>tus</i> . Group si	ze: 10		
1	12:40:40	6/22/2013	30.089	-85.718	Mill. Min Dispersal = 1, Max Dispersal = 4. Whole group is on a dive.
2	12:42:47	6/22/2013	30.086	-85.711	Mill. Min Dispersal = 1, Max Dispersal = 4. Group is back up but still mostly subsurface traveling.
3	12:44:48	6/22/2013	30.086	-85.720	Mill. Min Dispersal = 0, Max Dispersal = 0. Leaving group, too hard to follow.
Sighting N	umber 10 fo	r 24 June 201	.3		
Species: St	enella frontal	<i>is</i> . Group size	: 15		
1	9:31:34	6/24/2013	29.950	-85.832	Probable foraging.
2	9:33:56	6/24/2013	29.950	-85.832	Foraging heading NW. Min Dispersal = 1, Max Dispersal = 3. In subgroups of 2 to 4.

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 10 fo	r 24 June 201	.3 (continued)	
3	9:35:14	6/24/2013	29.955	-85.832	Foraging heading E. Min Dispersal = 1, Max Dispersal = 3. Mom and calf.
4	9:39:15	6/24/2013	29.950	-85.832	Foraging. Min Dispersal = 1, Max Dispersal = 20. 20 BL apart for subgroups
5	9:41:34	6/24/2013	29.953	-85.835	Foraging. Min Dispersal = 0.5, Max Dispersal = 20. Different subgroups, difficult to determine actual dispersal due to distance within subgroups
6	9:44:55	6/24/2013	29.956	-85.834	Foraging. Min Dispersal = 0.5, Max Dispersal = 20. Underwater and surface activity.
7	9:46:24	6/24/2013	29.959	-85.830	Foraging. Min Dispersal = 0.5, Max Dispersal = 20.
8	9:47:27	6/24/2013	29.958	-85.827	Medium travel. Min Dispersal = 0.5, Max Dispersal = 15. Occasional inverted swimming, foraging.
9	9:49:59	6/24/2013	29.962	-85.837	Foraging. Min Dispersal = 0.5, Max Dispersal = 15.
10	9:50:29	6/24/2013	29.959	-85.830	Foraging. Min Dispersal = 0.5, Max Dispersal = 5. Two mom and calf pairs. Impossible to keep track of what each subgroup is doing.
11	9:52:22	6/24/2013	29.964	-85.837	Foraging heading N. Min Dispersal = 0, Max Dispersal = 5. Body contact.
12	9:55:54	6/24/2013	29.967	-85.829	Foraging heading N. Min Dispersal = 0, Max Dispersal = 5.
13	9:58:43	6/24/2013	29.969	-85.832	Foraging heading N. Min Dispersal = 0, Max Dispersal = 5.
14	9:59:15	6/24/2013	29.966	-85.837	End of focal.
Sighting N	umber 16 fo	r 24 June 201	.3		
Species: Ti	ursiops trunce	<i>atus</i> . Group si:	ze: 15.		
1	11:03:20	6/24/2013	29.875	-85.622	Milling heading SW. Surface activity, inverted swimming, divided into two subgroups.
2	11:05:15	6/24/2013	29.870	-85.625	Milling. Min Dispersal = 1, Max Dispersal = 30. Smaller groups directly below us, other just off right wing.
3	11:07:02	6/24/2013	29.871	-85.627	Milling. Min Dispersal = 1, Max Dispersal = 30. Started video. Surface leaps.
4	11:08:59	6/24/2013	29.869	-85.631	Milling, logging with surface activity.
5	11:09:37	6/24/2013	29.869	-85.631	Slow travel heading SW. Surface activity.
6	11:11:23	6/24/2013	29.879	-85.631	Min Dispersal = 0.5, Max Dispersal = 70. One small group drove.
7	11:12:33	6/24/2013	29.876	-85.628	Consistent travel at surface.
8	11:14:03	6/24/2013	29.875	-85.638	Slow travel heading SW. Min Dispersal = 0.5, Max Dispersal = 50. One subgroup has 3 animals the rest are in a group. Calf is in smaller group.

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 16 fo	r 24 June 201	l3 (continued)	
9	11:15:43	6/24/2013	29.868	-85.637	Slow travel heading SW. Min Dispersal = 0.5, Max Dispersal = 50. Milling, very slow travel 3 distinct groups.
10	11:16:47	6/24/2013	29.872	-85.641	Slow travel. Groups coming together now.
11	11:17:50	6/24/2013	29.877	-85.638	Slow travel heading W. Min Dispersal = 0.5, Max Dispersal = 50. Three subgroups, one lager 10+, the other two have three animals, inverted swim.
12	11:19:57	6/24/2013	29.873	-85.633	No behavior taken in the field at this time.
13	11:21:46	6/24/2013	29.876	-85.635	Slow travel heading S. Min Dispersal = 0.5, Max Dispersal = 50. One subgroup of 3 now 7. Looks like additional animals to total.
14	11:24:01	6/24/2013	29.872	-85.645	Slow travel.
15	11:25:17	6/24/2013	29.873	-85.645	Slow travel, 17-18 individuals.
16	11:26:12	6/24/2013	29.873	-85.645	Milling heading SW. Min Dispersal = 0.5, Max Dispersal = 12. Groups all merging together. 18-19 highest count. Breach seen.
17	11:27:30	6/24/2013	29.874	-85.645	Slow travel heading SW. Min Dispersal = 0.5, Max Dispersal = 10. Tail slap.
18	11:28:31	6/24/2013	29.872	-85.636	Medium travel heading SW. Min Dispersal = 0.5, Max Dispersal = 20. Breach.
19	11:29:34	6/24/2013	29.868	-85.647	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. Two animals in 2nd group.
20	11:30:38	6/24/2013	29.871	-85.649	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20.
21	11:31:00	6/24/2013	29.870	-85.640	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. Dove in big boil, two smaller groups and one larger.
22	11:32:29	6/24/2013	29.873	-85.641	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. Two animals behind larger group.
23	11:33:43	6/24/2013	29.865	-85.644	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20.
24	11:35:51	6/24/2013	29.872	-85.647	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. Forming a line about three wide
25	11:36:37	6/24/2013	29.872	-85.650	Medium travel heading SW. Min Dispersal = 0.5, Max Dispersal = 25. Two to three in small group now about half mile from the rest.
26	11:38:03	6/24/2013	29.864	-85.651	Medium travel heading SW. Min Dispersal = 0.5, Max Dispersal = 25. Small group no longer included in dispersal distances.
27	11:40:41	6/24/2013	29.864	-85.651	End of focal.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
CA13. 22.53		r 25 June 201			
Species: St	enella frontal	<i>lis.</i> Group size	: 5		
1	9:51:04	6/25/2013	30.005	-85.697	Slow travel. Min Dispersal = 1, Max Dispersal = 3. Line abreast.
2	9:52:24	6/25/2013	29.999	-85.695	Slow travel. Min Dispersal = 1, Max Dispersal = 1.5. Three animals inverted swim, grouped closer together.
3	9:55:45	6/25/2013	30.002	-85.703	Min Dispersal = 1, Max Dispersal = 10. Group spread apart.
4	9:56:35	6/25/2013	30.004	-85.704	Min Dispersal = 1, Max Dispersal = 10. Dive.
5	9:57:54	6/25/2013	30.001	-85.700	Min Dispersal = 1, Max Dispersal = 10.
6	9:58:22	6/25/2013	30.007	-85.699	Slow travel. Min Dispersal = 1, Max Dispersal = 3. All back up and close together.
		r 25 June 201			
Species: Ti	ursiops trunce	<i>atus</i> . Group siz	ze: 16	•	
1	10:04:57	6/25/2013	29.947	-85.743	Heading S. Min Dispersal = 1, Max Dispersal = 3.
2	10:05:12	6/25/2013	29.947	-85.743	Slow travel heading S. Min Dispersal = 1, Max Dispersal = 15. Started video.
3	10:07:20	6/25/2013	29.950	-85.749	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 15.
4	10:08:24	6/25/2013	29.946	-85.745	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. One group.
5	10:09:25	6/25/2013	29.944	-85.746	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. A couple animals lingering off the back of the main group.
6	10:10:41	6/25/2013	29.946	-85.756	Dive heading S. Min Dispersal = 0.5, Max Dispersal = 50.
7	10:11:44	6/25/2013	29.947	-85.754	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 40. All back at surface, loose group.
8	10:13:07	6/25/2013	29.938	-85.749	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 20. Two-thirds of group in a dive.
9	10:15:49	6/25/2013	29.936	-85.749	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 30. Middle core group with two smaller groups.
10	10:16:51	6/25/2013	29.934	-85.749	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 30. Some diving and merging back with main group.
11	10:18:02	6/25/2013	29.933	-85.756	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 60. Group dispersing slightly.
12	10:19:21	6/25/2013	29.942	-85.752	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 60.
13	10:20:27	6/25/2013	29.942	-85.753	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 30. Small group breaking away, most animals in a dive.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 11 fo	r 25 June 201	3 (continued)	
14	10:21:41	6/25/2013	29.931	-85.755	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 75. Only 7 animals at surface.
15	10:22:43	6/25/2013	29.930	-85.749	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 30.
16	10:25:28	6/25/2013	29.933	-85.761	Medium travel heading S. Min Dispersal = 0.5 , Max Dispersal = 30 . Animals so dispersed they are no longer a cohesive group as in the beginning of the sighting.
17	10:26:32	6/25/2013	29.934	-85.760	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 80.
18	10:28:41	6/25/2013	29.937	-85.756	Medium travel heading S. Min Dispersal = 0.5, Max Dispersal = 90.
19	10:30:48	6/25/2013	29.925	-85.756	End of focal.
Sighting N	umber 16 fo	r 25 June 201	13		
Species: Tr	ursiops trunca	<i>tus</i> . Group siz	ze: 12		
1	11:01:28	6/25/2013	29.805	-85.719	Medium travel heading E. Min Dispersal = 1, Max Dispersal = 9.
2	11:06:10	6/25/2013	29.815	-85.721	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 25. Begin video.
3	11:07:10	6/25/2013	29.815	-85.715	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 25. Broken into 3 subgroups.
4	11:08:52	6/25/2013	29.816	-85.716	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Two sub groups.
5	11:10:20	6/25/2013	29.814	-85.720	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Two subgroups all animals doing the same thing.
6	11:11:21	6/25/2013	29.814	-85.720	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 20.
7	11:13:23	6/25/2013	29.816	-85.717	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 25.
8	11:14:34	6/25/2013	29.814	-85.710	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 25. Animals clumped together.
9	11:15:54	6/25/2013	29.815	-85.718	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 25. Three sub groups
10	11:17:31	6/25/2013	29.814	-85.717	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 30. Three sub groups each with 3-4 animals
11	11:18:32	6/25/2013	29.817	-85.715	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 20. Two subgroups one larger, like two of the previous mentioned merged.
12	11:19:53	6/25/2013	29.813	-85.713	Medium travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. One loose group.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 16 fo	r 25 June 201	3 (continued)	
13	11:21:08	6/25/2013	29.817	-85.705	Fast travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Picking up speed. A couple porpoising.
14	11:22:24	6/25/2013	29.819	-85.712	Fast travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Half the animals dove.
15	11:23:13	6/25/2013	29.820	-85.710	Dove heading NE. Min Dispersal = 0.5, Max Dispersal = 12.
16	11:24:02	6/25/2013	29.822	-85.708	Fast travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Mom calf pair diving.
17	11:25:04	6/25/2013	29.818	-85.711	Dive heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Could be diving on food. Fast travel to this point and now just diving and milling in the area
18	11:26:06	6/25/2013	29.814	-85.706	Milling travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Diving.
19	11:27:15	6/25/2013	29.822	-85.710	Travel heading NE. Min Dispersal = 0.5, Max Dispersal = 12. Not really traveling in much of a direction, slightly NE. Diving.
20	11:28:29	6/25/2013	29.817	-85.700	Medium travel. Min Dispersal = 0.5, Max Dispersal = 12. Starting to disperse in different directions.
21	11:29:30	6/25/2013	29.820	-85.702	Mill. Min Dispersal = 0.5, Max Dispersal = 12. One of the calves inverted swim.
22	11:30:27	6/25/2013	29.812	-85.708	Mill. Min Dispersal = 0.5, Max Dispersal = 100. Separated into pairs, 100 BL separation.
23	11:31:27	6/25/2013	29.818	-85.710	End of focal and video.
		r 25 June 201			
Species: Ti	irsiops trunce	<i>atus</i> . Group siz	ze: 3	ř	
1	12:11:25	6/25/2013	29.928	-85.498	Surface-active mill. Min Dispersal = 1, Max Dispersal = 3. Breach.
2	12:13:30	6/25/2013	29.928	-85.505	Surface-active mill. Min Dispersal = 1, Max Dispersal = 3. Diving.
3	12:15:06	6/25/2013	29.921	-85.503	Social-active mill. Min Dispersal = 1, Max Dispersal = 3. Pinwheel spinning, but widely dispersed, no real heading.
4	12:16:45	6/25/2013	29.926	-85.506	Diving. Min Dispersal = 1, Max Dispersal = 3. Only see two right now.
5	12:18:03	6/25/2013	29.928	-85.503	Diving. Min Dispersal = 1, Max Dispersal = 3. Dive down 30 seconds and come up, milling, pinwheel spins.
6	12:19:38	6/25/2013	29.922	-85.504	Diving. Min Dispersal = 70, Max Dispersal = 70. All are diving and milling, but seem to not be with each other, but know each other are there.
7	12:20:53	6/25/2013	29.924	-85.498	Diving and milling. Min Dispersal = 70, Max Dispersal = 70.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 25 fo	r 25 June 201	3 (continued)	
8	12:22:15	6/25/2013	29.922	-85.503	Diving. Min Dispersal = 70, Max Dispersal = 70.
9	12:23:42	6/25/2013	29.921	-85.505	Diving and milling. Min Dispersal = 70, Max Dispersal = 70. Too far away from each other to get all in the camera view.
10	12:25:49	6/25/2013	29.918	-85.501	Min Dispersal = 70, Max Dispersal = 70. Too difficult to video due to dispersal distance and diving time.
11	12:26:28	6/25/2013	29.924	-85.498	End of focal and video.
Sighting N	umber 30 fo	r 25 June 201	3		
Species: Tr	ursiops trunce	<i>tus</i> . Group siz	ze: 7		
1	12:59:46	6/25/2013	29.917	-85.501	Socializing heading NE. Min Dispersal = 0.5, Max Dispersal = 6. Very social, body contact, diving, inverted swimming.
2	13:02:54	6/25/2013	29.972	-85.957	Surface-active mill heading NE. Min Dispersal = 0.5, Max Dispersal = 40. Socializing, inverted swim right under one another, start of video.
3	13:05:28	6/25/2013	29.971	-85.951	Socializing heading NE. Min Dispersal = 0.5, Max Dispersal = 40.
4	13:06:35	6/25/2013	29.965	-85.953	Socializing heading NE. Min Dispersal = 0.5, Max Dispersal = 40. Two together, the others are farther away. Inverted swim one under another.
5	13:07:36	6/25/2013	29.966	-85.960	Socializing heading NE. Min Dispersal = 0.5, Max Dispersal = 40.
6	13:08:41	6/25/2013	29.964	-85.960	Medium travel heading SE. Min Dispersal = 0.5, Max Dispersal = 50.
7	13:10:03	6/25/2013	29.969	-85.962	Socializing. Min Dispersal = 0.5, Max Dispersal = 50. Two are engaged in mating.
8	13:11:03	6/25/2013	29.972	-85.962	Medium travel. Min Dispersal = 0.5, Max Dispersal = 50. Other animals are dispersed and traveling away from the two.
9	13:12:05	6/25/2013	29.964	-85.959	Diving heading SE. Min Dispersal = 0.5, Max Dispersal = 100. All others have split up away from couple.
10	13:14:18	6/25/2013	29.966	-85.959	Slow travel. Min Dispersal = 0.5, Max Dispersal = 100. Individual animals are slowly coming back together.
11	13:15:38	6/25/2013	29.971	-85.965	Travel heading SE. Min Dispersal = 1, Max Dispersal = 100. Male synch chasing female, socializing, milling.
12	13:16:48	6/25/2013	29.963	-85.964	Min Dispersal = 1, Max Dispersal = 100. Two following another travel and diving.
13	13:18:14	6/25/2013	29.968	-85.960	Social heading to SE. Min Dispersal = 1, Max Dispersal = 100.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 30 fo	r 25 June 201	l3 (continued)	
14	13:19:36	6/25/2013	29.972	-85.967	Social heading to SE. Min Dispersal = 1, Max Dispersal = 100. Groups dispersed more, becoming more difficult to follow, more diving.
15	13:21:13	6/25/2013	29.966	-85.969	Diving heading to SE. Min Dispersal = 1, Max Dispersal = 100. More surface activity.
16	13:22:17	6/25/2013	29.964	-85.961	Social heading to SE. Min Dispersal = 1, Max Dispersal = 80. Have grouped back together and diving frequently.
17	13:23:14	6/25/2013	29.964	-85.961	Social heading to SE. Min Dispersal = 1, Max Dispersal = 80. Four together in one group, 5 in the other.
18	13:24:15	6/25/2013	29.963	-85.969	Social heading to SE. Min Dispersal = 1, Max Dispersal = 80. Five porpoise and dive.
19	13:25:21	6/25/2013	29.964	-85.971	Dive. Min Dispersal = 1, Max Dispersal = 80. All but one underwater.
20	13:26:22	6/25/2013	29.968	-85.972	Social. Min Dispersal = 1, Max Dispersal = 80. Two keeping one separated from the rest of the group.
21	13:27:23	6/25/2013	29.967	-85.963	Social. Min Dispersal = 1, Max Dispersal = 40.
22	13:28:27	6/25/2013	29.968	-85.964	Dive. Min Dispersal = 1, Max Dispersal = 40. All underwater.
23	13:29:34	6/25/2013	29.963	-85.969	Dive. Min Dispersal = 1, Max Dispersal = 40. Only one at surface.
24	13:30:35	6/25/2013	29.968	-85.964	Surface-active mill heading SE. Min Dispersal = 1, Max Dispersal = 40. Group back at surface.
25	13:31:36	6/25/2013	29.969	-85.971	Slow travel. Min Dispersal = 1, Max Dispersal = 20.
26	13:32:32	6/25/2013	29.969	-85.967	End of focal and video.
		26 June 2013			
Species: Ti		<i>atus</i> . Group si		P	
1	9:27:57	6/26/2013	29.939	-85.850	Resting heading NW.
2	9:28:48	6/26/2013	29.941	-85.854	Resting/diving with some slapping.
3	9:29:16	6/26/2013	29.944	-85.846	Resting/diving heading NW. Min Dispersal = 3, Max Dispersal = 4. Groups of 2-3 and 5 per group; within the groups 0.5-1 dispersal.
4	9:31:16	6/26/2013	29.941	-85.855	Resting/diving heading NW. Min Dispersal = 1, Max Dispersal = 5. Little groups are joining and tighter.
5	9:32:32	6/26/2013	29.944	-85.847	Resting/diving. Same behavior, no changes.
6	9:33:26	6/26/2013	29.943	-85.848	Resting/diving. Same behavior, no changes.
7	9:35:06	6/26/2013	29.944	-85.849	Resting/diving. Seem to be getting a little closer.
8	9:36:10	6/26/2013	29.942	-85.857	Resting/diving heading NW. Min Dispersal = 1, Max Dispersal = 5. Only a few are up at the surface.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 3 for	26 June 2013	6 (continued)		
9	9:36:47	6/26/2013	29.942	-85.852	All are up now.
10	9:37:57	6/26/2013	29.949	-85.858	Resting/diving. Same behavior, no changes.
11	9:38:32	6/26/2013	29.942	-85.855	Coming up to the surface, taking a breath and diving back down.
12	9:40:55	6/26/2013	29.946	-85.851	Same behavior - no change.
13	9:42:18	6/26/2013	29.952	-85.858	Min Dispersal = 5, Max Dispersal = 10. Now have formed 3 groups -groups 5-10 BL apart; 0.5-1 BL within groups.
14	9:43:56	6/26/2013	29.953	-85.858	Only 3 at surface, same behavior.
15	9:45:01	6/26/2013	29.949	-85.851	Same behavior; 2 splitting off from the group; looks like they are moving away; 1 in between 2 groups and the 1 group is still tight.
16	9:45:59	6/26/2013	29.946	-85.856	Formed chorus line; 3 groups still there; looks like 1-2 animals near the one by itself; all parallel now; still heading NW.
17	9:46:59	6/26/2013	29.950	-85.863	Same behavior - no change.
18	9:47:23	6/26/2013	29.952	-85.853	Min Dispersal = 0.5, Max Dispersal = 4. Not in a line anymore; 9 at surface in one group and 0.5-4 BL apart.
19	9:48:32	6/26/2013	29.949	-85.861	Slow travel. Min Dispersal = 0.5, Max Dispersal = 4. Still sitting at surface.
20	9:49:03	6/26/2013	29.950	-85.852	Forming a line, 2 different groups/potentially 3 groups.
21	9:49:22	6/26/2013	29.949	-85.862	Groups merging back together.
22	9:50:52	6/26/2013	29.947	-85.856	Same - group up, separate out, group up again seems to be cycle.
23	9:51:16	6/26/2013	29.954	-85.860	Now clouds are showing up and glare too much for video so going back online. End of focal.
Sighting N	lumber 6 for	26 June 2013	3		
Species: Tr	irsiops trunce	<i>atus</i> . Group siz	ze: 3		
1	10:48:43	6/26/2013	29.938	-85.564	Probably bottlenose; getting pictures first.
2	10:49:48	6/26/2013	29.945	-85.565	Heading W. Count of 2 individuals; mother- calf pair, on top of each other.
3	10:51:27	6/26/2013	29.944	-85.559	Possible nursing.
4	10:52:07	6/26/2013	29.945	-85.568	Min Dispersal = 0, Max Dispersal = 0.5. Down right now.
5	10:53:04	6/26/2013	29.943	-85.563	Min Dispersal = 0, Max Dispersal = 0.5 . Calf is moving around mom a little.
6	10:53:39	6/26/2013	29.942	-85.570	More active now, flipping around.
7	10:54:01	6/26/2013	29.938	-85.564	There is another animal - count now up to 3.
8	10:54:33	6/26/2013	29.944	-85.566	Animals coming together that were dispersed perhaps.
9	10:54:50	6/26/2013	29.938	-85.565	Diving.
10	10:55:36	6/26/2013	29.940	-85.563	Now all animals are down.

Aerial Monitoring Surveys

B-10

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	lumber 6 for	26 June 2013	(continued)		
11	10:56:22	6/26/2013	29.945	-85.566	Lost animals.
12	10:57:24	6/26/2013	29.946	-85.570	Resighted animals at 2 o'clock.
13	10:57:57	6/26/2013	29.940	-85.571	Heading W. Just dove; 2 animals sighted and they were not next to each other.
14	10:58:34	6/26/2013	29.939	-85.566	Both disappeared again.
15	10:59:14	6/26/2013	29.942	-85.564	Resighted 2 individuals – mother-calf pair.
16	10:59:47	6/26/2013	29.946	-85.567	Two animals and something small right between - not sure if fish or baby; seems like the other 2 are ignoring whatever it is.
17	11:00:30	6/26/2013	29.947	-85.567	Travel.
18	11:00:57	6/26/2013	29.942	-85.572	Travel with short dives.
19	11:02:10	6/26/2013	29.949	-85.567	Still down or not resighted.
20	11:03:29	6/26/2013	29.945	-85.561	Still not resighted.
21	11:03:56	6/26/2013	29.941	-85.573	May have resighted; dove back down.
22	11:04:21	6/26/2013	29.945	-85.566	Resighted mother-calf pair.
23	11:04:36	6/26/2013	29.942	-85.572	Dove down; saw blow before dive.
24	11:05:20	6/26/2013	29.943	-85.566	Still down.
25	11:05:55	6/26/2013	29.952	-85.572	Saw 2 again.
26	11:06:48	6/26/2013	29.951	-85.576	Down.
27	11:07:21	6/26/2013	29.947	-85.563	One up at 2 o'clock.
28	11:07:55	6/26/2013	29.949	-85.567	Haven't moved since we've located this group.
29	11:08:09	6/26/2013	29.944	-85.563	2 sighted - one dove down.
30	11:08:42	6/26/2013	29.950	-85.569	Dove back down.
31	11:09:00	6/26/2013	29.944	-85.563	Stopping focal since animals keep diving and are not good to conduct focal follow.
Sighting N	lumber 19 fo	r 26 June 201	3		
Species: St	enella frontal	is. Group size	: 7		
1	12:05:48	6/26/2013	30.038	-85.859	At surface splashing.
2	12:06:28	6/26/2013	30.038	-85.858	Surface-active travel heading S. Min Dispersal = 0.5, Max Dispersal = 4. Now count is 6-7; Splashing, inverted swimming.
3	12:08:02	6/26/2013	30.036	-85.857	Travel. Might be spotted dolphin.
4	12:09:00	6/26/2013	30.038	-85.862	Travel heading S. Min Dispersal = 0.5, Max Dispersal = 4. Doing a lot of underwater travel.
5	12:09:33	6/26/2013	30.036	-85.855	Surfacing and diving immediately; still a couple swimming upside down.
6	12:10:36	6/26/2013	30.039	-85.863	Travel. Same behavior.
7	12:10:57	6/26/2013	30.039	-85.855	Travel. Moving quickly.
8	12:11:56	6/26/2013	30.033	-85.860	Travel. Some are still swimming upside down.
9	12:13:23	6/26/2013	30.033	-85.862	Travel heading S. One on top and three underneath all upside down traveling.
10	12:15:04	6/26/2013	30.038	-85.863	Travel. Same behaviors.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 19 fo	r 26 June 201	3 (continued)	
11	12:16:44	6/26/2013	30.035	-85.858	Travel heading S. Min Dispersal = 0.5, Max Dispersal = 10. Count is still 6-7.
12	12:17:30	6/26/2013	30.033	-85.858	Travel. Seems like the one that leaves, does the inverted swimming.
13	12:18:20	6/26/2013	30.031	-85.858	Travel. Same behavior state.
14	12:18:46	6/26/2013	30.033	-85.866	Slow Travel heading S.
15	12:19:15	6/26/2013	30.029	-85.862	Travel. Not spending a lot of time at surface, staying just below.
16	12:20:14	6/26/2013	30.031	-85.867	Travel. A few inverted swimming; twisting.
17	12:21:08	6/26/2013	30.034	-85.865	Travel. Criss-crossing underneath group by inverted swimming individuals - 3 seem like they are swimming that way, more than the rest.
18	12:22:47	6/26/2013	30.034	-85.863	Travel. Looks like they have slowed down.
19	12:23:09	6/26/2013	30.026	-85.860	Travel. Min Dispersal = 0.5, Max Dispersal = 6. Travel just sped back up.
20	12:23:39	6/26/2013	30.033	-85.863	Travel. Min Dispersal = 0.5, Max Dispersal = 6. A couple stragglers on side.
21	12:24:07	6/26/2013	30.026	-85.866	Travel. Almost all are inverted swimming.
22	12:25:28	6/26/2013	30.026	-85.860	Travel. Four are right side up again, but still close together.
23	12:26:01	6/26/2013	30.032	-85.864	Travel. Three are inverted swimming.
24	12:26:12	6/26/2013	30.029	-85.859	Travel. Deep diving.
25	12:26:47	6/26/2013	30.031	-85.864	Travel. Grouped back up again.
26	12:27:12	6/26/2013	30.023	-85.862	Travel. One trailing, but is starting to speed up.
27	12:28:01	6/26/2013	30.022	-85.864	Travel. Moved about 1 mile since started.
28	12:28:29	6/26/2013	30.029	-85.860	End of focal.
Sighting N	umber 20 fo	r 26 June 201	3		
Species: Tr	ursiops trunca	<i>tus</i> . Group siz	ze: 50		
1	12:41:15	6/26/2013	30.028	-85.813	Multiple groups - all over the place; not moving, looks like probably feeding.
2	12:42:31	6/26/2013	30.024	-85.806	4-5 subgroups with a mile radius; same area.
3	12:42:55	6/26/2013	30.028	-85.812	At least some are bottlenose dolphins.
4	12:43:06	6/26/2013	30.028	-85.807	Groups might converge together. Deep diving.
5	12:44:15	6/26/2013	30.021	-85.806	See shadow underwater, about to surface.
6	12:44:28	6/26/2013	30.021	-85.812	Surfacing
7	12:44:36	6/26/2013	30.024	-85.814	Likely a couple calves in the group.
8	12:45:10	6/26/2013	30.020	-85.806	Group on the far side is very active; all came up for a couple breaths, lots of porpoising going on.
9	12:46:07	6/26/2013	30.017	-85.811	Min Dispersal = 0.5, Max Dispersal = 100. Big group diving deep.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 20 fo	r 26 June 201	3 (continued)	
10	12:46:51	6/26/2013	30.019	-85.806	0.5 to 100 BL in main group; 1-6 in groups; all the subgroups are spending time traveling, come up catch breath, and go back down.
11	12:47:42	6/26/2013	30.019	-85.807	Not a lot of surface activity right now.
12	12:47:57	6/26/2013	30.022	-85.813	This subgroup is a chorus line - 0.5-1 BL apart in this subgroup.
13	12:49:23	6/26/2013	30.017	-85.806	Spread out.
14	12:50:46	6/26/2013	30.024	-85.804	Possible feeding - seems to be traveling and staying in area; other group spinning around and inverted swimming.
15	12:51:52	6/26/2013	30.015	-85.806	Quite a few are up; and a few are just below surface.
16	12:52:39	6/26/2013	30.015	-85.804	Deeper diving now than there were before.
17	12:52:57	6/26/2013	30.017	-85.813	Calf in this group likely.
18	12:53:38	6/26/2013	30.015	-85.808	Animals have disappeared.
19	12:53:51	6/26/2013	30.021	-85.812	Resighted - underwater.
20	12:54:19	6/26/2013	30.019	-85.802	May be 2 species of dolphin.
21	12:55:17	6/26/2013	30.015	-85.806	Resurfacing.
22	12:56:47	6/26/2013	30.016	-85.807	Leaving area because of airspace restrictions.
Sighting N	umber 10 fo	r 27 June 201	3		
Species: Ti	ursiops trunce	<i>atus</i> . Group siz	ze: 10	_	_
1	9:33:24	6/27/2013	29.943	-85.837	Came up straight and dove back down.
2	9:34:56	6/27/2013	29.953	-85.838	Slow-medium travel heading E. Min Dispersal = 0.5, Max Dispersal = 0.5. Side by side.
3	9:36:11	6/27/2013	29.946	-85.833	Dove down right after last observation and still down.
4	9:37:10	6/27/2013	29.944	-85.834	Still down.
5	9:38:26	6/27/2013	29.946	-85.842	Still down - not resighted.
6	9:39:15	6/27/2013	29.943	-85.840	Travel heading E. Min Dispersal = 6, Max Dispersal = 6. Resighted - moved apart.
7	9:39:58	6/27/2013	29.943	-85.837	Min Dispersal = 2, Max Dispersal = 2.
8	9:41:06	6/27/2013	29.948	-85.843	Now down
9	9:42:38	6/27/2013	29.941	-85.842	Still down
10	9:43:29	6/27/2013	29.941	-85.843	1 individual at surface.
11	9:44:05	6/27/2013	29.941	-85.839	Both are up.
12	9:44:44	6/27/2013	29.942	-85.835	Individuals are just under the surface.
13	9:45:11	6/27/2013	29.946	-85.840	Only one is seen.
14	9:45:26	6/27/2013	29.945	-85.834	Surfaced and went back under water.
15	9:46:21	6/27/2013	29.943	-85.832	More of a northerly heading now.
16	9:47:00	6/27/2013	29.946	-85.831	Slow travel. Continuing to coming up and diving back down.
17	9:47:43	6/27/2013	29.949	-85.832	Only occasionally seeing the other individual; rarely see both.

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 10 fo	r 27 June 201	3 (continued)	
18	9:48:07	6/27/2013	29.942	-85.834	Diving and doing some surface swimming and then dive back down.
19	9:48:36	6/27/2013	29.949	-85.829	Heading is NE now.
20	9:49:18	6/27/2013	29.951	-85.832	Last dive was deep.
21	9:50:12	6/27/2013	29.953	-85.828	Min Dispersal = 1, Max Dispersal = 7. 7 individuals now seen.
22	9:50:36	6/27/2013	29.949	-85.832	8 individuals now counted; a couple are farther away.
23	9:51:06	6/27/2013	29.953	-85.824	Looks like 2 that are away from group are joining now.
24	9:52:11	6/27/2013	29.949	-85.828	Seems like they are now milling around.
25	9:52:44	6/27/2013	29.952	-85.822	Heading SW. Min Dispersal = 1, Max Dispersal = 4. Right under surface.
26	9:54:09	6/27/2013	29.956	-85.829	Slow travel. A couple of dolphins are coming out of the water a little and one is swimming in front of the other.
27	9:55:13	6/27/2013	29.951	-85.826	One is inverted swimming; count is up to 10.
28	9:56:20	6/27/2013	29.949	-85.833	Same type of behaviors.
29	9:56:53	6/27/2013	29.949	-85.828	Min Dispersal = 1, Max Dispersal = 10. Still a couple inverted swimming, there might be two groups.
30	9:57:29	6/27/2013	29.952	-85.828	Coming up and surface travel.
31	9:57:42	6/27/2013	29.948	-85.831	A little more dispersed now.
32	9:58:26	6/27/2013	29.948	-85.831	Tail slapping.
33	9:59:01	6/27/2013	29.953	-85.828	Going back online.
Sighting N	lumber 23 fo	r 27 June 201	3		
Species: Tr	ursiops trunce	<i>atus</i> . Group siz	ze: 6	U)	
1	11:44:18	6/27/2013	30.160	-85.826	Located about 3:00 and a little ways off wing.
2	11:45:25	6/27/2013	30.161	-85.835	Just dove.
3	11:45:54	6/27/2013	30.162	-85.827	3 dolphins sighted in a group; 3 in another group - 2 groups.
4	11:46:32	6/27/2013	30.163	-85.827	Min Dispersal = 0.5, Max Dispersal = 1.
5	11:46:48	6/27/2013	30.157	-85.829	Travel heading SW. Min Dispersal = 0.5, Max Dispersal = 2.
6	11:47:25	6/27/2013	30.158	-85.827	Mom-calf and another animal.
7	11:47:55	6/27/2013	30.162	-85.832	Focusing effort on 1 group.
8	11:48:51	6/27/2013	30.166	-85.829	Dolphins up now.
9	11:49:43	6/27/2013	30.167	-85.830	Heading SW. A couple sighted.
10	11:50:05	6/27/2013	30.160	-85.833	The couple of animals in the one group dove.
11	11:50:57	6/27/2013	30.161	-85.836	Group not resighted.
12	11:51:45	6/27/2013	30.160	-85.835	Heading NW.
13	11:52:27	6/27/2013	30.159	-85.834	Animals are not showing themselves.
14	11:53:29	6/27/2013	30.166	-85.833	Travel heading W. Min Dispersal = 0.5, Max Dispersal = 2.

Aerial Monitoring Surveys

B-14

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 23 fo	r 27 June 201	3 (continued)	
15	11:54:30	6/27/2013	30.161	-85.829	Surfaced now.
16	11:54:46	6/27/2013	30.161	-85.836	Dove down.
17	11:54:56	6/27/2013	30.166	-85.835	One came up and dove back down with splash; some porpoising.
18	11:55:17	6/27/2013	30.161	-85.830	One came to surface took breath.
19	11:55:45	6/27/2013	30.167	-85.834	A few are up.
20	11:56:06	6/27/2013	30.161	-85.833	4 sighted now; Heading N.
21	11:57:45	6/27/2013	30.163	-85.837	Dolphins not seen.
22	11:58:11	6/27/2013	30.165	-85.829	Dolphins are now up at surface.
23	11:58:37	6/27/2013	30.167	-85.837	Min Dispersal = 1, Max Dispersal = 6. Dove back down.
24	11:59:05	6/27/2013	30.162	-85.834	Socializing.
25	11:59:44	6/27/2013	30.164	-85.831	One animal sighted at surface.
26	12:01:17	6/27/2013	30.163	-85.830	2 animals came up and went back down.
27	12:01:56	6/27/2013	30.170	-85.830	Animals are back up at surface.
28	12:03:06	6/27/2013	30.164	-85.837	Not resighted.
29	12:03:53	6/27/2013	30.164	-85.837	Animals came up and were sitting at surface.
30	12:04:58	6/27/2013	30.172	-85.835	Came up - one is swimming upside down under the other; there are 3 up now; they are within 0.5-6 BL; one dove down and other two under surface.
31	12:05:47	6/27/2013	30.172	-85.831	Dove down now.
32	12:05:58	6/27/2013	30.167	-85.832	Now over in the Sargassum mat.
33	12:06:46	6/27/2013	30.168	-85.831	Two individuals swimming next to each other.
34	12:07:00	6/27/2013	30.169	-85.838	Travel. Min Dispersal = 0.5, Max Dispersal = 0.5. One is just a little bit in front of the other.
35	12:08:02	6/27/2013	30.172	-85.831	Cut off focal.
Sighting N	umber 26 fo	r 27 June 201	3		
Species: Tu	ursiops trunce	<i>utus</i> . Group siz	ze: 10		
1	12:18:59	6/27/2013	29.977	-85.998	Heading W. Min Dispersal = 1, Max Dispersal = 15. Looks like they are hanging out at the surface.
2	12:20:38	6/27/2013	29.981	-85.993	2 came up to surface and went back down.
3	12:21:02	6/27/2013	29.985	-86.001	A couple are traveling.
4	12:22:37	6/27/2013	29.982	-86.002	Counted 9 on that pass.
5	12:24:15	6/27/2013	29.983	-86.003	Min Dispersal = 1, Max Dispersal = 15. One inverted swim.
6	12:24:46	6/27/2013	29.982	-85.996	Heading W. Two individuals are separated far from the rest of the group.
7	12:25:30	6/27/2013	29.986	-85.995	Moving in different directions but primarily west, doing some subsurface travel.
8	12:25:53	6/27/2013	29.982	-86.002	Come up out of the water to breath and diving back down.
9	12:26:06	6/27/2013	29.987	-86.002	Inverted swimming under one other.

Aerial Monitoring Surveys

B-15

22-28 June 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 26 fo	r 27 June 201	l3 (continued)	
10	12:26:30	6/27/2013	29.982	-85.995	Mother-calf pair and 3 other individuals, not doing much.
11	12:27:19	6/27/2013	29.984	-85.994	At least 6 together in a group; right below surface, not doing anything.
12	12:28:40	6/27/2013	29.988	-86.002	Resting under the surface of the water.
13	12:29:08	6/27/2013	29.981	-85.998	This group is 0.5-1 BL apart.
14	12:29:54	6/27/2013	29.981	-85.999	Surface and then dive back under water.
15	12:30:05	6/27/2013	29.984	-86.003	Up to 15 BL apart.
16	12:31:16	6/27/2013	29.987	-85.994	Same behavior.
17	12:31:37	6/27/2013	29.984	-86.002	Four are in front of others; rests are still lined up together.
18	12:32:13	6/27/2013	29.983	-85.998	Two groups of two and each are 2 BL apart and one guy is off the groups and he is 1 BL apart.
19	12:32:48	6/27/2013	29.987	-85.995	Two individuals look like they are moving away from the rest of the group.
20	12:33:37	6/27/2013	29.987	-85.995	Same behavior.
21	12:34:31	6/27/2013	29.984	-85.997	No change in behavior or dispersal.
22	12:35:16	6/27/2013	29.984	-86.000	One further up and then paired up animals, which are 2-3 BL and the last individual is about 15 BL away.
23	12:36:23	6/27/2013	29.990	-85.997	Same behavior.
24	12:37:08	6/27/2013	29.990	-85.998	Now looks like they may be traveling a bit more.
25	12:37:31	6/27/2013	29.983	-86.000	Now they don't appear to be traveling.
26	12:38:39	6/27/2013	29.991	-86.002	All came up and took a breath.
27	12:39:19	6/27/2013	29.986	-86.005	Still in same configuration.
28	12:39:38	6/27/2013	29.989	-85.997	Going back online.

Key:

BL = body length(s)

Max Dispersal = maximum dispersal (distance estimated in number of body lengths for animals in the group located farthest apart from one another)

Min Dispersal = minimum dispersal (distance estimated in number of body lengths for animals in the group located closest together to one another)

Appendix E – July 2013 Aerial Monitoring Trip Report THIS PAGE INTENTIONALLY BLANK

Naval Surface Warfare Center Panama City Division (NSWC PCD)

Marine Species Monitoring

AERIAL MONITORING SURVEYS TRIP REPORT

September 2013

28-31 July 2013

ACRONYMS AND ABBREVIATIONS

0	degree(s)
BL	body length(s)
BSS	Beaufort sea state
DON	Department of the Navy
ft	foot/feet
hr	hour(s)
ICMP	Integrated Comprehensive Monitoring Program
km	kilometer(s)
km ²	square kilometer(s)
m	meter(s)
min	minute(s)
nmi	nautical mile(s)
nmi ²	square nautical mile(s)
NMFS	National Marine Fisheries Service
NSWC PCD	Naval Surface Warfare Center Panama City Division
OPAREA	operating area
REMUS	Remote Environmental Monitoring Units
SPUE	sightings per unit effort
U.S.	United States

28-31 July 2013

Table of Contents

ACRONYMS AND ABBREVIATIONS	ii
SECTION 1 INTRODUCTION	1
SECTION 2 METHODS	1
SECTION 3 RESULTS	9
SECTION 4 ACKNOWLEDGEMENTS	
SECTION 5 LIST OF PREPARERS	16
SECTION 6 LIST OF REFERENCES	

Appendices

Appendix A. Environmental, Oceanographic, and Sighting Conditions	A-1
Appendix B. Focal-Follow Data	B-1

Figures

Figure 1. Pre-planned Tracklines for the Monitoring Effort for the REMUS Sonar Test Event for 28–31 July 2013 in the NSWC PCD Study Area	2
Figure 2. Location of All Cetacean and Sea Turtle Sightings Recorded Throughout the REMUS Sonar Test Event (28–31 July 2013)	4
Figure 3. Locations of Sea Turtles Recorded Before the REMUS Sonar Test Event (28 July 2013)	5
Figure 4. Locations of Cetaceans and Sea Turtles Recorded Before the REMUS Sonar Test Event (29 July 2013)	6
Figure 5. Locations of Cetaceans and Sea Turtles Recorded During the REMUS Sonar Test Event (30 July 2013)	7
Figure 6. Locations of Cetaceans and Sea Turtles Recorded After the REMUS Sonar Test Event (31 July 2013)	8

Tables

Table 1. Summary of Monitoring Effort for NSWC PCD REMUS Sonar Test Event	3
Table 2. Observers and Roles	3
Table 3. Summary of Sightings	10
Table 4. Summary of Sightings Recorded During Monitoring for the REMUS Sonar Test Event	15
Table 5. Summary of Focal Follows Conducted During Monitoring for the REMUS Sonar Test Event	16

28-31 July 2013

THIS PAGE INTENTIONALLY LEFT BLANK

28-31 July 2013

Section 1 Introduction

Aerial surveys for marine-species monitoring occurred during 28 through 31 July 2013 for a Remote Environmental Monitoring Units (REMUS) sonar test event. These surveys were conducted off the west coast of Florida in the Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area in the Gulf of Mexico. The REMUS is an unmanned undersea vehicle used by the United States (U.S.) Navy for shallow-water mine countermeasures and hydrographic surveys.

As part of the requirements for compliance with the Marine Mammal Protection Act of 1972 and the Endangered Species Act of 1973, the U.S. Navy developed the Integrated Comprehensive Monitoring Program (ICMP; Department of the Navy [DON] 2010a). The ICMP applies by regulation to those activities on U.S. Navy training ranges and operating areas (OPAREAs) for which the U.S. Navy has sought and received incidental take authorizations. To support the U.S. Navy in meeting regulatory requirements for monitoring established under the NSWC PCD Final Rule (National Marine Fisheries Service [NMFS] 2010), and to provide a mechanism to assist with coordination of program objectives under the ICMP, monitoring of marine mammals and sea turtles (protected marine species) during the test event included visual surveys from a fixed-wing aircraft.

Section 2 Methods

Study Area

The NSWC PCD Study Area includes both territorial waters (between 0 and 22 kilometers [km]; 0 and 12 nautical miles [nmi] from the shore) and non-territorial waters (beyond the 22-km [12-nmi] limit). Monitoring conducted for protected marine species during the REMUS sonar test event was focused within the Panama City OPAREA of the NSWC PCD Study Area (**Figure 1**). The test areas for the REMUS are approximately 1.7 km (0.92 nmi) offshore, cover an area approximately 6.8 square kilometers (km²) (2.0 square nautical miles [nmi²]) in size and range in bottom depth from 10 to 18 meters (m) (33 to 59 feet [ft]).

Monitoring was conducted 2 days before, 1 day during, and 1 day after the REMUS sonar test event, which occurred on 30 July 2013. The use of sonar during the day of testing commenced at 1100 Central Daylight Time and ended at 1400 Central Daylight Time.

Aerial-Based Monitoring

Aerial-based monitoring was performed over a 4-day period from 28 through 31 July 2013 (**Table 1**). Survey methods were generally consistent with currently accepted Distance Sampling theory (Buckland et al. 2001) and followed a well-established protocol used for aerial surveys throughout all U.S. Navy range complexes (e.g., Smultea and Bacon 2012). A survey altitude and speed of approximately 305 m (1,000 ft) and 185 km/hour (hr) (100 knots) were maintained while on-effort, but might have varied slightly based on weather conditions in the area. Once a marine mammal sighting was made, a focal-follow circling session was attempted at 305 m (1,000 ft) or higher if conditions were appropriate (Smultea and Bacon 2012; refer to the survey methods on page 4 of this document). A lower altitude of approximately 210 to 250 m (700 to 800 ft) was established after focal-follow sessions for photographic purposes to provide sharper images required for species identification.

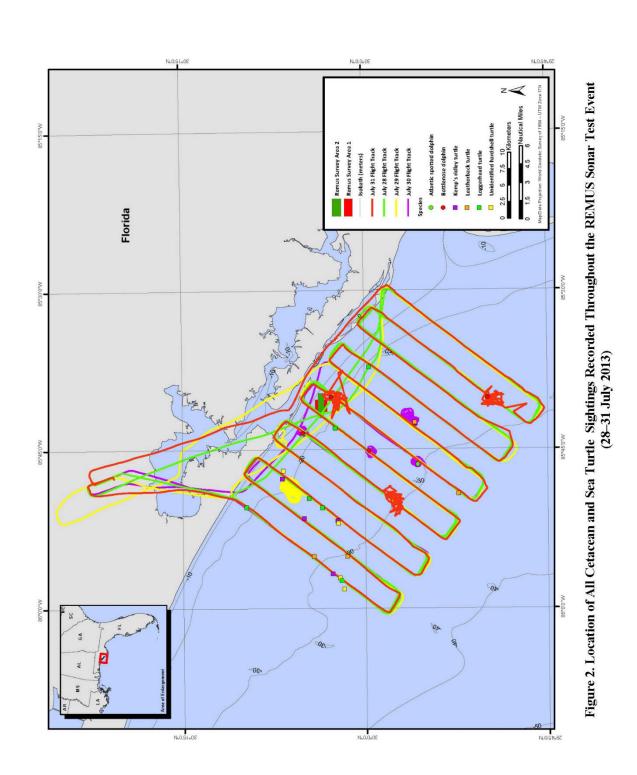
28-31 July 2013

28-31 July 2013

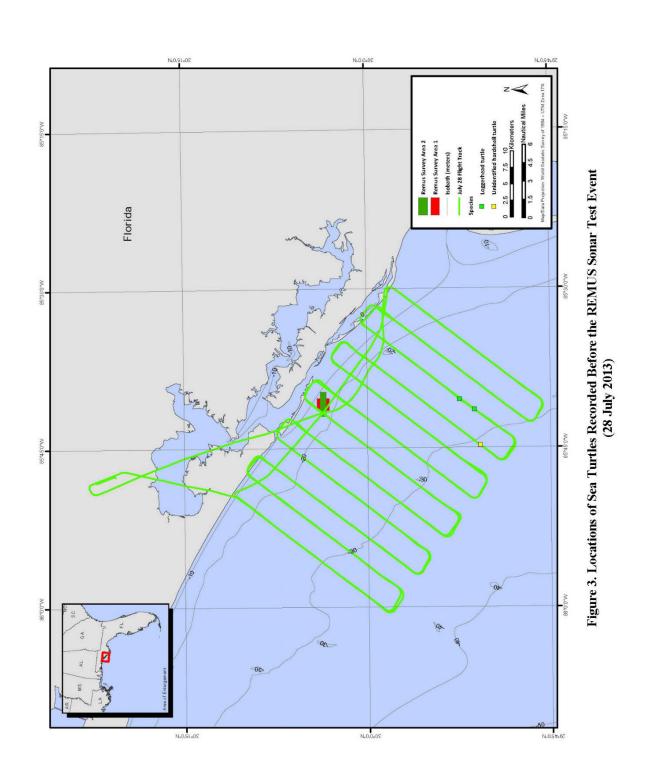
Date	Description	Start Time	Stop Time	Total Survey Time [*] (min)	Total On- Effort Time (min)	Trackline On-Effort Distance (km)	Trackline On-Effort Distance (nmi)
28 July	Transect Survey (Before Event)	13:10:34	17:39:29	269	203	459	248
29 July	Transect Survey (Before Event)	8:48:17	13:22:32	274	178	553	299
30 July	Transect Survey (During Event)	10:57:38	14:03:01	185	69	192	104
31 July	Transect Survey (After Event)	9:08:33	12:37:54	209	109	325	175
	Total			937 (≈15.6 hr)	559 (≈9.3 hr)	1,529	826

Table 1. Summary of Monitoring Effort for NSWC PCD REMUS Sonar Test Event

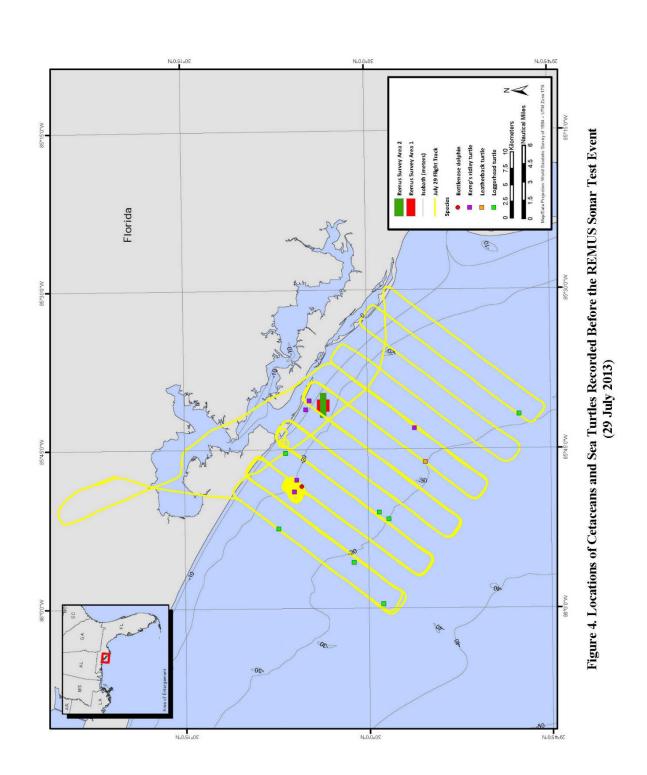
Key: hr = hour(s); km = kilometer(s); min = minute(s); nmi = nautical mile(s)

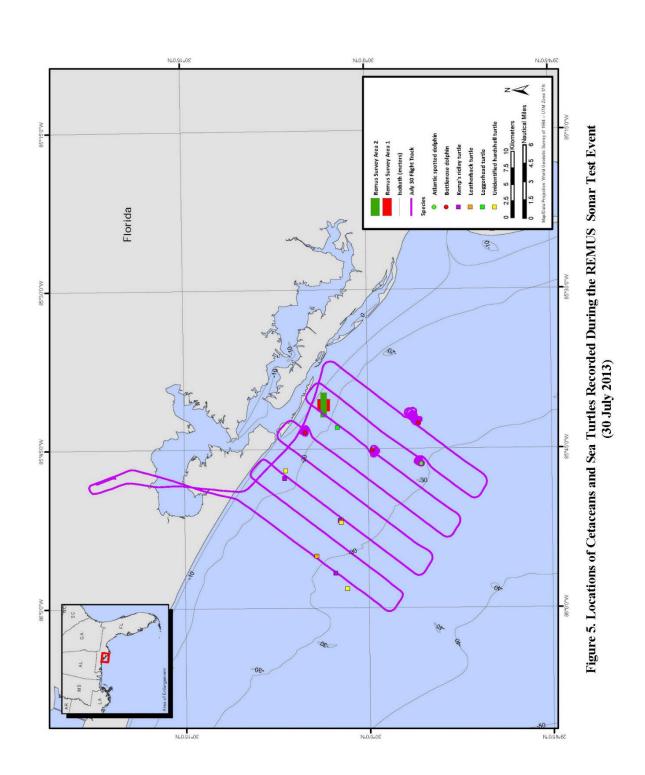

Notes: * Total Survey Time reflect minutes occupied in the range/area of interest and include both on-effort (systematic) and offeffort (connector/circling) total minutes. Total Survey Time may not match the difference between Start Time and Stop Time in the table due to differences in rounding.

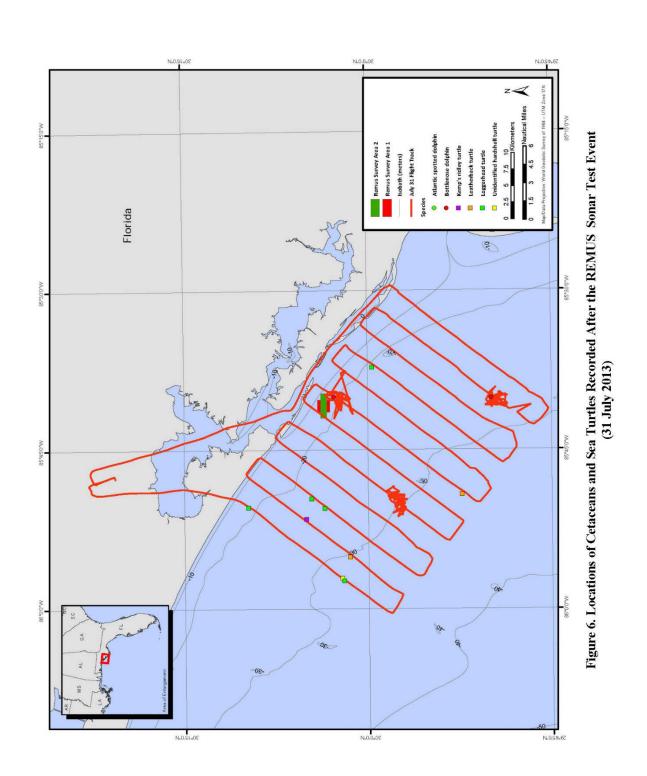
The observation platform was a Cessna T337H Turbo Skymaster aircraft operating out of Northwest Florida Beaches International Airport, Panama City Beach, Florida. Four surveys were conducted following pre-planned tracklines covering the entire REMUS sonar test area. The lines were defined by waypoints designed to extend beyond the entire range (if permitted by U.S. Air Force flight operations) during each survey day for a total flight-time window of over 3 hr (**Table 1, Figure 1**). Aerial observers (**Table 2**) were experienced with trackline survey methodology, had experience in identification of marine mammal and sea turtle species, were knowledgeable of marine mammal biology and behavior, and had previous experience conducting marine mammal and sea turtle observations.


Table 2. Observers and Roles

Observer	Role(s)	Dates of Participation
Lenisa Blair	Chief Scientist, Observer	28–31 July 2013
Carter Esch	Observer	28–29 July 2013
Jennifer Latusek-Nabholz	Observer	30–31 July 2013


Survey effort was designed to include the entirety of the REMUS sonar test area. Twelve parallel tracklines running approximately southwest to northeast, measuring 27.8 km (15.0 nmi) in length, and spaced approximately 3.7 km (2.0 nmi) apart, were flown during "systematic" efforts throughout the surveys. Based on the geometry of the REMUS survey area (the visual area encompassed within the REMUS tracklines), our total survey coverage area was 1,132 km² (330 nmi²; **Figure 1**). Planned lines were followed and no modifications were required from range exclusion by military airspace restrictions or unfavorable weather conditions in the Panama City OPAREA of the NSWC PCD Study Area (**Table 1, Figures 2 through 6**).


28-31 July 2013


28-31 July 2013

28-31 July 2013

28-31 July 2013

28-31 July 2013

The following describe the general survey approach:

- 1. Followed pre-planned tracklines and waypoints using methods described by Smultea and Bacon (2012) until a sighting occurred. Variables such as Beaufort sea state (BSS), glare, and visibility were recorded for each transect flown.
- 2. Upon sighting a marine mammal/sea turtle group, recorded basic sighting information per established protocol (Smultea and Bacon 2012). As outlined in the NSWC PCD Study Area Monitoring Plan (DON 2010b), information included: (1) species identification and group size; (2) location (relative to observation platform); (3) the behavior of marine mammals and sea turtles; (4) date, time, and environmental and oceanographic conditions associated with each observation; (5) animal/group direction of travel relative to true North; and (6) duration of the observation.
- 3. If the species appeared suitable for a focal follow, the aircraft increased altitude to approximately 365 to 455 m (1,200 to 1,500 ft) and radial distance increased approximately 0.5 to 1.0 km (0.3 to 0.5 nmi). Then, the aircraft circled the sighting to obtain detailed behavioral information as long as possible and logistically feasible (i.e., BSS, visibility, group size, behavior, dive times, aircraft considerations [e.g., fuel], etc.). Focal follows occurred for a minimum of 5 minutes (min) and included an observer taking digital photographs of the group when possible.
- 4. If the sighting was not selected for a focal follow, and species and group size were unknown, the aircraft circled the sighting to obtain digital photographs for confirmation of species identification and to estimate group size/composition.

Section 3 Results

Survey Effort

Observers visually surveyed 1,529 km (826 nmi) of on-effort tracklines and 2,545 km (1,374 nmi) of total trackline (including the systematic transects, cross-legs between transects, and circling for focal follows or species identification) during 4 days for 9.3 hr of on-effort status (**Table 1**). BSS ranged from 1 to 4, and all sightings were made in BSS between 2 and 4 (**Table 3**). Appendix A contains a detailed description of environmental, oceanographic, and sighting conditions. Survey results in the following subsection are reported based on requirements outlined in NMFS (2010), as a monitoring event constitutes effort conducted 2 days before the test event, the days (1 day, in this instance) during the test event, and 1 day after the test event.

Sightings

Eight sightings of cetaceans and 35 sightings of sea turtles were recorded during times of both on-effort and off-effort, which encompassed 15.6 hr of total survey flight time within the REMUS survey area (Figure 2, Table 3).

One sighting of cetaceans and 16 sightings of sea turtles were made before the test event on 28 and 29 July 2013 (Figures 3 and 4, Table 3). Four sightings of cetaceans and 10 sightings of sea turtles were made during the test event on 30 July 2013 (Figure 5, Table 3). Three sightings of cetaceans and 9 sightings of sea turtles were made after the test event on 31 July 2013 (Figure 6, Table 3).

Aerial Monitoring Surveys

28-31 July 2013

Sighting No.	Date (Day/ Month/ Year)	Species		roup S t/High		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)		Distance off Track km (nmi)	Heading (°)	Bottom Depth [†] m (ft)*	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
							Bef	ore NSW	C PC	D REMU	S Sonar To	est Eve	nt Sighti	ngs – 28 Ju	uly 2013				
1	28/7/2013	CC	1	1	1	•	14:44:29	14:45:17	3	29.874	-85.674	25	180	0.7 (0.4)	-	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
2	28/7/2013	Unid HST	1	1	1		16:51:17	16:51:43	4	29.846	-85.747	35	270	0.4 (0.2)	-	30 (98)	No/No	No	Unidentified hardshell turtle sighted at the surface. No disturbance detected.
3	28/7/2013	CC	1	1	1	2	16:55:52	16:56:27	4	29.854	-85.691	32	250	0.5 (0.3)	-	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
							Bef	ore NSW	C PC	D REMU	S Sonar To	est Eve	nt Sighti	ngs – 29 Ju	uly 2013				
1	29/7/2013	CC	1	1	1	-	8:50:21	8:50:42	2	30.122	-85.875	36	190	0.4 (0.2)	-	20 (66)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
2	29/7/2013	CC	1	1	1	-	8:56:51	-	2	29.980	-85.994	28	90	0.6 (0.3)	-	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
3	29/7/2013	CC	1	1	1	1 7 1	9:01:02	-	2	30.020	-85.928	25	270	0.7 (0.4)	,	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
4	29/7/2013	TT	2	2	2		9:10:44	9:55:18	2	30.090	-85.808	25	180	0.7 (0.4)		20 (66)	Yes/No	Yes	Group of 2 bottlenose dolphins traveling. See Appendix B for focal follow data
5	29/7/2013	LK	1	1	1	-	9:53:04	-	2	30.100	-85.817	20	90	0.8 (0.5)	₹	20 (66)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected. Sighting made off effort.
6	29/7/2013	CC	1	1	1	÷	10:13:58	-	2	30.112	-85.756	20	260	0.8 (0.5)	-	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
7	29/7/2013	LK	1	1	1	÷.	10:39:46	-	2	30.084	-85.688	20	270	0.8 (0.5)	-	10 (33)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.

Table 3. Summary of Sightings

28-31 July 2013

Sighting No.	Date (Day/ Month/ Year)	Species		roup \$ t/High	Size 1/Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Bearing Angle (°)	Distance off Track km (nmi)	Heading (°)	Bottom Depth [†] m (ft)*	Photos/ Video Taken (Yes/ No)	Focal Follow (Yes/ No)	Behavioral Summary
							Before NS	SWC PC	D RE	MUS Son	ar Test Ev	ent Sig	htings – 2	29 July 201	13 (contin	1ued)			
8	29/7/2013	DC	1	1	1		10:48:06	Ξ.Λ.	2	29.922	-85.771	52	180	0.2 (0.1)		30 (98)	No/No	No	Leatherback turtle sighted at the surface. No disturbance detected.
9	29/7/2013	LK	1	1	1	-	10:56:50	÷	3	29.936	-85.718	30	250	0.5 (0.3)	a a	30 (98)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.
10	29/7/2013	CC	1	1	1	-	11:34:25	-	2	29.793	-85.696	44	180	0.4 (0.2)	-	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
11	29/7/2013	LK	1	1	1		12:22:11	51	2	30.097	-85.798	28	90	0.6 (0.3)	-	10 (33)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.
12	29/7/2013	CC	1	1	1	-	12:33:21	-	2	29.972	-85.860	29	90	0.6 (0.3)		30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
13	29/7/2013	CC	1	1	1	-	12:33:57		2	29.985	-85.850	35	100	0.4 (0.2)	-	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
14	29/7/2013	LK	1	1	1	50 1	13:01:03		3	30.079	-85.674	31	100	0.5 (0.3)	.≂o	20 (66)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.
							Dur	ing NSW	C PC	D REMU	JS Sonar T	est Eve	ent Sighti	ngs – 30 J	uly 2013				
1	30/7/2013	DC	1	1	1		11:02:35		2	30.071	-85.919	35	53	0.4 (0.2)	323	30 (98)	No/No	No	Leatherback turtle diving. No disturbance detected.
2	30/7/2013	LK	1	1	1	a.	11:03:48	1	2	30.046	-85.946	50	352	0.2 (0.1)	112	30 (98)	No/No	No	Kemp's ridley turtle diving. No disturbance detected.
3	30/7/2013	Unid HST	1	1	1	1	11:04:40		2	30.030	-85.970	20	293	0.8 (0.5)	203	30 (98)	No/No	No	Unidentified hardshell turtle sighted at the surface. No disturbance detected.
4	30/7/2013	Unid HST	1	1	1	-	11:19:13	-	2	30.112	-85.784	25	82	0.7 (0.4)	352	20 (66)	No/No	No	Unidentified hardshell turtle resting at the surface. No disturbance detected.

Aerial Monitoring Surveys

28-31 July 2013

	Date		G	roup S	Size											Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species	Bes	t/High	/Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)		Distance off Track km (nmi)	Heading (°)	Depth [†] m (ft)*	Video Taken (Yes/ No)	Follow (Yes/ No)	Behavioral Summary
						I	During NS	SWC PC	D RE	MUS Sor	ıar Test Ev	ent Sig	htings – :	30 July 20	13 (conti	nued)		,	
5	30/7/2013	LK	1	1	1		11:19:23	Ξ.	2	30.114	-85.796	35	323	0.4 (0.2)	143	20 (66)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.
6	30/7/2013	DC	1	1	1	16	11:22:49		2	30.038	-85.862	50	292	0.3 (0.2)	322	30 (98)	No/No	No	Leatherback turtle sighted at the surface. No disturbance detected.
7	30/7/2013	LK	1	1	1	ž	11:22:48	ġ.	2	30.039	-85.863	40	293	0.4 (0.2)	23	30 (98)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.
8	30/7/2013	Unid HST	1	1	1		11:22:54	i	2	30.038	-85.866	30	293	0.5 (0.3)	263	30 (98)	No/No	No	Unidentified hardshell turtle sighted at the surface. No disturbance detected.
9	30/7/2013	TT	9	9	9		11:39:46	12:12:35	2	30.086	-85.725	45	307	0.3 (0.2)	37	10 (33)	Yes/Yes	Yes	Group of 9 bottlenose dolphins traveling to the NE. See Appendix B for focal follow data.
10	30/7/2013	TT	24	27	20	6	12:28:20	12:57:51	2	29.994	-85.753	45	213	0.3 (0.2)	333	20 (66)	Yes/Yes	Yes	Group of 24 bottlenose dolphins heading to the NW. See Appendix B for focal follow data.
11	30/7/2013	CC	1	1	1		13:00:55	10	3	30.041	-85.717	35	263	0.4 (0.2)	263	20 (66)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
12	30/7/2013	SF	17	17	10	4	13:10:38	13:33:50	3	29.928	-85.774	35	294	0.4 (0.2)	204	30 (98)	Yes/Yes	Yes	Group of 17 Atlantic spotted dolphins heading to the SW. See Appendix B for focal follow data.
13	30/7/2013	TT	7	7	5	1	13:42:31	13:58:46	2	29.931	-85.710	42	140	0.3 (0.2)	50	30 (98)	Yes/No	Yes	Group of 7 bottlenose dolphins heading to the NE. See Appendix B for focal follow data.
14	30/7/2013	DC	1	1	1	á.	13:49:42		2	29.931	-85.708	÷	÷	in the second se	1	30 (98)	No/No	No	Leatherback turtle seen while circling bottlenose dolphins (sighting 13). Sighting made off effort. No disturbance detected.

Aerial Monitoring Surveys

28-31 July 2013

	Date		G	roup S	Size								n .	Dia		Bottom	Photos/	Focal	
Sighting No.	(Day/ Month/ Year)	Species		t/High	/Low	Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle (°)	Angle	Distance off Track km (nmi)	Heading (°)	Depth [†] m (ft)*	Video Taken (Yes⁄ No)	Follow (Yes/ No)	Behavioral Summary
							Af	ter NSW(C PCI	D REMU	S Sonar Te	st Ever	ıt Sightin	ıgs – 31 Ju	ly 2013				
1	31/7/2013	CC	1	1	1	-	9:09:15	-	2	30.163	-85.841	40	348	0.4 (0.2)	296	20 (66)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
2	31/7/2013	Unid HST	1	1	1	5 • 5	9:15:06	-	2	30.036	-85.952	32	22	0.5 (0.3)	352	30 (98)	No/No	No	Unidentified hardshell turtle sighted at the surface. No disturbance detected.
3	31/7/2013	CC	1	1	1	-	9:15:11	-	2	30.034	-85.957	43	352	0.4 (0.2)	87	30 (98)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
4	31/7/2013	DC	1	1	1	-	9:21:38	-	2	30.025	-85.919	42	295	0.4 (0.2)	21	30 (98)	No/No	No	Leatherback turtle sighted at the surface. No disturbance detected.
5	31/7/2013	LK	1	1	1	el.	9:24:35	-	2	30.084	-85.859	33	172	0.5 (0.3)	83	20 (66)	No/No	No	Kemp's ridley turtle sighted at the surface. No disturbance detected.
6	31/7/2013	CC	1	1	1	-	9:32:43	-	3	30.077	-85.827	35	326	0.4 (0.2)	52	20 (66)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
7	31/7/2013	CC	1	1	1	-	9:33:26	-	3	30.059	-85.842	48	291	0.3 (0.2)	322	20 (66)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.
8	31/7/2013	SF	32	40	8	3	9:57:33	10:32:29	2	29.956	-85.934	36	350	0.4 (0.2)	20	30 (98)	Yes/Yes	Yes	Group of 32 Atlantic spotted dolphins traveling fast to the NW. See Appendix B for focal follow data.
9	31/7/2013	TT	15	15	8	1	10:48:25	10:59:09	2	30.046	-85.668	34	350	0.5 (0.3)	200	20 (66)	Yes/No	Yes	Group of 15 bottlenose dolphins traveling fast to the SW. See Appendix B for focal follow data.
10	31/7/2013	DC	1	1	1	-	11:21:41	-	2	29.872	-85.821	41	292	0.4 (0.2)	322	30 (98)	No/No	No	Leatherback turtle sighted at the surface. No disturbance detected.
11	31/7/2013	CC	1	1	1		11:35:43	-	2	29.994	-85.621	38	319	0.4 (0.2)	349	20 (66)	No/No	No	Loggerhead turtle sighted at the surface. No disturbance detected.

Aerial Monitoring Surveys

28-31 July 2013

Sighting No.	Month/	Species		roup S t/High		Calves	Start Time	Stop Time	BSS	Latitude (°)	Longitude (°)	Vert. Angle		Distance off Track km (nmi)	Heading	Bottom Depth [†] m	Photos/ Video Taken (Yes/	Follow (Yes/	Behavioral Summary
	Year)						After	NSWC P	CDI	PEMIIS T	est Event S	Sightin				(ft) [*]	No)	No)	
12	31/7/2013	TT	18	18	12	2		12:24:51		29.832	-85.670	35	324	0.4 (0.2)			Yes/No	Yes	Group of 18 bottlenose dolphins resting/milling. See Appendix B for focal follow data.

Key:

ft = foot/feet

m = meter(s) ° = degree(s)

LK = Kemp's ridley turtle (*Lepidochelys kempii*) Unid HST = Unidentified hardshell turtle DC = Leatherback turtle (*Dermochelys coriacea*)

SF = Atlantic spotted dolphin (Stenella frontalis) * Bottom depths were estimated from bathymetric contours on maps. Precise estimation is not listed here, but is available upon request.

TT = Bottlenose dolphin (Tursiops truncatus)

CC = Loggerhead turtle (Caretta caretta)

It should be noted that the specialty software *Mysticetus* was used to collect data throughout the duration of the survey. The presentation of mapped data for 30 July, however, required use of the backup global positioning system due to user error in initiating the tracking of the flight using the software program. The intervals for the flight's trackline data collection on the backup global positioning system was not set to the same precision as the *Mysticetus* software. Therefore, the circling for focal follows on 30 July may differ on **Figure 5** as compared with the other maps due to the difference in this precision.

Sightings were comprised of 6 groups of bottlenose dolphins (*Tursiops truncatus*), 2 groups of Atlantic spotted dolphins (*Stenella frontalis*), 9 sightings of Kemp's ridley turtles (*Lepidochelys kempii*), 15 sightings of loggerhead turtles (*Caretta caretta*), 6 sightings of leatherback turtles (*Dermochelys coriacea*), and 5 sightings of unidentified hardshell turtles (**Figure 2, Table 3**). **Table 4** provides a summary of the sightings recorded, which includes group information and environmental data. Bottom depth for each sighting was estimated in 10-m (30-ft) ranges from the maps from Geographic Information System plots of latitude and longitude for sightings.

Table 4. Summary of Sightings Recorded During Monitoring
for the REMUS Sonar Test Event

Species	Number of Sightings	Bottom Depths [†] m (ft)
Atlantic Spotted Dolphin	2	30 (98)
Bottlenose Dolphin	6	10-30 (33-98)
Kemp's Ridley Turtle	9	10-30 (33-98)
Leatherback Turtle	6	30 (98)
Loggerhead Turtle	15	20-33 (66-98)
Unidentified Hardshell Turtle	5	20-30 (66-98)

Notes: †Bottom depths were estimated from bathymetric contours on maps. Precise estimation is not listed here, but is available upon request.

Key: ft = foot/feet; m = meter(s)

Sightings per unit effort (SPUE) was calculated as the total number of cetacean (n=8) or sea turtle (n=33) sightings made on-effort divided by total survey on-effort (t=9.32 hr and d=1,529 km [826 nmi]), resulting in an estimate for the number of sightings per hr and number of sightings per km (or per nmi). For this monitoring event, the SPUE for cetaceans was equal to 0.86 sightings per hr or 0.005 sightings per km (0.01 sightings per nmi) and the SPUE for sea turtles was equal to 3.54 sightings per hr or 0.02 sightings per km (0.04 sightings per nmi).

Behavior

No visible evidence of unusual behavior was observed during surveys before, during, or after the test event for the REMUS (**Table 3**). No focal follows were conducted on 28 July 2013 before the test event. The team was able to attempt a total of 8 focal follows: one on 29 July 2013 before the test event, four on 30 July during the test event, and three on 31 July 2013 after the test event. **Table 5** provides a summary of the focal follows conducted. Detailed behavioral observations made during the focal follows are presented in **Appendix B**. Photographs of suitable quality for species identification purposes were collected during several sightings of dolphins. Video also was collected during the focal follows, as feasible.

28-31 July 2013

Focal Follow	Date	Sighting Number	Event Type	Species	Approximate Number of Individuals	Duration of Focal Follow (min)
1	29/7/2013	4	Before	TT	2	40
2	30/7/2013	9	During	TT	9	30
3	30/7/2013	10	During	TT	24	28
4	30/7/2013	12	During	SF	17	21
5	30/7/2013	13	During	TT	7	14
6	31/7/2013	8	After	SF	40	32
7	31/7/2013	9	After	TT	15	20
8	31/7/2013	12	After	TT	18	20

Table 5. Summary of Focal Follows Conducted During Monitoring for the REMUS Sonar Test Event

Key:

min = minute(s)

SF = Atlantic spotted dolphin (*Stenella frontalis*)

TT = Bottlenose dolphin (*Tursiops truncatus*)

Section 4 Acknowledgements

We would like to thank Orion Aviation's Director Ed Coffman and pilots Dave Huddle and Dave Swanson. These data were obtained under NMFS permit No. 14451 issued to Joseph R. Mobley, Jr.

Section 5 List of Preparers

Jennifer Latusek-Nabholz	Dagmar Fertl
HDR	HDR
Project Manager/Observer/Author	Technical Reviewer
Lenisa Blair	Dan Engelhaupt, PhD
HDR	HDR
Chief Scientist/Observer	U.S. Navy Monitoring Program Manager
Carter Esch	Cheryl Myers
HDR	HDR
Observer	Document Formatting and Production
Cathy Bacon	Robert D. Kenney, PhD
HDR	University of Rhode Island,
Data Analyst	Graduate School of Oceanography
Chip Chadbourne	Technical Reviewer
HDR	Christopher McJetters
GIS	HDR

28-31 July 2013

Technical Editor

Section 6 List of References

Buckland et al. 2001	Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 2001. <i>Introduction to Distance Sampling: Estimating</i> <i>Abundance of Biological Populations</i> . Oxford University Press, New York.
DON 2010a	Department of the Navy (DON). 2010a. United States Navy Integrated Comprehensive Monitoring Program. 2010 Update. U.S. Navy, Chief of Naval Operations, Operational Readiness Division, Washington, D.C.
DON 2010b	2010b. Final Monitoring Plan for Marine Mammal Protection Act (MMPA) Authorization. Prepared by Naval Surface Warfare Center Panama City Division for National Marine Fisheries Service, Silver Spring, Maryland. January 2010.
NMFS 2010	National Marine Fisheries Service (NMFS). 2010. Final Rule: Taking and Importing Marine Mammals; U.S. Naval Surface Warfare Center Panama City Division Mission Activities. <i>Federal Register</i> 75: 3395-3416.
Smultea and Bacon 2012	Smultea, M.A., and C.E. Bacon. 2012. A Comprehensive Report of Aerial Marine Mammal Monitoring in the Southern California Range Complex: 2008- 2012. Prepared for Commander, U.S. Pacific Fleet, Pearl Harbor, Hawaii. Submitted to Naval Facilities Engineering Command Southwest (NAVFAC SW), EV5 Environmental, San Diego, 92132 under Contract No. N62470-10- D-3011 issued to HDR, Inc., San Diego, California.

28-31 July 2013

THIS PAGE INTENTIONALLY LEFT BLANK

28-31 July 2013

APPENDIX A

Environmental, Oceanographic, and Sighting Conditions

Table A-1 shows the environmental, oceanographic, and sighting conditions encountered before, during, and after the REMUS sonar test event.

Table A-1. Environmental, C	Oceanographic, and Sighti	ng Conditions During Monitoring
-----------------------------	---------------------------	---------------------------------

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)	
Survey Before NSWC PCD REMUS Sonar Test Event on 28 July 2013								
13:10:34	3	1	2(1)	3	3	1 (0.5)	90	
13:21:19	3	1	1 (0.5)	3	3	1 (0.5)	90	
13:30:57	1	1	1 (0.5)	3	3	0.75 (0.40)	100	
13:41:48	3	1	1 (0.5)	3	3	1 (0.5)	100	
13:51:00	3	1	1 (0.5)	3	3	0.75 (0.40)	90	
14:01:38	3	1	0.75 (0.40)	3	2	1 (0.5)	100	
14:10:57	3	2	1 (0.5)	3	2	0.75 (0.40)	90	
14:21:36	2	2	0.75 (0.40)	3	2	1 (0.5)	100	
14:30:59	3	1	1 (0.5)	3	2	0.75 (0.40)	90	
14:41:47	3	2	1 (0.5)	3	3	1 (0.5)	90	
14:50:58	3	2	1 (0.5)	3	5	0.75 (0.40)	90	
15:01:33	3	3	1 (0.5)	3	3	1 (0.5)	100	
15:20:49	3	2	0.5 (0.3)	3	4	0.75 (0.40)	90	
15:27:19	4	2	0.5 (0.3)	4	4	0.75 (0.40)	90	
15:31:54	4	2	0.5 (0.3)	4	2	1 (0.5)	100	
15:40:58	4	2	0.5 (0.3)	4	4	1 (0.5)	80	
15:52:06	4	2	0.5 (0.3)	4	3	1 (0.5)	90	
16:01:10	4	2	0.75 (0.40)	4	5	0.5 (0.3)	80	
16:12:27	4	2	0.5 (0.3)	4	3	1 (0.5)	90	
16:21:44	4	3	0.5 (0.3)	4	5	0.5 (0.3)	90	
16:33:15	4	2	0.5 (0.3)	4	3	1 (0.5)	90	
16:42:25	4	2	0.5 (0.3)	4	5	0.5 (0.3)	80	
16:53:42	4	2	0.75 (0.40)	4	3	1 (0.5)	90	
17:03:00	4	2	1 (0.5)	4	5	0.5 (0.3)	80	
17:14:06	3	4	0.5 (0.3)	4	3	1 (0.5)	80	

NSWC PCE	Marine Species	Monitoring	Trip Report
----------	----------------	------------	-------------

28-31 July 2013

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)	
Survey Before NSWC PCD REMUS Sonar Test Event on 29 July 2013								
8:48:17	2	3	0.5 (0.3)	2	4	1 (0.5)	90	
8:58:46	2	3	0.75 (0.40)	3	5	0.5 (0.3)	80	
9:08:59	2	3	0.75 (0.40)	2	3	1 (0.5)	90	
9:57:47	2	3	0.75 (0.40)	2	3	1 (0.5)	90	
10:05:28	2	2	1 (0.5)	2	5	0.5 (0.3)	75	
10:20:10	2	2	1 (0.5)	2	3	1 (0.5)	75	
10:31:08	2	2	0.75 (0.40)	2	5	0.5 (0.3)	70	
10:41:56	2	4	0.5 (0.3)	3	3	1 (0.5)	80	
10:52:52	3	2	0.5 (0.3)	3	4	0.5 (0.3)	75	
11:03:39	2	2	0.5 (0.3)	2	4	0.75 (0.40)	70	
11:14:38	3	2	0.5 (0.3)	3	4	0.5 (0.3)	70	
11:25:43	2	3	0.75 (0.40)	2	3	1 (0.5)	70	
11:36:36	3	2	0.75 (0.40)	3	4	0.5 (0.3)	70	
11:58:37	2	2	1 (0.5)	2	3	1 (0.5)	70	
12:09:24	3	2	0.5 (0.3)	3	4	0.75 (0.40)	70	
12:20:24	2	2	0.75 (0.40)	3	3	1 (0.5)	75	
12:31:04	2	2	0.75 (0.40)	3	3	0.75 (0.40)	70	
12:41:27	2	2	1 (0.5)	2	3	1 (0.5)	70	
12:52:06	3	3	0.75 (0.40)	3	3	1 (0.5)	75	
13:02:58	2	3	0.5 (0.3)	2	2	1 (0.5)	70	
13:13:29	3	2	0.75 (0.40)	3	3	1 (0.5)	70	
	Survey	During NSV	WC PCD REMUS	Sonar Test	Event on 30) July 2013		
10:57:38	2	3	1.5 (0.81)	2	3	1 (0.5)	30	
11:08:22	2	3	1.5 (0.81)	2	5	0.5 (0.3)	40	
11:18:02	2	4	1 (0.5)	2	2	1.5 (0.81)	30	
11:29:02	3	3	1 (0.5)	3	4	0.5 (0.3)	40	
11:39:06	2	3	1 (0.5)	2	2	1.5 (0.81)	40	
12:23:29	3	4	0.5 (0.3)	3	4	0.5 (0.3)	60	
13:04:21	3	4	0.5 (0.3)	3	2	1 (0.5)	40	
13:38:43	2	3	1 (0.5)	2	3	0.75 (0.40)	60	
13:59:22	3	3	1 (0.5)	3	3	0.75 (0.40)	60	

NSWC PCD Marine Species Monitoring Ti	Frip	Report
---------------------------------------	------	--------

28-31 July 2013

Time	BSS Left MMO	Glare Left MMO ¹	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO ¹	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
	Surve	y After NSW	C PCD REMUS	Sonar Test I	Event on 31	July 2013	
9:08:33	2	4	0.5 (0.3)	2	3	1 (0.5)	50
9:19:05	2	3	0.75 (0.40)	2	5	0.5 (0.3)	50
9:29:40	3	5	0.5 (0.3)	3	3	1 (0.5)	50
9:40:28	2	2	1 (0.5)	2	5	0.5 (0.3)	50
9:50:51	3	5	0.5 (0.3)	3	3	1 (0.5)	20
9:53:06	2	5	0.5 (0.3)	2	3	1 (0.5)	20
10:33:05	2	5	0.5 (0.3)	2	3	1 (0.5)	50
10:37:12	2	3	0.75 (0.40)	2	4	0.75 (0.40)	50
10:47:34	2	5	0.5 (0.3)	2	4	0.75 (0.40)	50
11:13:52	2	5	0.5 (0.3)	2	4	0.75 (0.40)	50
11:23:58	2	3	0.5 (0.3)	2	4	0.75 (0.40)	50
11:34:18	2	5	0.5 (0.3)	2	3	1 (0.5)	30
11:37:07	3	5	0.5 (0.3)	3	3	1 (0.5)	30
11:44:56	2	3	1 (0.5)	2	3	1 (0.5)	30
11:55:37	2	4	0.5 (0.3)	2	3	1 (0.5)	25
12:26:26	2	4	0.5 (0.3)	2	3	1 (0.5)	25
12:28:50	2	3	1 (0.5)	2	3	1 (0.5)	40

Key:

km = kilometer(s)

nmi = nautical mile(s) ${}^{1}0 = 0\%$ glare; 1 = 1-19%; 2 = 20-39%; 3 = 40-59%; 4 = 60-79%; 5 = 80-100%

28-31 July 2013

THIS PAGE INTENTIONALLY LEFT BLANK

28-31 July 2013

Appendix B Focal-Follow Data

Table B-1 shows focal-follow behavioral data from 28 through 31 July 2013 monitoring efforts before, during, and after the Naval Surface Warfare Center Panama City Division (NSWC PCD) REMUS sonar test event. Eight focal-follow events were conducted throughout the monitoring effort for the REMUS sonar test event. No focal follows were conducted on 28 July, which was part of the surveys conducted before the NSWC PCD REMUS sonar test event. One focal follow was conducted on 29 July 2013, which was part of the surveys conducted before the NSWC PCD REMUS sonar test event. It was for a group of bottlenose dolphins (*Tursiops truncatus*) within the REMUS survey area. Four focal follows occurred on 30 July, which were part of the survey conducted during the REMUS sonar test event; they were for a group of Atlantic spotted dolphins (*Stenella frontalis*) and three groups of bottlenose dolphins within the REMUS survey area. Three focal follows occurred on 31 July 2013, which were part of the surveys conducted after the NSWC PCD REMUS sonar test event; they were for a group of Atlantic spotted dolphins and two groups of bottlenose dolphins within the REMUS survey area.

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 4 for	29 July 2013			
Species: Tu	ursiops trunce	<i>atus</i> Group siz	ze: 2		
1	9:11:29	7/29/2013	30.103	-85.793	Traveling.
2	9:15:39	7/29/2013	30.106	-85.807	Diving.
3	9:25:06	7/29/2013	30.097	-85.800	Traveling.
4	9:27:22	7/29/2013	30.102	-85.791	Traveling.
5	9:28:44	7/29/2013	30.103	-85.793	Breaching.
6	9:32:36	7/29/2013	30.099	-85.802	Breaching.
7	9:36:40	7/29/2013	30.087	-85.804	Steep and short dives.
8	9:40:58	7/29/2013	30.086	-85.817	Rest/Slow travel.
9	9:44:29	7/29/2013	30.088	-85.812	Diving.
10	9:51:09	7/29/2013	30.086	-85.813	Rest/Slow travel.
Sighting N	umber 9 for	30 July 2013			
Species: Tu	ursiops trunce	<i>atus</i> Group siz	ze: 9		
1	11:42:10	7/30/2013	30.086	-85.720	Traveling. At least eight in groups of 3.
2	11:42:47	7/30/2013	30.089	-85.721	Minimum (Min) Dispersal = 0, Maximum (Max) Dispersal = 6. Two groups.
3	11:43:37	7/30/2013	30.087	-85.719	Min Dispersal = 0, Max Dispersal = 6. A couple of groups seen surfacing.
4	11:44:56	7/30/2013	30.090	-85.722	Animals underwater.
5	11:45:47	7/30/2013	30.091	-85.722	Still underwater - no sign of animals.

TIDTE IEI	DI 1 D	C II (I D	·
Table B-1. Focal-Follow	Benavioral Data	Collected D	uring Monitoring

NSWC PCE	Marine Species	Monitoring	Trip Report
----------	----------------	------------	-------------

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	lumber 9 for	30 July 2013	(continued)		
6	11:46:01	7/30/2013	30.086	-85.720	Resighted - at least 6, definitely a calf, maybe 2 calves.
7	11:46:25	7/30/2013	30.087	-85.727	Seven animals sighted - definitely 2 mother- calf pairs.
8	11:46:42	7/30/2013	30.085	-85.721	Dove back down.
9	11:47:43	7/30/2013	30.082	-85.725	Still underwater.
10	11:48:48	7/30/2013	30.088	-85.728	Back up and then dove again.
11	11:49:11	7/30/2013	30.084	-85.722	One animal resighted.
12	11:49:54	7/30/2013	30.083	-85.723	Animals seem to just be milling and hanging around the same area.
13	11:50:40	7/30/2013	30.082	-85.726	Min Dispersal = 0, Max Dispersal = 6. Animals just dove down.
14	11:51:06	7/30/2013	30.088	-85.722	A couple schools of fish are in the area.
15	11:52:03	7/30/2013	30.084	-85.719	Animals still up.
16	11:52:48	7/30/2013	30.085	-85.721	In a chorus line and in a tight group; came to surface.
17	11:53:26	7/30/2013	30.087	-85.720	One group is down and the other group is up at the surface.
18	11:54:11	7/30/2013	30.084	-85.720	All the dolphins are down now.
19	11:55:13	7/30/2013	30.0848	85.727	Doesn't appear to have any changes in behavior.
20	11:56:23	7/30/2013	30.087	-85.720	Fish are all over the place; dolphins are still diving down.
21	11:57:18	7/30/2013	30.085	-85.719	Dolphins are still down.
22	11:58:04	7/30/2013	30.087	-85.720	Dolphins are now up at surface; still headed North.
23	11:58:33	7/30/2013	30.091	-85.721	Animals seem to be following along the tide line, where the water color changes.
24	11:58:55	7/30/2013	30.085	-85.723	Dolphins are back down.
25	11:59:44	7/30/2013	30.085	-85.724	Dolphins are still down.
26	12:00:22	7/30/2013	30.089	-85.718	A couple dolphins are coming up to the surface now.
27	12:00:40	7/30/2013	30.086	-85.724	Same group on darker side have crossed to clearer water and then they dove back down.
28	12:01:25	7/30/2013	30.086	-85.722	Min Dispersal = 0, Max Dispersal = 6. Broken up into 3 groups but close enough to be considered same.
29	12:01:45	7/30/2013	30.087	-85.715	Dolphins go down then come up for a breath and dive back down again.
30	12:02:41	7/30/2013	30.084	-85.718	A little deeper dive.
31	12:02:52	7/30/2013	30.086	-85.722	Some surface activity now - jumping, turning.
32	12:03:28	7/30/2013	30.084	-85.720	Many are up now; counted 9 last surfacing.
33	12:04:11	7/30/2013	30.084	-85.721	Now appears many are moving southeast.
34	12:04:27	7/30/2013	30.089	-85.718	All are down now.

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 9 for	30 July 2013	(continued)		
35	12:06:00	7/30/2013	30.088	-85.717	Stopping video now; animals are under the surface.
36	12:06:40	7/30/2013	30.088	-85.719	Dolphins are subsurface; traveling - juveniles seem to be surface active still within the group.
37	12:07:19	7/30/2013	30.087	-85.722	All are back down except for one.
38	12:07:44	7/30/2013	30.082	-85.718	Surfaced.
39	12:08:34	7/30/2013	30.084	-85.722	Traveling in pairs mostly two by two a couple in threes. Juveniles aren't moving around like they were. All subsurface.
40	12:09:30	7/30/2013	30.088	-85.719	Same behavior.
41	12:10:11	7/30/2013	30.087	-85.717	Still 3 subgroups within the group; now headed more southwest.
42	12:10:40	7/30/2013	30.085	-85.722	More focused traveling now than they were.
43	12:11:05	7/30/2013	30.082	-85.717	Headed toward fish now.
44	12:12:19	7/30/2013	30.082	-85.716	Not heading back toward fish now.
45	12:12:35	7/30/2013	30.084	-85.722	End of focal.
Sighting N	umber 10 fo	r 30 July 201	3		
Species: Tr	ursiops trunce	<i>atus</i> Group si:	ze: 24		
1	12:29:34	7/30/2013	29.988	-85.749	Subsurface slow travel. Min Dispersal = 0, Max Dispersal = 6. Chorus line.
2	12:30:27	7/30/2013	29.986	-85.753	Some juveniles might be in the group.
3	12:31:07	7/30/2013	29.988	-85.749	Animals now southbound.
4	12:32:04	7/30/2013	29.985	-85.752	A couple of the groups joining up; now counting 24 individuals.
5	12:32:18	7/30/2013	29.989	-85.757	Some activity with inverted swimming; definitely juveniles in group.
6	12:32:54	7/30/2013	29.985	-85.754	Seem to be paired together in some sort of line.
7	12:34:13	7/30/2013	29.989	-85.749	In a chorus line and slow travel.
8	12:35:19	7/30/2013	29.986	-85.756	Same behavior.
9	12:36:11	7/30/2013	29.988	-85.758	Half of the group has dropped to 8 BL and farther in water column; can still see them but they are white images now.
10	12:37:07	7/30/2013	29.992	-85.756	Two groups are now scattered more with a couple going left and right a little; still westbound.
11	12:37:41	7/30/2013	29.988	-85.759	Count of 27 now; a lot up at surface.
12	12:39:00	7/30/2013	29.987	-85.753	Min Dispersal = 0, Max Dispersal = 6. Now getting in a closer group.
13	12:39:44	7/30/2013	29.988	-85.752	Forming another line.
14	12:41:52	7/30/2013	29.993	-85.755	Some are down in the water; seems to be more clustered; may form back into line, but not certain.
15	12:42:40	7/30/2013	29.992	-85.753	Tail slapping going on with two individuals.
16	12:42:52	7/30/2013	29.987	-85.755	Another tail slap by a different animal.

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 10 fo	r 30 July 201	3 (continued)	l l	
17	12:43:13	7/30/2013	29.993	-85.758	Headed to the west and falling back into a chorus line.
18	12:43:30	7/30/2013	29.989	-85.753	Tail slapping by individual upside down.
19	12:44:34	7/30/2013	29.990	-85.760	No change in behavior; line is less defined now.
20	12:45:37	7/30/2013	29.994	-85.755	Deeper dives; can still see them but they are white.
21	12:45:58	7/30/2013	29.988	-85.757	Group of about 10 are a little ways away from the rest of them.
22	12:46:55	7/30/2013	29.992	-85.760	Seem to be going in same direction again instead of scattered.
23	12:47:14	7/30/2013	29.991	-85.754	Min Dispersal = 0, Max Dispersal = 10. Right next to each other to 10 BL; at least 2 are off by themselves.
24	12:48:24	7/30/2013	29.991	-85.762	Not chorus line anymore; front to back in small groups but as a big group; a couple have subsurface activity; see a white belly.
25	12:49:08	7/30/2013	29.989	-85.760	Some are moving west and some are south. Subsurface hanging out.
26	12:51:00	7/30/2013	29.995	-85.757	Still same behavior.
27	12:51:42	7/30/2013	29.995	-85.758	Seem to be mom-calf and/or juvenile pairs.
28	12:52:06	7/30/2013	29.989	-85.758	A few are deeper down doing some sort of activity; see some boiling in the water and then they come up.
29	12:53:35	7/30/2013	29.990	- 85.758	Same behavior.
30	12:54:22	7/30/2013	29.988	-85.758	Same behavior - now kind of more tightly bunched in a line.
31	12:55:49	7/30/2013	29.992	-85.755	Just subsurface, now on way back up.
32	12:57:10	7/30/2013	29.996	-85.760	Forming a line again.
33	12:57:51	7/30/2013	29.995	-85.763	End of focal.
		r 30 July 201			
Species: St	enella frontal	<i>is</i> Group size	: 17	T	
1	13:12:12	7/30/2013	29.929	-85.771	Mom-calf pairs; inverted swimming by smaller animals.
2	13:13:11	7/30/2013	29.932	-85.775	Min Dispersal = 0, Max Dispersal = 10.
3	13:13:54	7/30/2013	29.931	-85.775	Inverted swimming; 1 is coming up under female and calf leaves while female comes back to calf and other animal leaves.
4	13:15:26	7/30/2013	29.932	-85.774	Behavior is still same - inverted swimming and close together; going in different directions and splashing.
5	13:16:34	7/30/2013	29.935	-85.767	Behavior is still same - looks like 2 subgroups and a few individuals between groups.

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 12 fo	r 30 July 201	3 (continued)		
6	13:17:04	7/30/2013	29.935	-85.774	Min Dispersal = 0, Max Dispersal = 10. Right next to each other to 10 BL apart; still some inverted swimming.
7	13:17:53	7/30/2013	29.936	-85.774	Some of group is traveling away from the other.
8	13:18:42	7/30/2013	29.936	-85.773	More subsurface activity is going on.
9	13:19:39	7/30/2013	29.937	-85.771	Two groups are further apart now.
10	13:20:02	7/30/2013	29.929	85.770	Animals are more spread out now 0-15 BL; within group 0-1; subgroups are 10-15.
11	13:21:46	7/30/2013	29.930	-85.774	Same behavior/distribution.
12	13:22:57	7/30/2013	29.933	-85.766	Central group with about 7 individuals far away from the others.
13	13:24:42	7/30/2013	29.932	-85.765	Same behavior/distribution.
14	13:25:05	7/30/2013	29.929	-85.774	Splashing in one group.
15	13:26:26	7/30/2013	29.932	-85.766	Animals down.
16	13:26:34	7/30/2013	29.9286	-85.769	A couple of individuals have come back up.
17	13:26:58	7/30/2013	29.935	85.773	Animals are scattering; 1 group with 8 individuals.
18	13:27:28	7/30/2013	29.928	-85.771	8-10 are below; don't see a lot of them anymore; large group is completely dispersed into little pairs and singles; one small group with 5 animals with some surface activity.
19	13:28:18	7/30/2013	29.929	-85.772	Inverted swimming in small group.
20	13:29:18	7/30/2013	29.930	-85.773	Two fairly active groups separated by 0.25 miles; ranging from 5-7 animals.
21	13:29:42	7/30/2013	29.935	-85.766	Calf/juveniles seen in each group; chasing.
22	13:30:00	7/30/2013	29.929	-85.768	Female and calf are tight swimming fast; one underneath chasing and then takes off.
23	13:31:35	7/30/2013	29.928	-85.766	Don't seem as active now.
24	13:31:57	7/30/2013	29.934	-85.768	Now they are active; major group has split up.
25	13:32:26	7/30/2013	29.927	-85.768	Still some chasing going on where they are chasing each other.
26	13:33:50	7/30/2013	29.931	-85.762	Dove down; ending focal follow.
Sighting N	umber 13 fo	r 30 July 201	3		
Species: Tu	ursiops trunce	<i>utus</i> Group siz	ze: 7		
1	13:44:34	7/30/2013	29.932	-85.704	Min Dispersal = 0, Max Dispersal = 10. Still headed north; probably traveling.
2	13:45:21	7/30/2013	29.937	-85.704	Splashing.
3	13:45:52	7/30/2013	29.937	-85.711	Diving deep.
4	13:47:12	7/30/2013	29.934	-85.701	Splashing; deep diving.
5	13:47:33	7/30/2013	29.933	-85.709	Not staying up at surface.
6	13:47:45	7/30/2013	29.937	-85.704	Min Dispersal = 0, Max Dispersal = 10. Lots of separation.
7	13:48:23	7/30/2013	29.935	-85.706	Splash.

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 13 fo	r 30 July 201	3 (continued)		
8	13:49:24	7/30/2013	29.929	-85.703	Splash at back of wing.
9	13:50:59	7/30/2013	29.928	-85.709	Splash.
10	13:51:26	7/30/2013	29.934	-85.701	Breathing and diving quickly.
11	13:52:25	7/30/2013	29.931	-85.703	Not staying in one are.
12	13:53:41	7/30/2013	29.936	-85.705	Beaufort sea state is going up to 3 so getting some waves too.
13	13:54:01	7/30/2013	29.944	-85.702	Animals not sighted again in a little while.
14	13:55:06	7/30/2013	29.945	-85.702	Animals underwater - not sighted again.
15	13:56:50	7/30/2013	29.944	-85.689	Still not seeing animals.
16	13:57:08	7/30/2013	29.936	-85.688	Going to make 1-2 more circles and then end focal if not seen.
17	13:58:46	7/30/2013	29.938	-85.694	End focal follow.
Sighting N	lumber 8 for	31 July 2013			
Species: St	enella frontal	<i>is</i> Group size	: 32		
1	10:00:20	7/31/2013	29.955	-85.842	Min Dispersal = 1, Max Dispersal = 20. Three subgroups heading south.
2	10:03:02	7/31/2013	29.951	-85.840	Min Dispersal = 1, Max Dispersal = 12. Three subgroups still heading north.
3	10:03:58	7/31/2013	29.952	-85.840	Min Dispersal = 1, Max Dispersal = 12. Splashing.
4	10:05:13	7/31/2013	29.955	-85.831	Min Dispersal = 1, Max Dispersal = 12. Still heading north.
5	10:06:13	7/31/2013	29.953	-85.831	Min Dispersal = 1, Max Dispersal = 12. Some deep diving, some subsurface heading north.
6	10:07:22	7/31/2013	29.951	-85.838	Traveling at the surface. Min Dispersal = 1, Max Dispersal = 35. Heading north.
7	10:09:10	7/31/2013	29.954	-85.835	Traveling at the surface. Min Dispersal = 1, Max Dispersal = 35. Surface active groups 2-3 animals per group.
8	10:10:36	7/31/2013	29.965	-85.833	Splashing. Min Dispersal = 1, Max Dispersal = 35. Looks like mom/calf pairs.
9	10:12:34	7/31/2013	29.966	-85.834	Juveniles zipping around adults.
10	10:14:55	7/31/2013	29.961	-85.830	Min Dispersal = 1, Max Dispersal = 30. Groups still small subsurface travel heading north.
11	10:16:50	7/31/2013	29.971	-85.824	Min Dispersal = 1, Max Dispersal = 35. Surface active, splashing heading east.
12	10:18:37	7/31/2013	29.963	-85.823	Milling. Min Dispersal = 1, Max Dispersal = 35.
13	10:19:44	7/31/2013	29.971	-85.825	Min Dispersal = 1, Max Dispersal = 30. Deep diving by whole group random times.
14	10:20:47	7/31/2013	29.968	-85.818	Min Dispersal = 1, Max Dispersal = 30. Deep diving.
15	10:21:54	7/31/2013	29.970	-85.826	Surface active. Min Dispersal = 1, Max Dispersal = 30.

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 8 for	31 July 2013	(continued)		
16	10:22:34	7/31/2013	29.973	-85.818	Surface active heading north. Min Dispersal = 1, Max Dispersal = 30.
17	10:23:36	7/31/2013	29.968	-85.823	Min Dispersal = 1, Max Dispersal = 30. Deep diving, surface active and some small dives heading to the north.
18	10:25:16	7/31/2013	29.970	-85.821	Min Dispersal = 1, Max Dispersal = 30. Heading to the north still.
19	10:32:29	7/31/2013	29.963	-85.834	Min Dispersal = 1, Max Dispersal = 30. Deep diving, surface active, subsurface travel. Heading to the north still. End of focal.
		31 July 2013			
Species: Ti	ursiops trunca	<i>tus</i> Group siz	ze: 15		
1	10:52:03	7/31/2013	30.041	-85.668	Min Dispersal = 1, Max Dispersal = 15. Surface resting heading to the south.
2	10:53:58	7/31/2013	30.045	-85.672	Min Dispersal = 1, Max Dispersal = 15. Subgroups of $3-10$ heading to the south.
3	10:54:58	7/31/2013	30.045	-85.665	Min Dispersal = 1, Max Dispersal = 15. Diving down heading to the south.
4	10:56:32	7/31/2013	30.045	-85.666	Min Dispersal = 1, Max Dispersal = 15. Fish and birds in the area.
5	10:57:59	7/31/2013	30.037	-85.667	Milling. Min Dispersal = 1, Max Dispersal = 15.
6	10:59:01	7/31/2013	30.040	-85.673	Milling. Min Dispersal = 1, Max Dispersal = 15. Subsurface. End of focal.
Sighting N	umber 12 fo	r 31 July 201	3		
Species: Ti	ursiops trunca	<i>utus</i> Group si	ze: 18		
1	12:04:06	7/31/2013	29.831	85.675	Subsurface travel heading south. Min Dispersal = 1, Max Dispersal = 5.
2	12:06:28	7/31/2013	29.828	-85.670	Dove. Min Dispersal = 1, Max Dispersal = 5.
3	12:07:32	7/31/2013	29.828	-85.671	Milling subsurface. Min Dispersal = 1, Max Dispersal = 5.
4	12:08:38	7/31/2013	29.831	-85.668	Subsurface slow travel. Min Dispersal = 1, Max Dispersal = 5.
5	12:10:19	7/31/2013	29.826	-85.673	Subsurface slow travel/milling. Min Dispersal = 1, Max Dispersal = 5.
6	12:11:48	7/31/2013	29.827	-85.668	Subsurface slow travel/milling. Min Dispersal = 1, Max Dispersal = 5.
7	12:13:05	7/31/2013	29.826	-85.670	Underwater.
8	12:14:57	7/31/2013	29.833	-85.678	Subsurface slow travel. Min Dispersal = 1, Max Dispersal = 5.
9	12:15:34	7/31/2013	29.824	-85.678	Surface active. Min Dispersal = 1, Max Dispersal = 5.
10	12:16:34	7/31/2013	29.831	-85.676	Underwater. Min Dispersal = 1, Max Dispersal = 5.

28-31 July 2013

Record Number	Time	Date	Latitude (°)	Longitude (°)	Recorded Behavior
Sighting N	umber 12 fo	r 31 July 201	3 (continued)		
11	12:18:09	7/31/2013	29.824	-85.672	Min Dispersal = 1, Max Dispersal = 5. Came up and went back down.
12	12:19:20	7/31/2013	29.827	-85.672	Subsurface milling. Min Dispersal = 1, Max Dispersal = 5.
13	12:20:23	7/31/2013	29.826	-85.670	Underwater.
14	12:21:05	7/31/2013	29.821	-85.670	Min Dispersal = 1, Max Dispersal = 5. Just coming up for a breath and going back down.
15	12:23:21	7/31/2013	29.825	-85.676	Min Dispersal = 1, Max Dispersal = 5. Some breathing, then diving.
16	12:24:51	7/31/2013	29.823	-85.665	Underwater. End of focal.

Key:

BL = body length(s)

Max Dispersal = maximum dispersal (distance estimated in number of body lengths for animals in the group located farthest apart from one another)

Min Dispersal = minimum dispersal (distance estimated in number of body lengths for animals in the group located closest together to one another)

Appendix F – Oct 2012 Aerial Monitoring Trip Report THIS PAGE INTENTIONALLY LEFT BLANK

Naval Surface Warfare Center Panama City Division (NSWC PCD)

Marine Species Monitoring

AERIAL MONITORING SURVEYS TRIP REPORT

November 2012

07-16 October 2012

ACRONYMS AND ABBREVIATIONS

O 4	degree(s)
AMNS	Airborne Mine Neutralization System
BL	body length(s)
BSS	Beaufort sea state
DON	Department of the Navy
ft	foot (feet)
hr	hour(s)
ICMP	Integrated Comprehensive Monitoring Program
km	kilometer(s)
km ²	square kilometer(s)
m	meter(s)
min	minute(s)
nmi	nautical mile(s)
nmi ²	square nautical mile(s)
NMFS	National Marine Fisheries Service
NSWC PCD	Naval Surface Warfare Center Panama City Division
OPAREA	operating area
SPUE	sightings per unit effort
U.S.	United States

07-16 October 2012

Table of Contents

ACRONYMS AND ABBREVIATIONS	ii
SECTION 1 INTRODUCTION	1
SECTION 2 METHODS	1
SECTION 3 RESULTS	
SECTION 4 ACKNOWLEDGEMENTS	
SECTION 5 LIST OF PREPARERS	20
SECTION 6 LIST OF REFERENCES	20

Appendices

Appendix A. Environmental, Oceanographic, and Sighting Conditions	A-1
Appendix B. Focal-Follow Data	.B - 1

Figures

Figure 1. Pre-planned Tracklines for the Monitoring Effort for the AMNS Live-inert Explosive Test Event for 07-16 October 2012 in the NSWC PCD Study Area	2
Figure 2. Location of All Cetacean and Sea Turtle Sightings Recorded Throughout the AMNS Survey Period (07-16 October 2012)	
Figure 3. Survey Flight Track Conducted Before the First AMNS Test Event (07 October 2012)	.6
Figure 4. Survey Flight Track Conducted Before the First AMNS Test Event (08 October 2012)	
Figure 5. Location of Cetacean Sightings Recorded Before the First AMNS Test Event (09 October 2012)	
Figure 6. Location of Cetacean Sightings Recorded During the First AMNS Test Event (10 October 2012)	
Figure 7. Location of Cetacean Sightings Recorded After the First AMNS Test Event (11 October 2012)	
Figure 8. Location of Cetacean and Sea Turtle Sightings Recorded During an Intermediate AMNS Test Event (12 October 2012)	
Figure 9. Survey Flight Track Conducted Before the Second AMNS Test Event (13 October 2012)	
Figure 10. Survey Flight Track Conducted Before the Second AMNS Test Event (14 October 2012)	
Figure 11. Location of Sea Turtle Sightings Recorded During the Second AMNS Test Event (15 October 2012)	
Figure 12. Survey Flight Track Conducted After the Second AMNS Test Event (16 October 2012)	

NSWC PCD	Marine	Species	Monitorina	Trip	Report
		0,000.00		· · · · P	

07-16 October 2012

Tables

Table 1. Summary of Monitoring Effort for NSWC PCD AMNS Test Event	3
Table 2. Observers and Roles	4
Table 3. Summary of Sightings	.17
Table 4. Summary of Sightings Recorded during Monitoring for AMNS Test Events	.19
Table 5. Summary of Focal Follows Conducted during Monitoring for AMNS Test	
Events	.19

Section 1 Introduction

Aerial surveys for marine-species monitoring occurred during 07 through 16 October 2012 for Airborne Mine Neutralization System (AMNS) live-inert explosive research, development, test, and evaluation events. These surveys were conducted off the west coast of Florida in the Naval Surface Warfare Center Panama City Division (NSWC PCD) Study Area in the Gulf of Mexico. The AMNS is a mine countermeasures device that includes an explosive charge. An AMNS liveinert event is comprised of a live destructor fired against an inert target.

As part of the requirements for compliance with the Marine Mammal Protection Act of 1972 and the Endangered Species Act of 1973, the United States (U.S.) Navy developed the Integrated Comprehensive Monitoring Program (ICMP; Department of the Navy [DON] 2010a). The ICMP applies by regulation to those activities on U.S. Navy training ranges and operating areas (OPAREAs) for which the U.S. Navy has sought and received incidental take authorizations. To support the U.S. Navy in meeting regulatory requirements for monitoring established under the NSWC PCD Final Rule (National Marine Fisheries Service [NMFS] 2010), and to provide a mechanism to assist with coordination of program objectives under the ICMP, monitoring of marine mammals and sea turtles (protected marine species) during these test events included visual surveys from a fixed-wing aircraft.

Section 2 Methods

Study Area

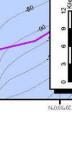
The NSWC PCD Study Area includes both territorial waters (between 0 and 22 kilometers [km]; 0 and 12 nautical miles [nmi]) and non-territorial waters (beyond the 22 km [12 nmi] limit). Monitoring conducted for protected marine species during the AMNS explosive test events was focused within the Panama City OPAREA of the NSWC PCD Study Area (**Figure 1**). The test area for the AMNS system is approximately 22 km (12 nmi) offshore, covers an area approximately 21 square kilometers (km²) (6 square nautical miles [nmi²]) in size, and ranges in bottom depth from 28 to 35 meters (m) (92 to 115 feet [ft]).

Monitoring was conducted during three explosive events. The AMNS explosive event on 10 October commenced at 14:47 and the detonation occurred at 15:43. The AMNS explosive event on 12 October commenced at 12:05 and the detonation occurred at 15:40. The AMNS explosive event on 15 October commenced at 13:30 and the detonation occurred at 14:22.

Aerial-Based Monitoring

Aerial-based monitoring was performed over a 10-day period from 07 through 16 October 2012 (**Table 1**). Survey methods were generally consistent with currently accepted Distance Sampling theory (Buckland et al. 2001) and followed a well-established protocol used for aerial surveys throughout all U.S. Navy range complexes (e.g., Smultea et al. 2009). A survey altitude and speed of approximately 305 m (1,000 ft) and 185 km/hour (hr) (100 knots) was maintained while on-effort, but might have varied slightly based on weather conditions in the area. Once a marine mammal sighting was made, a focal-follow circling session was attempted at 305 m (1,000 ft) or higher if conditions were appropriate (Smultea et al. 2009; refer to the survey methods on page 4 of this document). A lower altitude of approximately 210 to 250 m (700 to 800 ft) was established after focal-follow sessions for photographic purposes to provide sharper images required for species identification.

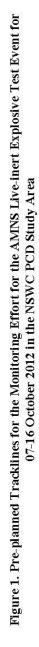
Aerial Monitoring Surveys

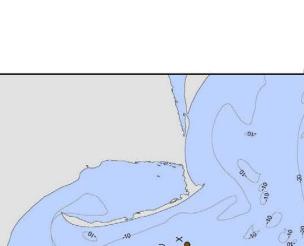


NSWC PCD Marine Species Monitoring Trip Report

0

Florida


Planned Transect Start/End AMNS Live-Inert Detonation


7

•

Planned Transect Lines

Shelf Break Isobath (met

O

0

S

0

C

m

07-16 October 2012

2

07-16 October 2012

Date	Description ¹	Start Time	Stop Time	Total Survey Time (min)	Total On- Effort Time (min)	Trackline On-Effort Distance (km)	Trackline On-Effort Distance (nmi)
07 Oct	Transect Survey (Before First Event)	14:59	17:20	141	117	336	181
08 Oct	Transect Survey (Before First Event)	9:58	12:43	165	147	421	227
09 Oct	Transect Survey (Before First Event)	12:32	15:07	155	125	330	178
10 Oct	Transect Survey (During First Event)	10:06	16:09	363	338	779	421
11 Oct	Transect Survey (After First Event)	10:43	13:38	175	146	480	259
12 Oct	Transect Survey (During ² Intermediate Event)	10:50	13:41	171	150	437	236
13 Oct	Transect Survey (Before Second Event)	10:52	13:07	135	113	317	171
14 Oct	Transect Survey (Before Second Event)	9:28	10:01	33	8	27	15
15 Oct	Transect Survey (During Second Event)	10:37	14:42	245	221	507 ¹	2 7 4†
16 Oct	Transect Survey (After Second Event)	11:40	14:36	176	149	235	127
	Total			1,759 (≈29.3 hr)	1,514 (≈25.2 hr)	3,869	2,089

Table 1. Summary of Monitoring Effort for NSWC PCD AMNS Test Event

Key: $hr = hour(s); \ km = kilometer(s); \ min = minute(s); \ nmi = nautical mile(s)$

Notes: * Total Survey Minutes reflect minutes occupied in the range/area of interest and include both on-effort (systematic) and off-effort (connector/circling) total minutes. Total Survey Minutes may not match the difference between Start Time and Stop Time in the table due to differences in rounding. ¹Survey results in the following subsection are reported based on requirements outlined in NMFS (2010), as a monitoring event constitutes effort conducted 2 days before a test event, 1 day during a test event, and 1 day after a test event. ²There was one survey during an intermediate test event, which could not include monitoring before or after the event. ¹ This figure is an estimate, as the GPS failed during two legs and the mean leg length was used.

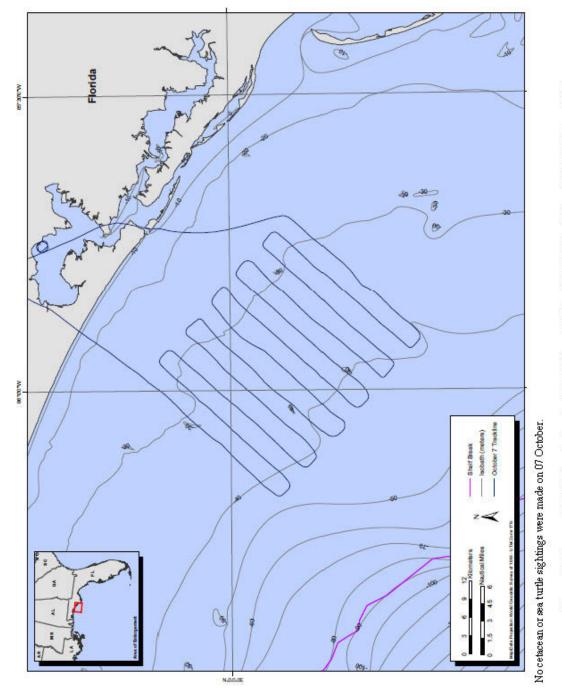
The observation platform was a Cessna T337H Turbo Skymaster aircraft operating out of Northwest Florida Beaches International Airport, Panama City Beach, Florida. Ten surveys were conducted following pre-planned tracklines covering the entire AMNS test area. The lines were defined by waypoints designed to extend beyond the entire range (if permitted by U.S. Navy and U.S. Air Force flight operations) during each survey day for a total flight-time window over 5 hr (**Table 1, Figure 1**). Aerial observers (**Table 2**) were experienced with trackline survey methodology, had experience in identification of marine mammal and sea turtle species, were knowledgeable of marine mammal biology and behavior, and had previous experience conducting marine mammal and sea turtle observations.

07-16 October 2012


Observer	Role(s)	Dates of Participation
Keri Lestyk	Chief Scientist, Observer	07-16 October
Dana Spontak	Observer	07-16 October

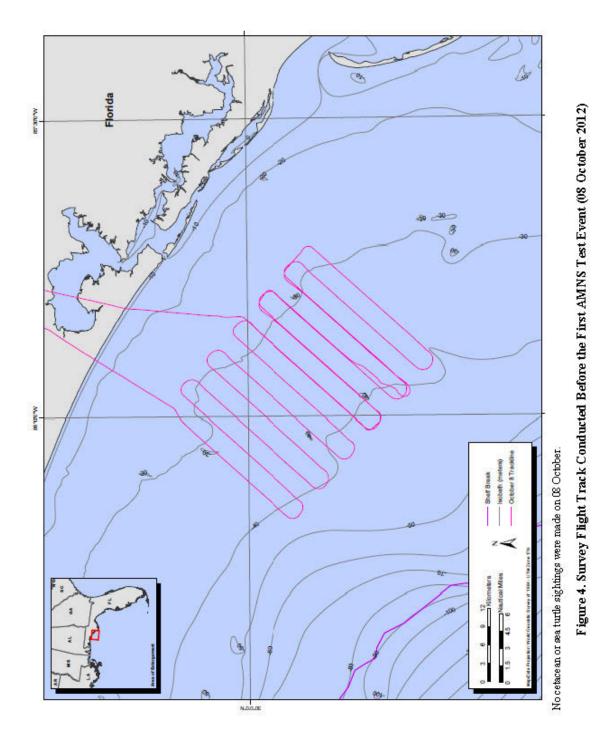
Table 2. Observers and Roles

Survey effort was designed to include the entirety of the AMNS test area. Twelve parallel tracklines running approximately east-south-east to west-north-west, measuring 27.8 km (15.0 nmi) in length, and spaced approximately 3.7 km (2.0 nmi) apart, were flown during "systematic" efforts throughout the surveys. Based on the geometry of the AMNS survey area, our total survey coverage area was 1,132 km² (330 nmi²; Figure 1). Planned lines were followed when possible, but exact lines followed for each survey day were subject to modifications resulting from range exclusion by military airspace restrictions and/or unfavorable weather conditions in the Panama City OPAREA of the NSWC PCD Study Area (Table 1, Figures 2 through 12). Monitoring effort during the majority of survey days after the first AMNS explosive test event and throughout the duration of the intermediate and second AMNS explosive test events (including days during the execution of the intermediate and second test events) was restricted. During these time periods, the observer team did not generally have clearance for Alpha 2 airspace and/or Bravo 1 airspace or Bravo 2 airspace due to other ongoing U.S. Department of Defense activities. These restrictions resulted in about one-third of the AMNS survey area being inaccessible to the observer team on most survey flights. Therefore during these times, monitoring focused extra effort (i.e., repeating tracklines) in the nonrestricted portions of the planned AMNS survey area.


The following describe the general survey approach:

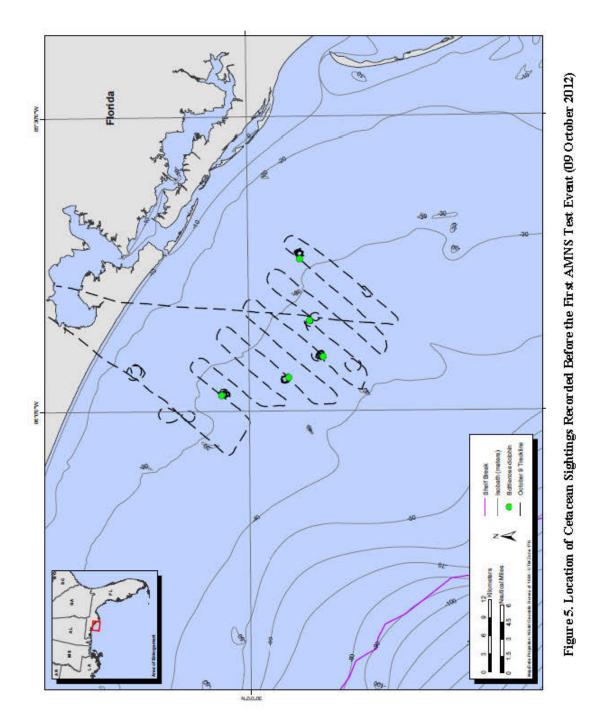
- 1. Followed pre-planned tracklines and waypoints using methods described by Smultea et al. (2009) until a sighting occurred. Variables such as sea state, glare, and visibility were recorded for each transect flown.
- 2. Upon sighting a marine mammal/sea turtle group, recorded basic sighting information per established protocol (Smultea et al. 2009). As outlined in the NSWC PCD Study Area Monitoring Plan (DON 2010b), information included: (1) species identification and group size; (2) location (relative to observation platform); (3) the behavior of marine mammals and sea turtles; (4) date, time, and environmental and oceanographic conditions associated with each observation; (5) direction of travel relative to true North; and (6) duration of the observation.
- 3. If the species appeared suitable for a focal follow, the aircraft increased altitude to approximately 365 to 455 m (1,200 to 1,500 ft) and radial distance increased approximately 0.5 to 1.0 km (0.3 to 0.5 nmi). Then, the aircraft circled the sighting to obtain detailed behavioral information as long as possible and logistically feasible (i.e., Beaufort sea state [BSS], visibility, group size, behavior, dive times, aircraft considerations [e.g., fuel], etc.). Focal follows occurred for a minimum of 5 minutes (min) and included an observer taking digital photographs of the group when possible.
- 4. If the sighting was not selected for a focal follow, and species and group size were unknown, the aircraft circled the sighting to obtain digital photographs for confirmation of species identification and to estimate group size/composition.

NSWC PCD 2013 Annual Marine Species Monitoring Report

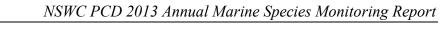

NSWC PCD 2013 Annual Marine Species Monitoring Report

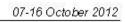
September 2013

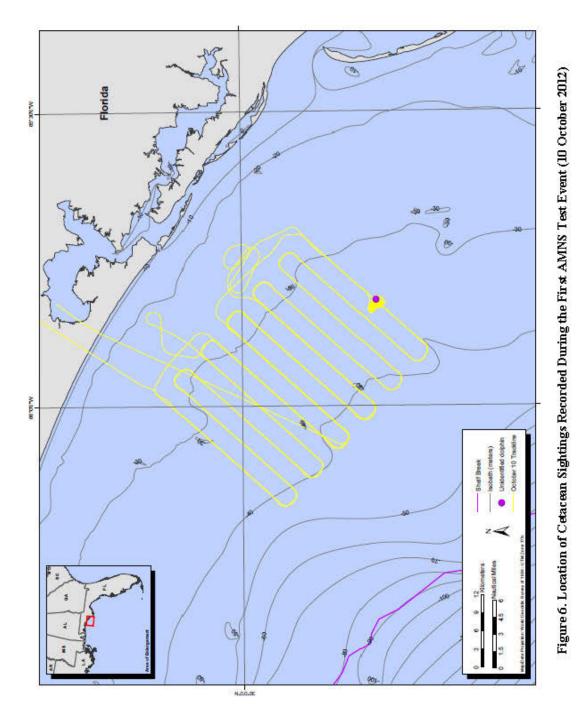
Aerial Monitoring Surveys

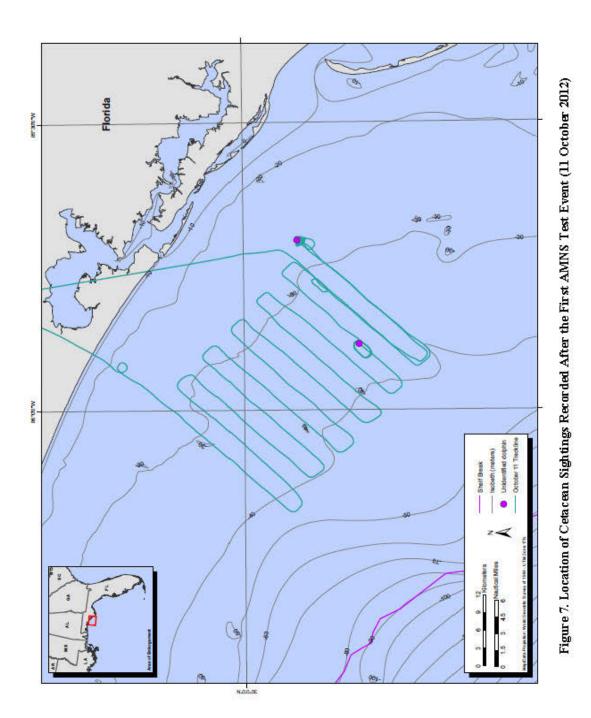


7

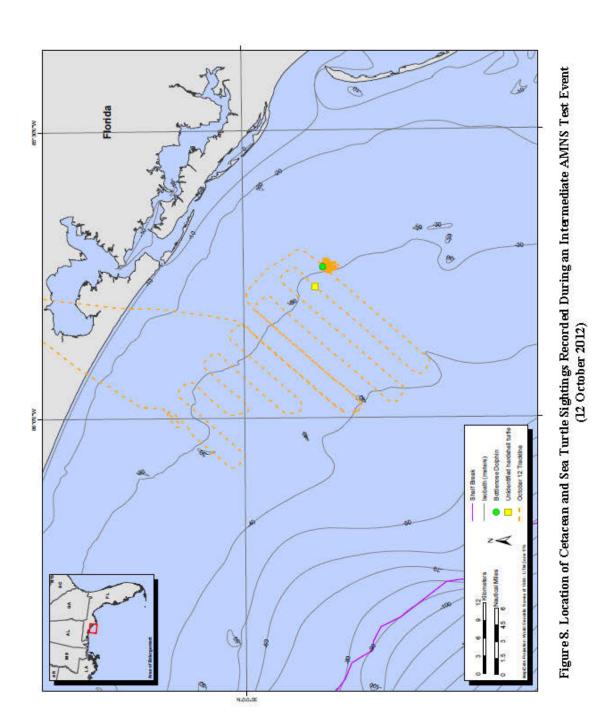

September 2013


Aerial Monitoring Surveys

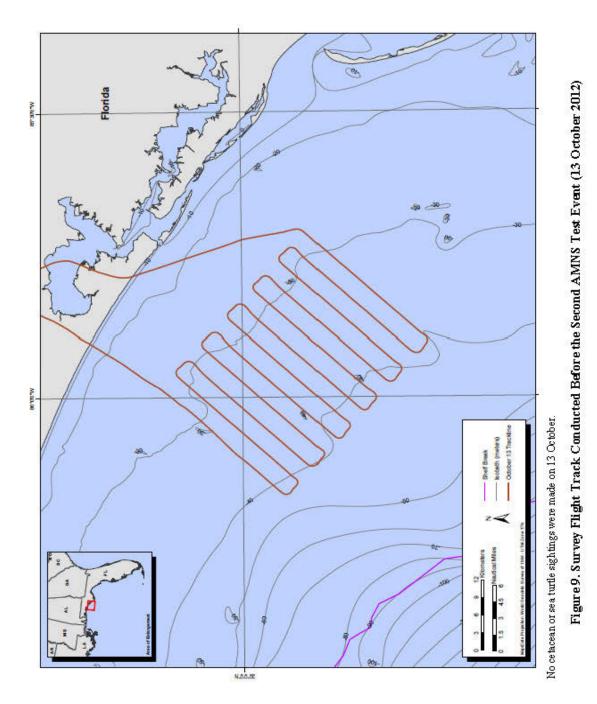




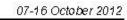
8

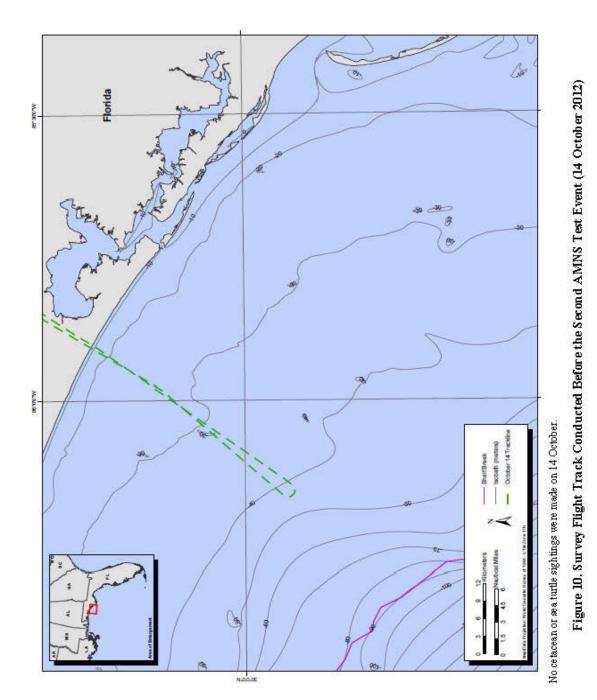


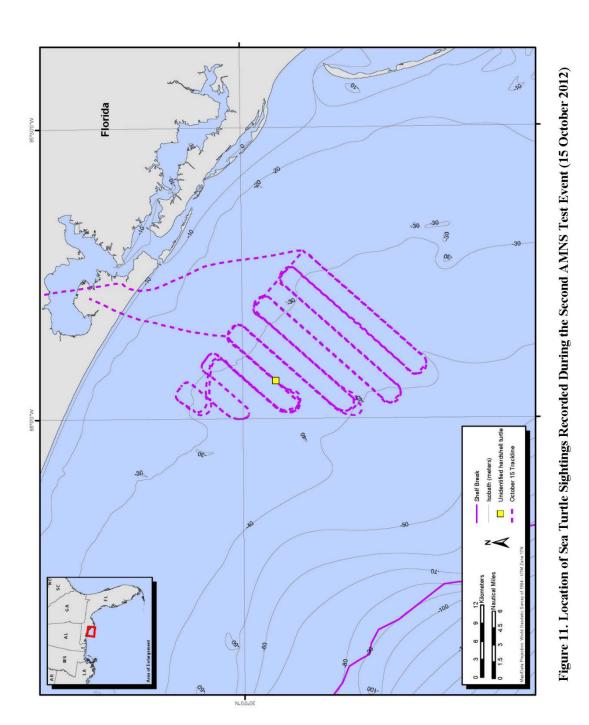
07-16 October 2012



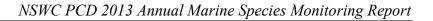
07-16 October 2012


NSWC PCD Marine Species Monitoring Trip Report

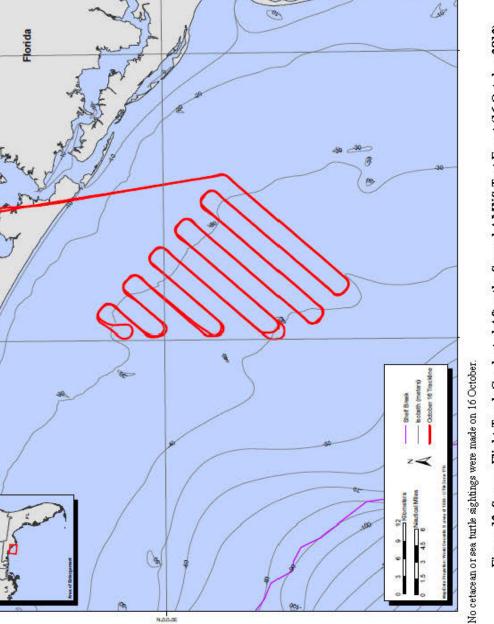

Aerial Monitoring Surveys



12



14


Aerial Monitoring Surveys

07-16 October 2012

W DOE -SD

V-00-00

N.0.0.0

15

07-16 October 2012

Section 3 Results

Survey Effort

Observers visually surveyed 3,869 km (2,089 nmi) of on-effort tracklines and 4,650 km (2,511 nmi) of total trackline (including the systematic transects, cross-legs between transects, and circling for focal follows or species identification) during 10 days for 25.2 hr of on-effort status (**Table 1**). BSS ranged from 2 to 6, and all sightings were made in BSS between 2 and 4 (**Table 3**). Appendix A contains a detailed description of environmental, oceanographic, and sighting conditions. Survey results in the following subsection are reported based on requirements outlined in NMFS (2010), as a monitoring event constitutes effort conducted 2 days before a test event, 1 day during a test event, and 1 day after a test event. There was a test event after the first and before the second full monitoring effort. Therefore, this is reported as an intermediate test event.

Sightings

Nine sightings of cetaceans and two sightings of sea turtles were recorded during times of both on-effort and off-effort, which encompassed approximately 29.3 hr of total survey flight time within the survey area (Figure 2, Table 3).

Sightings per unit effort (SPUE) was calculated as the total number of cetacean (n=9) or sea turtle (n=2) sightings made on-effort divided by total survey on-effort (t=25.2 hr and d=3,869 km [2,089 nmi]), resulting in an estimate for the number of sightings per hr and number of sightings per km (or per nmi). For this monitoring event, the SPUE for cetaceans was equal to 0.36 sightings per hr or 0.002 sightings per km (0.004 sightings per nmi) and the SPUE for sea turtles was equal to 0.08 sightings per hr or 0.0005 sightings per km (0.001 sightings per nmi).

No sightings of cetaceans or sea turtles were made before the first test event on 07 through 08 October 2012 (Figures 3 and 4, Table 3). Five sightings of cetaceans were made before the first test event on 09 October 2012 (Figure 5, Table 3). One sighting of cetaceans and one sighting of sea turtles were made during the first test event on 10 October 2012 (Figure 6, Table 3). Two sightings of cetaceans were made after the first test event on 11 October 2012 (Figure 7, Table 3). One sighting of cetaceans was made during the intermediate test event on 12 October 2012 (Figure 8, Table 3). No sightings of sea turtles or cetaceans were made before the second test event on 13 through 14 October. One sighting of a sea turtle was made during the second test event on 15 October. No sightings of cetaceans or sea turtles were made after the second test event on 16 October 2012.

Sightings were comprised of six groups of bottlenose dolphins (*Tursiops truncatus*); three groups of unidentified dolphins including one group of possible Atlantic spotted dolphins (*Stenella frontalis*); and two unidentified hardshell turtles (**Figure 2, Table 3**). **Table 4** provides a summary of the sightings recorded, which includes group information and environmental data. Bottom depth for each sighting was estimated in 10-m (30-ft) ranges from the maps from Geographic Information System (GIS) plots of latitude and longitude for sightings.

07-16 October 2012

Sighting No.	Date	Species		oup S /High/		Calves	Start Time	Stop Time	BSS	Latitude (°N)	Longitude (°W)	Vert. Angle (°)	Distance off Track km (nmi)	Heading	Bottom Depth [†] m (ft)	Behavioral Summary
Before First NSWC PCD AMNS Test Event Sightings - 09 October 2012																
1	10/09/12	TT	8	11	5	0	12:58	13:08	2	30.041	-85.973	023	0.72 (0.39)	Unk.	30-40 (98-131)	Group of approximately 8 bottlenose dolphins sighted traveling. No disturbance detected. See Appendix B for focal-follow data.
2	10/09/12	TT	23	25	20	0	13:25	13:32	2	29.940	-85.943	005	3.5 (1.9)	Unk.	30-40 (98-131)	Group of approximately 23 bottlenose dolphins surface active. No disturbance detected. See Appendix B for focal-follow data.
3	10/09/12	TT	38	40	35	0	13:47	13:55	2	29.889	-85.908	008	2.2 (1.2)	90	30-40 (98-131)	Group of approximately 38 bottlenose dolphins sighted traveling east. No disturbance detected. See Appendix B for focal-follow data.
4	10/09/12	TT	10	12	8	0	14:06	14:12	2	29.908	-85.847	080	0.054 (0.029)	360	30-40 (98-131)	Group of approximately 10 bottlenose dolphins sighted traveling north. No disturbance detected. See Appendix B for focal-follow data.
5	10/09/12	TT	8	10	5	0	14:32	14:40	2	29.922	-85.742	020	0.83 (0.45)	Unk.	20-30 (66-98)	Group of approximately 8 bottlenose dolphins sighted traveling. See Appendix B for focal follow data.
During Fi	rst NSWC	PCD AM	NS T	est Ev	ent Si	ghting –	10 Octo	ber 2012	2							
1	10/10/12	Unid	21	18	25	0	15:02	15:31	2	29.800	-85.820	040	0.36 (0.20)	315	30-40 (98-131)	Group of approximately 21 unidentified dolphins (possibly spotted dolphins), seen heading northwest. No disturbance detected. See Appendix B for focal-follow data.
After Firs	t NSWC P	CD AMN	S Tes	t Ever	t Sigl	htings – 1	1 Octob	er 2012								
1	10/11/12	Unid	3	5	3	0	12:20	-	4	29.828	-85.886	075	0.082 (0.044)	45	30-40 (98-131)	Group of approximately 3 unidentified dolphins, seen heading northeast. No disturbance detected.

Table 3. Summary of Sightings

Aerial Monitoring Surveys

17

07-16 October 2012

Sighting No.	Date	Species		oup S /High/		Calves	Start Time	Stop Time	BSS	Latitude (°N)	Longitude (°W)	Vert. Angle (°)	Distance off Track km (nmi)	Heading	Bottom Depth† m (ft)	Behavioral Summary
After First NSWC PCD AMNS Test Event Sightings – 11 October 2012 (continued)																
2	10/11/12	Unid	10	14	6	0	12:53	13:04	3	29.920	-85.705	015	1.1 (0.61)	Unk.	20-30 (66-98)	Group of approximately 10 unidentified dolphins, seen heading northwest. No disturbance detected. See Appendix B for focal-follow data.
During In	During Intermediate NSWC PCD AMNS Test Event Sightings – 12 October 2012															
1	10/12/12	Unid HST	1	1	1	0	12:12	12:12	2	29.893	-85.772	075	0.082 (0.044)	Unk.	30-40 (90-131)	Unidentified hardshell turtle resting at the surface. No disturbance detected.
2	10/12/12	TT	45	36	53	0	12:27	13:07	2	29.881	-85.738	032	0.48 (0.26)	315	20-30 (66-98)	Group of approximately 45 bottlenose dolphins sighted traveling northwest. No disturbance detected. See Appendix B for focal-follow data.
During Se	cond NSW	C PCD A	MNS	Test	Event	Sighting	- 15 00	tober 2	012*							
1	10/15/12	Unid HST	1	1	1	0	14:29	6	5	29.951	-85.935	045	0.30 (0.16)	Unk.	30-40 (98-131)	Unidentified hardshell turtle resting at the surface. No disturbance detected.

Notes:

†Bottom depths were estimated from figures. Precise estimation is not listed here, but is available upon request.

*No sightings were made during: two of the surveys before the NSWC PCD AMNS first test event on 07-08 October, two surveys conducted before the NSWC PCD AMNS second test event on 13-14 October, and the survey after the NSWC PCD AMNS second test event on 16 October 2012.

Key:

° = degrees; ft = feet; m = meter(s); nmi = nautical mile(s)

TT = Bottlenose dolphin (*Tursiops truncatus*)

Unid = Unidentified dolphin

Unid HST = Unidentified hardshell turtle

Unk. = unknown

07-16 October 2012

Species	Number of Sightings	Bottom Depth [†] m (ft)
Bottlenose dolphin	6	20-40 (66-131)
Unidentified dolphin	3	20-40 (66-131)
Unidentified hardshell turtle	2	30-40 (98-131)

Table 4. Summary of Sightings Recorded during Monitoring for AMNS Test Events

Notes: \dagger Bottom depths were estimated from figures. Precise estimation is not listed here, but is available upon request. Key: ft = feet; m = meter(s)

Behavior

No visible evidence of unusual behavior was observed during surveys before, during, or after the test event for the AMNS (**Table 3**). The team was able to attempt a total of eight focal follows: five focal follows on 09 October 2012 before the first test event; one focal follow on 10 October 2012 during the first test event; one focal follow on 11 October 2012 after the first test event; and one focal follow on 12 October 2012 during the second test event. **Table 5** provides a summary of the focal follows conducted. Detailed behavioral observations made during the focal follows are presented in **Appendix B**. Photographs of suitable quality for species identification purposes were collected during several sightings of dolphins and sea turtles. No video was collected during the focal follows.

Focal Follow	Date	Sighting Number	Event Type	Species	Approximate Number of Individuals	Duration of Focal Follow (min)
1	09 Oct	1	Before First Survey	TT	8	7
2	09 Oct	2	Before First Survey	TT	23	5
3	09 Oct	3	Before First Survey	TT	38	6
4	09 Oct	4	Before First Survey	TT	10	4
5	09 Oct	5	Before First Survey	TT	8	5
6	10 Oct	1	During First Survey	Unid	21	24
7	11 Oct	2	After First Survey	Unid	10	10
8	12 Oct	2	During Intermediate Survey	TT	45	38

 Table 5. Summary of Focal Follows Conducted during Monitoring for AMNS Test Events

Key:

min = minute(s)TT = Tursiops truncatus

Unid = Unidentified dolphin(s)

Section 4 Acknowledgements

We would like to thank Orion Aviation's Director Ed Coffman and pilots Stan Huddle and Graham Hill. These data were obtained under NMFS permit No. 14451 issued to Joseph R. Mobley, Jr.

07-16 October 2012

Section 5 List of Preparers

Jennifer Latusek-Nabholz HDR Chief Scientist/Project Manager and Technical Reviewer	Domenick Alario HDR GIS
	Dagmar Fertl
Keri Lestyk	HDR
HDR	Technical Reviewer
Chief Scientist	
	Dan Engelhaupt, PhD
Dana Spontak	HDR
HDR	U.S. Navy Monitoring Program Manager
Observer	
	Cheryl Myers
Cathy Bacon	HDR
HDR	Document Formatting and Production
Data Analyst	
2	Robert D. Kenney, PhD
Amy Engelhaupt	University of Rhode Island,
HDR	Graduate School of Oceanography
Data Analyst	Technical Reviewer
Christopher Grow	Christopher McJetters
HDR	HDR
Author	Technical Editor
	reennicar Danor

Section 6 List of References

Buckland et al. 2001	Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. <i>Introduction to Distance Sampling: Estimating</i> <i>Abundance of Biological Populations</i> . Oxford University Press, New York.
DON 2010a	Department of the Navy (DON). 2010a. United States Navy Integrated Comprehensive Monitoring Program. 2010 Update. U.S. Navy, Chief of Naval Operations, Operational Readiness Division, Washington, D.C.
DON 2010b	2010b. Final Monitoring Plan for Marine Mammal Protection Act (MMPA) Authorization. Prepared by Naval Surface Warfare Center Panama City Division for National Marine Fisheries Service, Silver Spring, Maryland January 2010.
NMFS 2010	National Marine Fisheries Service (NMFS). 2010. Final Rule: Taking and Importing Marine Mammals; U.S. Naval Surface Warfare Center Panama City Division Mission Activities. <i>Federal Register</i> 75: 3395-3416.

07-16 October 2012

Smultea et al.
Smultea, M.A., J.R. Mobley, Jr., and K. Lomac-MacNair. 2009. Aerial Survey
2009 Monitoring for Marine Mammals and Sea Turtles in Conjunction with U.S. Navy Major Training Events off San Diego, California, 15–21 October and 15–18 November 2008, Final Report. Prepared by Marine Mammal Research Consultants, Honolulu, HI, and Smultea Environmental Sciences, LLC., Issaquah, WA, under Contract No. N62742-08-P-1936 and N62742-08-P-1938 for Naval Facilities Engineering Command Pacific, EV2 Environmental Planning, Pearl Harbor, HI.

07-16 October 2012

THIS PAGE INTENTIONALLY LEFT BLANK

07-16 October 2012

APPENDIX A

Environmental, Oceanographic, and Sighting Conditions

Table A-1 shows the environmental, oceanographic, and sighting conditions encountered before, during, and after the Airborne Mine Neutralization System (AMNS) explosive test events.

Table A-1. Environmental,	Oceanographic, an	d Sighting Condition	ns During Monitoring
	,,		

Time	BSS Left MMO	Glare Left MMO [*] (1-5)	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO [*] (1-5)	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
	Survey o	on 07 Octob	er 2012: Before the	e First NSV	VC PCD AM	NS Test Event	
15:03:26	2	0	2(1)	2	0	2 (1)	85
15:08:13	3	0	2(1)	3	0	2 (1)	80
15:18:03	3	1	2(1)	3	0	2 (1)	65
15:28:21	3	0	2(1)	3	2	2 (1)	65
15:38:18	3	1	2(1)	3	0	2 (1)	65
15:48:35	3	0	2(1)	3	1	2 (1)	65
15:58:13	3	1	2(1)	3	0	2 (1)	65
16:07:56	3	0	2(1)	3	1	2 (1)	65
16:17:41	3	1	2(1)	3	0	2 (1)	65
16:27:40	3	0	2(1)	3	1	2 (1)	65
16:37:06	3	1	2(1)	3	0	2 (1)	65
16:46:54	3	0	2(1)	3	1	2 (1)	80
16:56:10	3	1	2(1)	3	0	2 (1)	80
17:04:57	3	1	2(1)	3	0	2 (1)	80
	Survey o	on 08 Octob	er 2012: Before the	e First NSV	VC PCD AM	INS Test Event	
10:07:01	3	0	2(1)	3	0	2 (1)	90
10:16:12	3	0	2(1)	3	1	2 (1)	90
10:25:53	3	0	2(1)	3	0	2(1)	90
10:34:25	3	0	2(1)	3	0	2 (1)	90
10:43:43	3	0	2(1)	3	0	2 (1)	90
10:52:09	3	0	2(1)	3	0	2 (1)	90
11:02:04	3	1	2(1)	3	0	2 (1)	90
11:10:39	3	0	2(1)	3	1	2(1)	90
11:21:00	3	1	2(1)	3	0	2 (1)	90
11:28:52	3	0	2(1)	3	1	2(1)	85
11:38:51	3	1	2(1)	3	0	2 (1)	85
11:46:57	3	0	2(1)	3	1	2 (1)	85

07-16 October 2012

Time	BSS Left MMO	Glare Left MMO [*] (1-5)	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO [*] (1-5)	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Sur	vey on 08 (October 201	2: Before the First	NSWC PC	D AMNS To	est Event (contin	ued)
11:58:01	3	1	2(1)	3	0	2(1)	50
12:07:24	3	0	2(1)	3	1	2(1)	45
12:17:11	3	1	2(1)	3	0	2 (1)	45
12:25:54	4	0	2(1)	4	1	2(1)	45
	Survey o	on 09 Octob	er 2012: Before the	e First NSV	VC PCD AM	INS Test Event	
12:45:33	2	1	2(1)	2	0	2 (1)	10
12:50:49	2	2	2(1)	2	1	2 (1)	10
12:57:15	2	1	2(1)	2	1	2 (1)	10
13:08:06	2	1	2(1)	2	1	2 (1)	10
13:11:03	2	1	2(1)	2	1	2(1)	10
13:16:08	2	0	2(1)	2	1	2 (1)	10
13:21:53	2	2	2(1)	2	1	2 (1)	10
13:32:48	2	2	2(1)	2	1	2(1)	10
13:37:07	2	0	2(1)	2	1	2 (1)	10
13:43:42	2	2	2(1)	2	1	2(1)	10
13:56:53	2	2	2(1)	2	1	2 (1)	10
14:00:20	2	0	2(1)	2	1	2 (1)	10
14:03:15	2	0	2(1)	2	1	2(1)	10
14:15:02	2	0	2(1)	2	1	2 (1)	10
14:19:11	2	1	2(1)	2	1	2(1)	10
14:26:51	3	1	2(1)	3	0	2 (1)	10
14:43:10	2	1	2(1)	2	1	2(1)	10
14:38:39	2	1	2(1)	2	1	2(1)	10
	Survey o	n 10 Octob	er 2012: During th	e First NSV	VC PCD AM	INS Test Event	
10:15:38	3	2	2(1)	3	0	2 (1)	0
10:24:41	3	0	2(1)	3	2	2 (1)	0
10:34:19	3	2	2(1)	3	0	2 (1)	0
10:43:29	3	0	2(1)	3	2	2 (1)	0
10:53:25	3	2	2(1)	3	0	2 (1)	0
11:03:15	3	0	2(1)	3	2	2 (1)	0
11:12:55	3	2	2(1)	3	0	2 (1)	0
11:22:24	3	0	2 (1)	3	2	2 (1)	0
11:32:39	3	2	2(1)	3	0	2 (1)	0
11:42:01	3	0	2(1)	3	2	2 (1)	0
11:52:10	3	2	2(1)	3	0	2 (1)	0
12:01:42	3	0	2(1)	3	2	2 (1)	0

07-16 October 2012

Time	BSS Left MMO	Glare Left MMO [*] (1-5)	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO [*] (1-5)	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Sur	vey on 10 C	October 201	2: During the First	t NSWC PC	CD AMNS T	est Event (contin	ued)
12:26:27	3	2	2(1)	3	0	2(1)	0
12:35:25	3	0	2(1)	3	2	2(1)	0
12:44:54	3	2	2(1)	3	0	2 (1)	0
12:54:32	3	0	2(1)	3	1	2(1)	0
13:11:39	3	2	2(1)	3	0	2 (1)	0
13:21:26	2	0	2(1)	2	1	2 (1)	0
13:30:59	2	1	2(1)	2	0	2(1)	0
13:40:41	2	0	2(1)	2	1	2 (1)	0
13:53:42	2	1	2(1)	2	1	2(1)	0
14:03:27	2	0	2(1)	2	0	2 (1)	0
14:12:17	2	1	2(1)	2	0	2(1)	0
14:21:56	2	0	2(1)	2	0	2(1)	0
14:31:01	2	0	2(1)	2	1	2 (1)	0
14:39:51	2	0	2(1)	2	0	2(1)	0
14:49:17	2	0	2(1)	2	0	2(1)	0
15:00:12	2	0	2(1)	2	0	2 (1)	0
15:02:27	2	0	2(1)	2	0	2(1)	0
15:33:36	2	0	2(1)	2	0	2 (1)	0
15:44:58	2	0	2(1)	2	1	2 (1)	0
	Survey	on 11 Octob	per 2012: After the	First NSW	C PCD AM	NS Test Event	
10:54:26	3	2	2(1)	3	0	2(1)	0
11:04:14	4	0	2(1)	4	1	2(1)	0
11:14:16	3	1	2(1)	3	0	2 (1)	0
11:22:47	4	0	2(1)	4	1	2 (1)	0
11:32:37	3	1	2(1)	3	0	2 (1)	0
11:41:45	4	0	2(1)	4	1	2 (1)	0
11:47:21	3	0	2(1)	3	1	2 (1)	0
11:51:04	3	1	2(1)	3	0	2 (1)	0
12:00:00	4	0	2(1)	4	1	2 (1)	0
12:05:17	3	0	2(1)	3	1	2 (1)	0
12:09:15	3	1	2(1)	3	0	2 (1)	0
12:15:42	4	1	2(1)	4	0	2 (1)	0
12:18:03	4	0	2(1)	4	1	2 (1)	0
12:25:36	4	0	2(1)	4	1	2 (1)	0
12:29:28	3	0	2(1)	3	1	2 (1)	0
12:32:31	3	1	2(1)	3	0	2 (1)	0

07-16 October 2012

Time	BSS Left MMO	Glare Left MMO [*] (1-5)	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO [*] (1-5)	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Su	rvey on 11	October 201	12: After the First	NSWC PC	D AMNS Te	st Event (continu	ied)
12:36:45	3	2	2(1)	3	0	2(1)	0
12:44:09	3	0	2(1)	3	1	2(1)	0
13:07:05	2	1	2(1)	2	0	2 (1)	0
13:17:05	3	0	2(1)	3	1	2(1)	0
13:21:01	2	0	2(1)	2	1	2(1)	0
Sı	irvey on 12	2 October 20	012: During the In	termediate	NSWC PCD	AMNS Test Eve	ent
11:00:21	2	1	2(1)	2	0	2(1)	0
11:03:49	2	1	2(1)	2	0	2 (1)	0
11:08:18	2	0	2(1)	2	2	2(1)	0
11:13:50	2	2	2 (1)	2	0	2 (1)	0
11:17:49	2	0	2(1)	2	2	2 (1)	0
11:22:29	2	2	2(1)	2	0	2(1)	0
11:28:17	2	0	2(1)	2	2	2(1)	0
11:34:41	2	2	2(1)	2	0	2(1)	0
11:42:44	2	0	2(1)	2	2	2(1)	0
11:51:30	2	2	2(1)	2	0	2 (1)	0
12:00:54	2	0	2(1)	2	1	2(1)	0
12:10:40	2	2	2(1)	2	0	2 (1)	0
12:20:01	2	0	2(1)	2	1	2 (1)	0
13:08:56	2	0	2(1)	2	0	2(1)	0
13:14:15	2	1	2(1)	2	0	2(1)	
13:23:04	2	0	2(1)	2	0	2(1)	0
	Survey or	1 13 October	r 2012: Before the	Second NS	WC PCD AI	MNS Test Event	
11:01:47	3	2	2(1)	3	1	2 (1)	0
11:11:13	4	0	2(1)	4	2	2 (1)	0
11:21:23	4	2	2(1)	4	0	2 (1)	0
11:30:32	4	0	2(1)	4	2	2 (1)	0
11:40:04	4	2	2(1)	4	0	2 (1)	0
11:46:18	5	3	2 (1)	5	0	2 (1)	0
11:49:57	5	0	2(1)	5	3	2 (1)	0
11:59:35	5	3	2 (1)	5	0	2 (1)	0
12:09:15	5	1	2(1)	5	3	2 (1)	10
12:19:14	5	3	2(1)	5	0	2 (1)	20
12:28:28	5	1	2(1)	5	3	2 (1)	20
12:38:24	5	3	2(1)	5	0	2 (1)	20
12:45:21	6	3	2(1)	6	0	2 (1)	20

07-16 October 2012

Time	BSS Left MMO	Glare Left MMO [*] (1-5)	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO [*] (1-5)	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Surv	ey on 13 O	ctober 2012	: Before the Secon	d NSWC P	CD AMNS 7	fest Event (contin	nued)
12:47:57	6	1	2(1)	6	2	2 (1)	20
	Survey or	14 Octobe	r 2012: Before the	Second NS	WC PCD AN	MNS Test Event	
9:37:34	4	2	1.5 (0.8)	4	0	1.5 (0.8)	30
9:41:02	5	3	1.5 (0.8)	5	0	1.5 (0.8)	50
9:45:47	6	3	1.5 (0.8)	6	0	1.5 (0.8)	80
	Survey on	15 October	r 2012: During the	Second NS	WC PCD AI	MNS Test Event	
10:51:04	3	1	1.5 (0.8)	3	1	1.5 (0.8)	90
10:58:08	4	1	1.5 (0.8)	4	1	1.5 (0.8)	90
11:00:45	4	1	1.5 (0.8)	4	1	1.5 (0.8)	90
11:03:10	4	1	1.5 (0.8)	4	1	0.5 (0.27)	90
11:04:18	4	1	1.5 (0.8)	4	1	1.5 (0.8)	90
11:11:20	4	1	1.5 (0.8)	4	1	1.5 (0.8)	90
11:19:47	4	1	1.5 (0.8)	4	1	1.5 (0.8)	90
11:23:53	4	1	1.5 (0.8)	4	2	1.5 (0.8)	80
11:29:42	4	1	1.5 (0.8)	4	1	1.5 (0.8)	75
11:36:49	4	1	1.5 (0.8)	4	2	1.5 (0.8)	70
11:41:16	4	1	1.5 (0.8)	4	3	1.5 (0.8)	70
11:44:42	5	3	1.5 (0.8)	5	1	1.5 (0.8)	70
11:50:37	5	1	1.5 (0.8)	5	3	1.5 (0.8)	60
11:56:22	5	3	1.5 (0.8)	5	1	1.5 (0.8)	60
12:00:49	5	1	1.5 (0.8)	5	3	1.5 (0.8)	60
12:04:48	5	3	1.5 (0.8)	5	1	1.5 (0.8)	60
12:09:11	5	3	1.5 (0.8)	5	1	1.5 (0.8)	60
12:14:13	5	1	1.5 (0.8)	5	3	1.5 (0.8)	60
12:20:12	5	3	1.5 (0.8)	5	1	1.5 (0.8)	60
12:27:40	5	1	1.5 (0.8)	5	3	1.5 (0.8)	60
12:35:22	5	3	1.5 (0.8)	5	1	1.5 (0.8)	60
12:44:32	5	1	1.5 (0.8)	5	1	1.5 (0.8)	60
12:53:06	5	3	1.5 (0.8)	5	1	1.5 (0.8)	60
13:02:45	5	1	1.5 (0.8)	5	1	1.5 (0.8)	60
13:23:22	5	3	1.5 (0.8)	5	1	1.5 (0.8)	50
13:33:25	5	1	1.5 (0.8)	5	3	1.5 (0.8)	50
13:42:15	5	3	1.5 (0.8)	5	1	1.5 (0.8)	50
13:51:31	5	1	1.5 (0.8)	5	1	1.5 (0.8)	50
13:58:16	5	2	1.5 (0.8)	5	1	1.5 (0.8)	50
14:04:30	5	1	1.5 (0.8)	5	1	1.5 (0.8)	40

Aerial Monitoring Surveys

A-5

07-16 October 2012

Time	BSS Left MMO	Glare Left MMO [*] (1-5)	Visibility Distance Left MMO km (nmi)	BSS Right MMO	Glare Right MMO [*] (1-5)	Visibility Distance Right MMO km (nmi)	Cloud Cover (%)
Surv	ey on 15 O	ctober 2012	During the Secon	d NSWC P	CD AMNS T	lest Event (conti	nued)
14:10:06	5	2	1.5 (0.8)	5	1	1.5 (0.8)	40
14:15:01	5	1	1.5 (0.8)	5	1	1.5 (0.8)	40
14:18:38	5	1	1.5 (0.8)	5	1	1.5 (0.8)	40
14:21:58	5	2	1.5 (0.8)	5	2	1.5 (0.8)	40
14:28:07	5	1	1.5 (0.8)	5	1	1.5 (0.8)	40
	Survey o	n 16 Octobe	er 2012: After the S	Second NSV	VC PCD AM	INS Test Event	
11:54:25	5	2	2(1)	5	0	2 (1)	75
12:02:57	5	0	2(1)	5	1	2 (1)	80
12:12:55	5	2	2(1)	5	0	2 (1)	75
12:21:09	5	0	2(1)	5	2	2 (1)	80
12:31:01	5	1	2(1)	5	1	2 (1)	80
12:38:22	5	0	2(1)	5	2	2 (1)	75
12:47:10	5	2	2(1)	5	0	2 (1)	75
12:52:29	5	0	2(1)	5	2	2 (1)	75
12:58:53	5	2	2(1)	5	0	2 (1)	75
13:02:30	5	0	2(1)	5	2	2 (1)	75
13:06:44	5	2	2(1)	5	0	2 (1)	75
13:10:17	5	0	2(1)	5	2	2 (1)	75
13:12:14	5	2	2(1)	5	0	2(1)	75
13:15:27	5	0	2(1)	5	2	2 (1)	75
13:17:20	4	0	2(1)	4	2	2 (1)	75
13:20:43	4	2	2(1)	4	0	2 (1)	75
13:25:29	4	0	2(1)	4	2	2 (1)	75
13:32:14	4	2	2(1)	4	0	2 (1)	75
13:39:14	4	0	2(1)	4	2	2 (1)	75
13:48:12	4	1	2(1)	4	2	2 (1)	75
13:56:49	4	0	2(1)	4	1	2(1)	75
14:06:55	3	1	2(1)	3	0	2 (1)	75
14:14:31	3	0	2(1)	3	1	2 (1)	75

Key:

km = kilometer(s)

nmi = nautical mile(s)

*0 = 0% glare; 1 = 1-19%; 2 = 20-39%; 3 = 40-59%; 4 = 60-79%; 5 = 80-100%

07-16 October 2012

APPENDIX B

Focal-Follow Data

Table B-1 shows focal-follow behavioral data from the 07 through 16 October 2012 monitoring efforts before, during, and after the Naval Surface Warfare Center Panama City Division (NSWC PCD) Airborne Mine Neutralization System (AMNS) test events. Eight focal-follow events were conducted throughout the monitoring effort for the AMNS test events. No focal follows were conducted on 07 October 2012 and 08 October 2012, which were part of the surveys conducted before the first NSWC PCD AMNS test event within the AMNS survey area. Five focal follows occurred on 09 October 2012, which were part of the surveys conducted before the first NSWC PCD AMNS test event; all were for groups of bottlenose dolphins (*Tursiops truncatus*). One focal follow occurred on 10 October 2012, which was part of the survey conducted during the first AMNS test event; it was for a group of unidentified dolphins (possible Atlantic spotted dolphins [*Stenella frontalis*]) within the AMNS survey area. One focal follow occurred on 11 October 2012, which was part of the survey conducted on 11 October 2012, which was part of the survey area one focal follow occurred on 11 October 2012, which was part of the survey conducted after the first AMNS test event; it was for a group of unidentified dolphins (test event; it was for a group of unidentified dolphins test event; it was for a group of unidentified dolphins test event; it was for a group of unidentified dolphins.

Record Number	Time	Date	Latitude	Longitude	Recorded Behavior							
	Sighting Number 1 from 09 October 2012											
Species: 7	Species: Tursiops truncatus. Group size: 8.											
1.	13:00:08	10/09/2012	30.035	-85.964	Travel heading west. Minimum Dispersal (Min Dispersal) = 1, Maximum Dispersal (Max Dispersal) = 2. All traveling one direction.							
2	13:01:18	10/09/2012	30.037	-85.966	Travel heading west. Min Dispersal = 1, Max Dispersal = 2.							
3	13:01:46	10/09/2012	30.040	-85.975	Milling. Min Dispersal = 1, Max Dispersal = 2.							
4	13:02:47	10/09/2012	30.043	-85.972	Milling. Min Dispersal = 1, Max Dispersal = 3. Displaying feeding behavior.							
5	13:04:05	10/09/2012	30.035	-85.975	Feeding. Dispersal = 1, Max Dispersal = 2.							
6	13:06:17	10/09/2012	30.041	-85.967	Feeding. Dispersal = 1, Max Dispersal = 2.							
7	13:07:12	10/09/2012	30.042	-85.967	Feeding. Dispersal = 1, Max Dispersal = 2.							
		Sight	ing Numbe	er 2 from 09 (October 2012							
Species: 7	ursiops tru	<i>ncatus</i> . Grou	p size: 23.									
1	13:26:47	10/09/2012	29.941	-85.938	Surface active. Min Dispersal = 1, Max Dispersal = 5. Suspected feeding.							

Table	B	-1.	Focal	Follow	B	ehavioral	Data	Collected	During	Monitoring

07-16 October 2012

Record Number	Time	Date	Latitude	Longitude	Recorded Behavior							
	Sighting Number 2 from 09 October 2012 (continued)											
2	13:28:06	10/09/2012	29.944	-85.951	Surface active. Min Dispersal = 1, Max Dispersal = 5. Suspected feeding.							
3	13:28:32	10/09/2012	29.949	-85.943	Travel. Min Dispersal = 1, Max Dispersal = 5. Moving towards a stationary vessel.							
4	13:29:48	10/09/2012	29.942	-85.944	Milling. Min Dispersal = 1, Max Dispersal = 5. Moving in different directions, still surface active.							
5	13:30:44	10/09/2012	29.948	-85.942	Milling. Min Dispersal = 1, Max Dispersal = 5. Moving in different directions, still surface active.							
6	13:31:41	10/09/2012	29.943	-85.945	Milling. Min Dispersal = 1, Max Dispersal = 5. Lots of splashing; surface active.							
				er 3 from 09 (October 2012							
Species: 7	ursiops tru	<i>ncatus</i> . Grou	p size: 38.									
1	13:48:49	10/09/2012	29.890	-85.909	Travel heading east. Min Dispersal = 1, Max Dispersal = 1. Small group of 5-6 animals.							
2	13:49:17	10/09/2012	29.898	-85.905	Travel heading east. Min Dispersal = 1, Max Dispersal = 1. Large group of 25.							
3	13:49:42	10/09/2012	29.890	-85.908	Travel heading east. Min Dispersal = 1, Max Dispersal = 10. Five animals farther away from group; they are ~ 10 body lengths (BL) away from group.							
4	13:51:29	10/09/2012	29.890	-85.901	Travel. Min Dispersal = 1, Max Dispersal = 10. Animals all traveling in same direction, but some small groups are ~ 10 BL away from larger group of ~25 animals.							
5	13:52:37	10/09/2012	29.889	-85.905	Travel heading east. Min Dispersal = 1, Max Dispersal = 5. Smaller group speeding up to merge with larger group.							
6	13:52:52	10/09/2012	29.895	-85.908	Travel heading east. Min Dispersal = 1, Max Dispersal = 10. Three broke from group; about 10 BL away; maintaining course.							
7	13:54:28	10/09/2012	29.888	-85.904	Travel heading east. Min Dispersal = 1, Max Dispersal = 10.							
10.07				er 4 from 09 (October 2012							
Species: 7	ursiops tru	<i>ncatus</i> . Grou	p size: 10.	-								
1	14:08:07	10/09/2012	29.914	-85.853	Surface active travel heading north. Min Dispersal = 1, Max Dispersal = 1.							
2	14:09:28	10/09/2012	29.905	-85.846	Travel heading north. Min Dispersal = 1, Max Dispersal = 1.							
3	14:10:20	10/09/2012	29.904	-85.848	Surface active travel heading north. Min Dispersal = 1, Max Dispersal = 1.							
4	14:10:31	10/09/2012	29.906	-85.851	Surface active travel heading north.							

Record Number	Time	Date	Latitude	Longitude	Recorded Behavior					
					er 2012 (continued)					
5	14:11:10	10/09/2012	29.904	-85.846	Surface active travel heading north.					
6	14:12:20	10/09/2012	29.906	-85.851	Surface active travel heading north. Min Dispersal = 1, Max Dispersal = 1.					
Sighting Number 5 from 09 October 2012										
Species: 7	ursiops tru	<i>ncatus</i> . Grou	p size: 8.							
1	14:34:17	10/09/2012	29.918	-85.729	Surface active travel heading northeast. Min Dispersal = 1, Max Dispersal = 3.					
2	14:35:14	10/09/2012	29.916	-85.729	Travel heading northeast. Min Dispersal = 1, Max Dispersal = 2.					
3	14:35:39	10/09/2012	29.925	-85.735	Travel heading northeast. Min Dispersal = 1, Max Dispersal = 2.					
4	14:36:56	10/09/2012	29.926	-85.726	Surface active travel heading northeast. Min Dispersal = 1, Max Dispersal = 3.					
5	14:38:42	10/09/2012	29.928	-85.735	Surface active travel heading northeast. Min Dispersal = 1, Max Dispersal = 2.					
6	14:39:01	10/09/2012	29.928	-85.725	Surface active travel heading northeast. Min Dispersal = 1, Max Dispersal = 2.					
7	14:39:35	10/09/2012	29.918	-85.734	Surface active travel heading northeast. Min Dispersal = 1, Max Dispersal = 2.					
		Sight	ing Numbe	r 1 from 10	October 2012					
Species: U	Inidentified				Group size: 21.					
1	15:07:04	10/10/2012	29.790	-85.827	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 2.					
2	15:09:11	10/10/2012	29.800	-85.829	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 2.					
3	15:11:10	10/10/2012	29.801	-85.825	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 2. Swimming towards bait ball.					
4	15:12:03	10/10/2012	29.802	-85.827	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 2.					
5	15:13:18	10/10/2012	29.796	-85.826	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 2.					
6	15:14:48	10/10/2012	29.802	-85.826	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 4.					
7	15:15:59	10/10/2012	29.796	-85.828	Travel heading northwest. Min Dispersal = 1, Max Dispersal = 2.					
8	15:17:34	10/10/2012	29.802	-85.823	Fast travel heading north. Min Dispersal = 1, Max Dispersal = 50.					
9	15:19:02	10/10/2012	29.806	-85.830	Fast travel heading north. Min Dispersal = 1, Max Dispersal = 50. Swimming around bait ball.					
10	15:20:30	10/10/2012	29.798	-85.829	Travel heading north. Min Dispersal = 1, Max Dispersal = 50.					
11	15:22:15	10/10/2012	29.799	-85.829	Travel heading north. Min Dispersal = 1, Max Dispersal = 50.					

Record Number	Time	Date	Latitude	Longitude	Recorded Behavior
		Sighting Nu	umber 1 fro	om 10 Octob	er 2012 (continued)
12	15:23:39	10/10/2012	29.806	-85.823	Travel heading north. Min Dispersal = 1, Max Dispersal = 50.
13	15:25:16	10/10/2012	29.809	-85.828	Travel heading north. Min Dispersal = 1, Max Dispersal = 50.
14	15:26:40	10/10/2012	29.804	-85.834	Travel heading north. Min Dispersal = 1, Max Dispersal = 50. Moving away from bait ball.
15	15:27:40	10/10/2012	29.807	-85.829	Travel heading north. Min Dispersal = 1, Max Dispersal = 100.
16	15:28:51	10/10/2012	29.800	-85.827	Travel heading north. Min Dispersal = 1, Max Dispersal = 100.
17	15:30:18	10/10/2012	29.809	-85.840	Travel heading north. Min Dispersal = 1, Max Dispersal = 100.
18	15:31:32	10/10/2012	29.808	-85.830	Travel heading north. Min Dispersal = 1, Max Dispersal = 50.
		Sight	ing Numbe	er 2 from 11 (October 2012
Species: U	Jnidentified	l dolphin. Gr			
1	12:53:04	10/11/2012	29.920	-85.705	Travel. Min Dispersal = 1, Max Dispersal = 5. Possible feeding.
2	12:54:33	10/11/2012	29.915	-85.711	Travel. Min Dispersal = 1, Max Dispersal = 3. Possible feeding near a bait ball.
3	12:56:16	10/11/2012	29.913	-85.704	Travel. Possible feeding.
4	12:58:46	10/11/2012	29.920	-85.714	Travel. Min Dispersal = 1, Max Dispersal = 10. Traveling towards a bait ball.
6	13:01:41	10/11/2012	29.920	-85.705	Travel. Animals staying under for longer periods. Possible feeding.
7	13:03:27	10/11/2012	29.919	-85.710	Travel. Possible feeding. Staying down longer around bait ball.
		Sight	ing Numbe	er 2 from 12 (October 2012
Species: 7	ursiops tru	<i>ncatus</i> . Grou	p size: 45.		
1	12:29:43	10/12/2012	29.872	-85.737	Surface active travel. Min Dispersal = 1, Max Dispersal = 60.
2	12:31:25	10/12/2012	29.873	-85.724	Surface active travel. Min Dispersal = 1, Max Dispersal = 20.
3	12:32:06	10/12/2012	29.880	-85.727	Surface active travel. Min Dispersal = 1, Max Dispersal = 10. Around bait ball, assumed feeding.
4	12:32:50	10/12/2012	29.879	-85.732	Surface active mill. Min Dispersal = 1, Max Dispersal = 4.
5	12:34:08	10/12/2012	29.876	-85.723	Surface active mill.
6	12:34:09	10/12/2012	29.876	-85.723	Surface active mill. Min Dispersal = 1, Max Dispersal = 100.
7	12:34:28	10/12/2012	29.873	-85.734	Surface active mill. Min Dispersal = 1, Max Dispersal = 4.

Record Number	Time	Date	Latitude	Longitude	Recorded Behavior
		Sighting N	umber 2 fro	om 12 Octob	er 2012 (continued)
8	12:35:38	10/12/2012	29.878	-85.735	Surface active mill. Min Dispersal = 1, Max Dispersal = 4.
9	12:36:13	10/12/2012	29.873	-85.732	Surface active mill. Min Dispersal = 1, Max Dispersal = 4. Large splash.
10	12:37:42	10/12/2012	29.877	-85.726	Surface active mill. Min Dispersal = 1, Max Dispersal = 4. Three large splashes; outliers appear to have joined the large group
11	12:38:46	10/12/2012	29.872	-85.730	Surface active mill. Min Dispersal = 1, Max Dispersal = 4. Animals staying in the same location.
12	12:40:04	10/12/2012	29.876	-85.739	Surface active mill. Min Dispersal = 1, Max Dispersal = 4. Around bait ball, assumed feeding.
13	12:40:42	10/12/2012	29.874	-85.727	Surface active mill. A new group joined, 3 splashes seen.
14	12:41:09	10/12/2012	29.879	-85.739	Surface active mill. Min Dispersal = 1, Max Dispersal = 10. Large group split briefly.
15	12:41:35	10/12/2012	29.874	-85.728	Surface active mill. Min Dispersal = 1, Max Dispersal = 10. Three groups combined into one group.
16	12:42:01	10/12/2012	29.880	-85.739	Surface active mill. Min Dispersal = 1, Max Dispersal = 10. Split into 2 groups.
17	12:42:14	10/12/2012	29.879	-85.731	Surface active mill. Min Dispersal = 1, Max Dispersal = 10. New group heading toward larger group.
18	12:42:25	10/12/2012	29.873	-85.730	Surface active mill. Min Dispersal = 1, Max Dispersal = 100. Outlier seen 100 BL away from group.
19	12:42:53	10/12/2012	29.879	-85.738	Surface active mill. Min Dispersal = 1, Max Dispersal = 10. Two main groups, within each group they are within 1-2 BL apart.
20	12:44:30	10/12/2012	29.874	-85.740	Surface active mill. Min Dispersal = 1, Max Dispersal = 10.
21	12:45:12	10/12/2012	29.873	-85.731	Surface active mill. Min Dispersal = 1, Max Dispersal = 3. Groups coming together again, 7 animals splashing.
22	12:46:08	10/12/2012	29.873	-85.732	Surface active mill. Min Dispersal = 1, Max Dispersal = 3. All one large group now.
23	12:46:51	10/12/2012	29.878	-85.732	Surface active travel. Min Dispersal = 1, Max Dispersal = 200. Another group heading towards large group 200 BL away.

NSWC PCD Mari	ine Species Monito	oring Trip Report
---------------	--------------------	-------------------

Record Number	Time	Date	Latitude	Longitude	Recorded Behavior			
	Sighting Number 2 from 12 October 2012 (continued)							
24	12:47:46	10/12/2012	29.880	-85.731	Surface active travel. Group dove at once - including the smaller outlier group.			
25	12:49:34	10/12/2012	29.878	-85.730	Travel. Min Dispersal = 1, Max Dispersal = 3. Animals resurfaced; traveling in same direction. Seven animals splashing.			
26	12:50:50	10/12/2012	29.871	-85.742	Travel heading south. Min Dispersal = 1, Max Dispersal = 3. All heading in same direction.			
27	12:51:46	10/12/2012	29.870	-85.740	Surface active travel. Splashing.			
28	12:52:13	10/12/2012	29.881	-85.745	Travel. Smaller group still heading towards the larger group.			
29	12:52:41	10/12/2012	29.869	-85.736	Surface active travel. Min Dispersal = 1, Max Dispersal = 100. Large group split again, 3rd group in 200 BL away from other groups.			
30	12:53:51	10/12/2012	29.872	-85.746	Large group dove.			
31	12:55:15	10/12/2012	29.874	-85.737	Travel heading east. Large group resurfaced.			
32	12:56:47	10/12/2012	29.875	-85.740	Surface active travel heading east. Splashing			
33	12:58:56	10/12/2012	29.868	-85.733	Travel. Min Dispersal = 1, Max Dispersal = 3.			
34	12:59:53	10/12/2012	29.870	-85.732	Travel. Min Dispersal = 1, Max Dispersal = 15.			
35	13:02:49	10/12/2012	29.863	-85.739	Travel. Min Dispersal = 1, Max Dispersal = 2.			
36	13:05:03	10/12/2012	29.869	-85.733	Travel. Smaller group turned and headed away from larger group.			
37	13:05:31	10/12/2012	29.861	-85.741	Travel. Min Dispersal = 3, Max Dispersal = 4. Large group surface active.			
38	13:06:34	10/12/2012	29.858	-85.739	Surface active travel.			
39	13:07:17	10/12/2012	29.864	-85.729	Surface active travel. Group dove.			

Key: BL = body length(s)

max dispersal = maximum dispersal min dispersal = minimum dispersal

Appendix G – Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during Test Events Involving Sonar and Detonations in the NSWC PCD Study Area THIS PAGE INTENTIONALLY LEFT BLANK

Map ID	Sighting 1 ¹	Sighting 2	Sighting 3	Sighting 4	Sighting 5	Sighting 6	
Sighting Information	Sighting Information						
Date	8/2/12	8/2/12	8/9/12	8/9/12	8/9/12	8/9/12	
Time	09:11	11:23	10:45	11:08	11:34	11:54	
Location	W-151B-1	W-151B-1	W-151A-1	W-151A-1	W-151A-1	W-151A-1	
Detection sensor	Visual	Visual	Visual	Visual	Visual	Visual	
Species/group	UID SD	UID ST	SF	SF	SF	SF	
Group size	1	1	15	6	15	2	
# calves	0	N/A	0	0	0	0	
Behavior	Traveling	Resting at surface	Bow-riding	Bow-riding	Bow-riding	Bow-riding	
Animal heading (true)	SE	N/A	NE	SW	NE	SW	
Animal motion relative to ship	-	-	-	-	-	-	
Distance from ship	-	-	-	-	-	-	
Length of contact	<1 min	<1 min	1-5 min	1-5 min	1-5 min	1-5 min	
Environmental Inform	ation						
Wave height	1-2 ft	1-2 ft	2-3 ft	2-3 ft	2-3 ft	2-3 ft	
Visibility	-	-	-	-	-	-	
BSS	2	2	3	3	3	3	
Operational Information	on in the second s						
Active sonar in use?	Yes	Yes	Yes	Yes	Yes	Yes	
Heading of ship	-	-	-	-	-	-	
Mitigation implemented	During mission	During mission	During mission	During mission	During mission	During mission	
Comments	In ZOI, bow-riding; no impact	In ZOI, bow-riding; no impact	In ZOI, bow-riding; no impact	In ZOI, bow-riding; no impact	In ZOI, bow-riding; no impact	In ZOI, bow-riding; no impact	

Table G-1. Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during Sonar Test Events in the NSWC PCD Study Area.

Map ID	Sighting 7	Sighting 8	Sighting 9	Sighting 10	Sighting 11	
Sighting Information						
Date	8/9/12	8/9/12	9/28/12	10/3/12	12/1/12	
Time	14:40	17:06	08:31	09:44	08:22	
Location	W-151A-1	W-151A-1	W-151A-1	W-151A-1	W-151A-2	
Detection sensor	Visual	Visual	Visual	Visual	Visual	
Species/group	UID SD	SF	TT	TT	TT	
Group size	1	1	3	5	3	
# calves	0	0	1	0	0	
Behavior	Bow-riding	Traveling	Traveling	Traveling	Traveling	
Animal heading (true)	NW	N/A	N/A	N/A	N/A	
Animal motion relative to ship	-	-	-	-	-	
Distance from ship	-	-	-	-	-	
Length of contact	<1 min	<1 min	1 min	1 min	<1 min	
Environmental Informati	on					
Wave height	2-3 ft	2-3 ft	1-2 ft	1-2 ft	2-3 ft	
Visibility	-	-	-	-	-	
BSS	3	3	2	2	3	
Operational Information						
Active sonar in use?	Yes	Yes	No	Yes	No	
Heading of ship	-	-	-	-	-	
Mitigation implemented	During mission	During mission	Pre-mission	During mission	Pre-mission	
Comments	In ZOI, bow-riding; no impact	In ZOI; potential exposure	In ZOI; no impact	In ZOI; potential take occurred	Animal left ZOI before mission started	

Table G-1. Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during Sonar Test Events in the NSWC PCD Study Area. (continued)

Table G-1. Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during Sonar Test Events in the NSWC
PCD Study Area. (continued)

Map ID	Sighting 12	Sighting 13	
Sighting Information		•	
Date	12/1/12	5/22/13	
Time	09:02	12:00	
Location	W-151A-2	W-151A-3 Harp6	
Detection sensor	Visual	Visual	
Species/group	TT	UID ST ²	
Group size	2	1	
# calves	0	N/A	
Behavior	Bow-riding	Resting at surface	
Animal heading (true)	N/A	-	
Animal motion relative to ship	-	125°	
Distance from ship	-	100 m	
Length of contact	<1 min	1-3 min	
Environmental Information			
Wave height	2-3 ft	1 ft	
Visibility	-	-	
BSS	3	2	
Operational Information			
Active sonar in use?	Yes	Yes	
Heading of ship	-	-	
Mitigation implemented	During mission	During mission	
Comments	Bow-riding, no impact	Animal in ZOI during mission, no effects on sea turtles by sonar missions	

Key: - = data not collected/available; \circ = degree(s); BSS = Beaufort Sea State; ft = foot/feet; m = meter(s); min = minute(s); N/A = not applicable; SF = Atlantic spotted dolphin (*Stenella frontalis*); TT = Bottlenose dolphin (*Tursiops truncatus*); UID SD = unidentified schooling dolphin; UID ST = unidentified hardshell turtle; ZOI = zone of influence; NE = Northeast; NW = Northwest; SE = Southeast; SW = Southwest.

¹NOTE: MMO activities were also conducted on the following dates, but no marine mammal or sea turtle sightings occurred: 10 August 2012; 13 August 2012; 26 September 2012; 04 October 2012; 05 October 2012; 24 April 2013; 25 April 2013; 09 May 2013; 10 May 2013; 11 May 2013; 15 May 2013; 16 May 2013; 21 May 2013; 23 May 2013.

² NOTE: MMO noted the sea turtle was either a loggerhead turtle (*Caretta caretta*) or Kemp's ridley turtle (*Lepidochelys kempii*).

Map ID	Sighting 1 ¹	Sighting 2	Sighting 3	Sighting 4	Sighting 5	Sighting 6	Sighting 7	Sighting 8
Sighting Information	on	<u>-</u>	<u>.</u>	<u>-</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
Date	10/15/12	10/16/12	10/17/12	10/23/12	10/25/12	11/2/12	11/2/12	11/2/12
Time	13:08	14:31	13:35	12:41	14:30	09:42	10:18	10:30
Location	W-151B-1	W-151B-1	W-151B-1	W-151B-1	W-151B-1	W-151B-1	W-151B-1	W-151B-1
Detection sensor	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual
Species/group	KR	TT	UID ST	UID ST	TT	UID ST	UID ST	UID ST
Group size	1	2	1	1	3	1	1	1
# calves	N/A	0	N/A	N/A	0	N/A	N/A	N/A
Behavior	Resting at surface	Traveling	At surface, then traveling	Traveling	Traveling	Resting at surface	Resting at surface	Resting at surface
Animal heading (true)	N/A	NE	N/A	N/A	W	N/A	N/A	N/A
Animal motion relative to ship	N/A	40°	235°	273°	330°	270°	320°	310°
Distance from ship	N/A	150 m	200 m	100 m	50 m	100 m	80 m	80 m
Length of Contact	1-5 min	5-10 min	<1 min	1-5 min	1-5 min	1-5 min	1-5 min	1 min
Environmental Info	ormation							
Wave height	1 ft	2 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft	0-1 ft	0-1 ft
Visibility	-	-	-	-	-	-	-	-
BSS	2	3	2	1	2	1	1	1
Operational Inform			-					
Detonation?	No	Yes	No	No	Yes	No	No	No
Heading of ship	-	-	-	-	-	-	-	-
Mitigation implemented	Pre-mission	During mission	Post-mission	Pre-mission	During mission	Pre-mission	Pre-mission	Pre-mission
Comments	In ZOI, continue pre-mission survey	In ZOI, mission delayed until left area	In ZOI after detonation, reported to ESO as potential disturbance	In ZOI, continue pre-mission survey, no impact	During mission survey, mission delayed until animals moved out of ZOI	During pre- mission survey, no impact	During pre- mission survey, no impact	During pre- mission survey, no impact

Table G-2. Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during AMNS Live-Inert Explosives Test Events in the NSWC PCD Study Area.

Table G-2. Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during AMNS Live-Inert ExplosivesTest Events in the NSWC PCD Study Area. (continued)

Map ID	Sighting 9	Sighting 10	Sighting 11	Sighting 12	Sighting 13	Sighting 14	Sighting 15	Sighting 16
Sighting Information	1		-	-	-	-	-	
Date	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13
Time	9:10	10:12	10:46	13:18	13:45	13:46	14:07	14:10
Location	W-151B-1							
Detection sensor	Visual							
Species/group	CC	CC	SF	CC	CC	CC	SF	SF
Group size	1	1	2	1	1	1	2	1
# calves	N/A	N/A	0	N/A	N/A	N/A	0	0
Behavior	Traveling	Traveling	Traveling	Traveling	Resting at surface	Resting at surface	Traveling	Diving
Animal heading (true)	280°	SE	NW	360°	360°	N/A	S	N/A
Animal motion relative to ship	230°	230°	260°	230°	090°	270°	175°	165°
Distance from ship	300 m	57 m	200 m	200 m	350 m	200 m	300 m	100 m
Length of Contact	5 min	29 min	29 min	10 min	1-3 min	6 min	5 min	6-8 min
Environmental Infor	mation							
Wave height	1 ft	1 ft	1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
Visibility	-	-	-	-	-	-	-	-
BSS	2	2	2	1	1	1	1	1
Operational Informa	tion							
Detonation?	No							
Heading of ship	-	-	-	-	-	-	-	-
Mitigation implemented	Pre-mission							
Comments	In ZOI, continue pre- mission survey							

Table G-2. Information on Sightings Recorded by U.S. Navy MMOs Onboard Vessels during AMNS Live-Inert Explosives
Test Events in the NSWC PCD Study Area. (continued)

Map ID	Sighting 17	Sighting 18				
Sighting Information	Sighting Information					
Date	5/17/13	5/17/13				
Time	11:05	11:33				
Location	W-151B-1	W-151B-1				
Detection sensor	Visual	Visual				
Species/group	UID ST	UID ST				
Group size	1	1				
# calves	N/A	N/A				
Behavior	Resting at surface	Resting at surface				
Animal heading (true)	-	-				
Animal motion relative to ship	275°	240°				
Distance from ship	75 m	300 m				
Length of Contact	3 min	1 min				
Environmental Information						
Wave height	2 ft	2 ft				
Visibility	-	-				
BSS	3	3				
Operational Information						
Detonation?	No	Yes				
Heading of ship						
Mitigation implemented	Pre-mission	During mission				
Comments	In ZOI, continue pre-mission survey	In ZOI, mission delayed				

Key: - = data not collected/available; ° = degree(s); BSS = Beaufort Sea State; CC = loggerhead turtle (*Caretta caretta*); ESO = Environmental Safety Officer; KR = Kemp's ridley turtle (*Lepidochelys kempii*); SF = Atlantic spotted dolphin (*Stenella frontalis*); TT = bottlenose dolphin (*Tursiops truncatus*); UID ST = Unidentified hardshell turtle; min = minute(s); ft = feet; m = meter(s); N/A = not applicable; ZOI = zone of influence. NE = Northeast; NW = Northwest; S = South; SE = Southeast; W = West.

¹ NOTE: MMO activities were also conducted on the following dates, but no marine mammal or sea turtle sightings occurred: 10 October 2012; 12 October 2012; 19 October 2012; 20 October 2012; 21 October 2012.

Appendix H – U.S. Navy Lookout Comparison Study Data Collection Protocol THIS PAGE INTENTIONALLY BLANK

Calibrating US Navy lookout observer effectiveness

Information for Marine Mammal Observers

Version 2.1

ML BURT and L THOMAS

CONTENTS

- 1 INTRODUCTION
 - 1.1 Aim of the project
 - 1.2 Overview of analysis methods
 - 1.3 Overview of survey methods
 - 1.4 Overview of manual
 - 1.5 Contact details
- 2 SURVEY PROCEDURE
 - 2.1 Search platforms
 - 2.2 Observer configuration
 - 2.3 Navy observers
 - 2.4 MMO procedure
 - 2.5 Data recorder
- 3 SIGHTING PROTOCOL
 - 3.1 LO
 - 3.2 Bridge
 - 3.3 MMO
 - 3.4 Tracking priority
 - 3.5 Group size definition
 - 3.6 Surfacing and availability
- 4 DATA COLLECTION
 - 4.1 MMO sighting form
 - 4.2 MMO effort/weather form
 - 4.3 MMO Observer code form
 - 4.4 Table of species codes
- 5 OTHER ACTIVITIES
 - 5.1 Final cruise report
 - 5.2 And finally!

APPENDICES

- A Equipment list
- B LO data Daily marine mammal log

Acknowledgements

Feedback on this document was provided by the marine mammal observers involved in the data collection and in the debriefing sessions that followed each of the cruises. These include Amy Farak, Sean Hanser, Anu Kumar, Toni Mizerek, Deanna Rees, Julie Rivers, Robert Uyeyama and Stephanie Watwood

1. INTRODUCTION

1.1 Aim of the project

The US Navy use lookouts (LO) to detect anything in the water, including marine mammals. Depending on the nature of the activity the vessel is engaged in, action may need to be taken if the animal is within certain ranges of the vessel. Therefore, it is important to be able to detect all animals that come within these ranges and also determine how far away the animals are with accuracy. Lookouts are positioned so that the waters all around the vessel can be searched. As well as dedicated lookouts, officers on the bridge may also be searching and acousticians may also be listening for vocalisations (although we assume that visual confirmation is required before the encounter is classed as a detection). We refer to all of these observers together as the "observation team" (OT). The aim of this project is to calibrate the OT effectiveness in terms of detecting and identifying marine mammals. Of particular interest is the probability of an animal getting within a defined range of the vessel without being sighted by the OT, as well as determining the accuracy of the OT (primarily the LO) in determining species group (whale, dolphin, etc.) group size and position. In order to achieve this, experienced marine mammal observers (MMO) are required to be searching and collecting information on marine mammals that both they and the OT detect.

1.2 Overview of analysis methods

Three statistical models are required to estimate the probability of an animal getting within a defined stand-off range without being detected by the OT: (1) a model of the probability that an animal, or group of animals, at the surface is detected by the OT as a function of the animal's position relative to the vessel; (2) a model of surfacing behaviour of the animal/group; and (3) a model of animal/group movement. The data collected during the survey described here will be used to parameterize the first model. The latter two models will be parameterized from literature sources. To obtain parameters for the first model, the data required will be information on every surfacing of an animal (or group) detected by the MMOs and whether or not the OT saw it.

Since the action taken by the vessel once a sighting has been made depends on the distance recorded by the OT, and to some extent the species, we will also make an assessment of the accuracy of distance and species (or species group) determination – although the only data we have to compare this with are the distances and species recorded by MMOs, which may also not be error free. Therefore, while we can estimate the magnitude of the differences between OT and MMO distances and species determinations, we cannot make statements about absolute accuracy of either.

1.3 Overview of survey methods

In order to obtain a realistic probability of detection of every surfacing for the OT, it is important that the OT search as usual. However, some additional information from the OT will be required: namely, information on every surfacing if possible. Since this is not typically recorded, and we do not wish to interfere with the normal operation of the OT, we designate one of the MMOs to ensure that this information is obtained (as detailed below). This MMO will be called the liaison MMO (LMMO) since they need to liaise with the OT. The other MMOs also search and record every surfacing, in such a way

that the OT do not know what they are doing. To distinguish them from the LMMO, we refer to them as surveying MMOs (SMMOs).

With the SMMOs searching and recording every surfacing, a combination of line transect distance sampling (DS) and mark-recapture (MR) methods can be used to estimate the required probability of detection for each surfacing. These methods are frequently used in surveys of marine mammal surveys, but generally without the complication of recording each surfacing. The idea is that when the SMMOs detect an animal surfacing, they are setting up a "trial" for the OT, which can either result in the OT detecting that surfacing or not. The model assumes that probability of detection is a function of distance (both ahead and abeam of the ship), whether that group was sighted by the OT before and potentially other variables. Animals (or groups) that are more-or-less continually at the surface (such as large groups of dolphins) can be analysed in a similar framework, but here the probability of detection is modelled as a continuous hazard rather than only when discrete surfacing occurs. The data required for continuously available animals is: when and where the SMMOs first detected them, regular updates on position, when and where the OT first detected them (if they did), when and where the OT lost contact with them and when and where the SMMOs lost contact with them.

The primary members of the OT are the dedicated LOs; however there are also observers on the bridge and possibly an acoustic 'observer', although the search effort for these observers will be variable depending on their other duties. Nevertheless, sightings information from these observers will also be required. We plan that the LMMO will be stationed next to the LO; hence it is important that other members of the OT communicate their detections to the LO so that the LMMO can record them. If this does not happen, it may be necessary to station an additional LMMO on the bridge, so they can record detections made by the bridge observers.

A key element of this method is that the OT must search as usual and search independently from the SMMOs. If the LO or other observers are aware of sightings made by the SMMOs, the premise of the analysis will break down.

Another key element is that the SMMOs must be able to determine if a detection of a surfacing they have made has been detected by the OT or not (i.e. was the trial a "success" or "failure"). The LMMO is responsible for communicating all OT detections to the SMMOs, who can then judge if this corresponds with to a detection they have made. Also, information about the timing and location of detections will be recorded (by the LMMO for OT detections and by the SMMO for SMMO detections) so that determination of which are duplicates can be refined offline, after the survey.

In addition to the detection probability information, SMMO observers will also provide information on species and group size with which to calibrate the OT.

The most important surfacings are those made before the OT detects the animals, and the first surfacing detected by the OT. Thereafter, repeat detections of the same animal/group by the OT are useful information for refining the detection function shape, and for gleaning information about surfacing rates, but do not bear directly on the main question we wish to answer. Hence, most effort by the SMMOs should go into detecting marine mammals before the OT has seen them, and determining whether each of these surfacings is detected by the OT. Once a group has been detected, the SMMOs should feel free to concentrate on searching for new animals/groups, unless tracking of already detected groups is straightforward. One of the two SMMOs should be searching for new groups, especially if the other SMMO is following a group. The SMMOs are encouraged to search with binoculars or big eye binoculars as much as possible.

1.4 Overview of the manual

This manual describes the survey protocol and sighting procedures of the various observers and details the data to be collected. It should be borne in mind that the protocol may need to be adapted if procedures are found to be infeasible. Contact details for the St Andrews team are given in section 1.5.

1.5 Contact details

If anything is unclear, or the protocol can not be implemented, then do not hesitate to contact the support team at St Andrews University, Scotland. Note that the UK is 10 hours ahead of Hawaii.

NAME	TELEPHONE	EMAIL	FAX
Len Thomas	+44 1334 461801	len@mcs.st-and.ac.uk	
Eric Rexstad	+44 1334 461833	ericr@mcs.st-and.ac.uk	+44 1334 461800
Louise Burt	+44 1334 461805	louise@mcs.st-and.ac.uk	
David Borchers	+44 1334 461843	dlb@mcs.st-and.ac.uk	

1 SURVEY PROCEDURE

1.1 Search platforms

2.1.1 Frigate

The platforms available for observation on a frigate are the bridge, bridge wings (with Big Eyes installed), the upper bridge and the fantail (at the stern of the ship).

1.2 Observer configuration

2.2.1 OT

Dedicated LOs are positioned on the upper bridge and fantail with additional observers operating opportunistically on the bridge. On destroyers or cruisers Los will be located on the bridge wings. An acoustic observer may also be available. We assume that the forward LO (on the upper bridge of a frigate) will be the one primarily making confirmed sightings, and that all sightings by other members of the OT will be reported to them. Officers on the bridge or in combat operations center are responsible for entering marine mammal records into a log (Appendix B); this log will not be used in the current survey as it is not sufficiently detailed for our purposes – instead the LMMO will keep detailed records (see below). All OT personnel should search independently of the SMMOs.

2.2.2 MMO

Four MMO are required; two on the bridge wings who are actively searching (SMMOs), one with the navy LO on the upper bridge (the LMMO), and one recording data (DMMO). The primary purpose of the LMMO on the upper bridge is to record all detections and surfacings detected by the OT. The MMO should all be in contact with each other and also be aware of any sightings made by the OT.

It is anticipated that the MMOs will rotate positions, for example, port SMMO, LMMO, starboard SMMO, DMMO (resting).

It is also conceivable that the LMMO may sometimes be able to operate as an additional search platform, aiding the SMMOs, if they are able to stand behind the LO and hence not cue them with their sightings. This is something that will need to be determined on board the vessel.

It is our hope that the MMOs will be able to use headset radios to communicate among themselves with the DMMO recording data and prompting SMMOs for additional information. Looking down greatly increases the chance of losing a tracked animal, missing sightings, etc.

2.3 OT procedure

It is important that the OT search as usual and independently of the MMO. Having detected a marine mammal, the LO should report each surfacing of the group they detect to the LMMO. The LMMO will be positioned on the upper bridge will record this information. However, the LO should not alter their usual search behaviour in order to better detect repeat surfacings – they should carry on with whatever search behaviour they would use if the MMOs were not present.

If the bridge, or other member of the OT, detect an animal, they should inform the LO. This will both inform the LMMO who can record the information and allow the LO to track each surfacing. It is not necessary for the bridge or other observers to inform the LO of each surfacing they detect after the first one, if it is obvious it is of the same group, unless this is their normal procedure. As stated earlier, we are not focussed on repeat surfacings.

It is our understanding that OT have access to a compass and this should be used to determine the angle from the trackline to the sighting if this is their usual method. Distances are estimated by eye.

2.4 SMMO procedure

The main functions of the SMMO are to detect and track marine mammals and determine whether sightings made by the OT and reported to them by the LMMO are duplicates with sightings they have made. The SMMOs should search from the vessel to the horizon using binoculars concentrating forward of the vessel to abeam. The search pattern is:

- Port observer: searches on the port side of the vessel from about 5° starboard to abeam.
- Starboard observer: searches on the starboard side from about 5° port to abeam.

On detecting an animal, they should attempt to record each surfacing until the animal goes abeam. Tracking an animal has three uses: it helps to identify any animals subsequently seen by the OT; species and group size can be more accurate (because animals and groups are seen more than once) and information on surfacing behaviour is required for the analyses. The MMOs will need to be in contact with each other and thus be aware of any sightings made by the OT which will help with duplicate identification; duplicate sightings are animals seen first by the SMMO and then by the OT (as reported by the LO via the LMMO).

If the OT detect an animal prior to the SMMO, then the SMMO should attempt to locate it to determine species and group size and then continue to track and record each surfacing (but see section 3.4, below). If the OT sighting occurs during SMMO tracking, the SMMO should continue to track the animal until it is lost, or goes abeam, and then attempt to locate the sighting made by the OT.

SMMO should primarily concentrate their search effort forward of abeam but if substantial numbers of animals approach the vessel from behind abeam (i.e. dolphins that can swim faster than the vessel) then it may be necessary to search behind abeam.

Angleboards should ideally be used to measure bearings to sightings relative to the ship and the binoculars should have reticles for use in calculating distances.

Each SMMO should submit information via radio to the DMMO for data entry into the sighting form. Effort information should be recorded on an MMO effort form.

The SMMOs assess the duplicate status of each surfacing.

If there are too many animals in view for an SMMO to keep track of, the SMMO should choose a small number of trials (one or two) that they can track accurately and follow them until it is clear the OT has duplicated that target or the track ends.

2.5 LMMO

The primary function of the LMMO is to record information (section 4) on the first sightings of all the OT. Information on all subsequent sightings should also be recorded if possible. The LMMO will pass the information of sightings to the SMMOs as soon as possible to determine if the OT has duplicated as sighting made by the SMMOs. In some cases this will inform the SMMOs of animals not yet detected. The LMMO can also actively search for animals and inform the SMMOs of any sightings they make (so the SMMOs can use them to set up trials), as long as this does not cue the LO or compromise data recording.

3 SIGHTING PROTOCOL

This section relates to the procedure to be followed on detecting a marine mammal.

3.1 LO

On sighting a marine mammal, the LO should inform the LMMO giving all required information (see section 4) but in particular time of sighting, species group, sighting angle, sighting distance and group size. The LO should also give the information for any subsequent sightings of the same group to the LMMO.

3.2 Bridge (or other OT member)

On sighting, or detecting, a marine mammal, the bridge should inform the LMMO – this may be via the LO if LMMO is not in direct contact with the bridge. Subsequent sightings of the same should also be passed to the LO, although it seems likely in practice that the primary responsibility for tracking already sighted groups within the OT will fall upon the LO.

3.3 SMMO

On sighting a marine mammal, the SMMO should

1. Relay "sighting" to the DMMO.

2. When prompted by DMMO, provide the following information: species, sighting angle, sighting distance and group size. Other information (such as cue or behaviour) should be collected if there is time.

3. Attempt to track the animal, recording information on all subsequent sightings.

4. Assess duplicate status, maybe in consultation with the LMMO.

5. Inform the bridge of any animal within the operational standoff range of the vessel if active sonar operations are taking place.

3.4 Tracking priority

The first priority for SMMOs is to find and track animals before the OT see them, to set up trials for the OT. When the OT report a sighting (via the LMMO) of a new group they should determine whether it is a duplicate or not (i.e. something they were tracking already). A secondary priority is to track groups already seen by the OT, to determine resigning rates. With this in mind, the procedure for SMMOs on detecting an animal is as follows:

- On locating an animal, or group, attempt to track until the animal is lost or is a long way behind and unlikely to approach the vessel.
- If the OT detect an animal while both SMMOs are searching (i.e. not tracking anything), one SMMO should attempt to locate the OT sighting (to confirm species and group size) and continue to track it and record each surfacing. This will be necessary to determine how many surfacings the OT detect. The other SMMO should continue to search as setting up new trials is more important.
- If the OT detect an animal while one SMMO is engaged in tracking, that SMMO should determine whether the OT sighting is a duplicate or not. If it is, the SMMO should continue tracking the group while the other SMMO searches for new groups. If it is not, the SMMO should continue tracking their group, while the other SMMO attempts to track the group seen by the OT, if possible. If this is not possible, the other SMMO should revert to searching for new groups to track.
- If the OT detect an animal while both SMMOs are engaged in tracking, the SMMOs should continue determine if the OT sighting is a duplicate or not. In either case, they should continue tracking their groups until the track is finished or the group is sighted by the OT.

3.5 Group size definition

In the case of aggregated groups, the angle and distance measurement should be estimated to the geometric centre of the aggregation. A group can be thought of as the smallest unit that can be tracked as a unit. A convenient rule is, for example, to define a group as containing animals not more than 3 animal lengths from each other (this may depend on species). The group may exhibit the same swimming pattern and general behaviour although not necessarily with a synchronised surfacing pattern.

Difficulties may arise when animals are not in tight, easily defined clusters, but in loose aggregations whose boundaries and group size must be determined subjectively. In this case, it is better to identify smaller, homogenous groups within the aggregation, and associate each with an angle, distance and group size.

Problems can also arise when a group is formed of animals swimming in a long line at relatively equal distances from each other (e.g. pilot whales). In this case, group boundaries can be taken at convenient discontinuities in the distribution.

Large groups of dolphins may comprise of several hundreds of animals. Often these groups are compact and form a single unit. Sometimes subgroups may form but may only last for a short time with frequent interchange of animals between groups. In this case, it is better to treat the whole group as a single unit. As these groups will have a continuous cue, it is not necessary to make continuous resightings, but only at appropriate intervals, say 5 minutes or perhaps more frequently close to the vessel.

If relatively stable subgroups can be identified, then the details for the first subgroup sighted should be recorded and then this subgroup should be followed. Include a comment that it is part of a larger aggregation, and if possible, how many other subgroups there are in the aggregation and group sizes. A duplicate sighting would occur if the OT detects the subgroup being tracked.

If a groups splits while being tracked, then one subgroup should be tracked. The groups sizes recorded should reflect that the group has split and is now smaller than the original sighting. The fact that the

group has split should be recorded in the data. When tracking of the subgroup has finished, the SMMO should then try to relocate one of the other subgroups and track it.

3.6 Surfacing and availability

A surfacing is defined as any opportunity that an animal is available to be detected visually. This could be when the animals are at the surface or even below the surface if the water is clear enough.

Some animals may be intermittently available, for example if they are at the surface for a short time and then dive and then return to the surface. Others might be continuously available, for example large groups of dolphin schools which surface asynchronously. As ever, it is important to record the first sighting of these and as discussed in section 3.5, record the final sighting and, if feasible, at appropriate intervals such as every 5 minutes.

Some animals may provide both intermittent and continuous cues (i.e. a blow but then stays close to the surface and if the water is clear enough can still be seen). In this case, treat each discrete surfacing (ie. fluke, blow, body) as a resurfacing but include a comment that the animal is continuously available.

4 DATA COLLECTION

It is anticipated that data will be recorded by the DMMO onto paper forms and transcribed at the end of each day. The information collected by the OT is recorded by the LMMO onto a sightings form. Sightings by the SMMOs are recorded or transcribed onto a MMO sighting form. Forms for search effort and weather and other basic information are also provided. Note the form number and total number of forms (at the top of the paper form) is used to prevent forms being lost.

4.1 Sightings form

This form should be used to record all sighting information. All information is required upon initial sighting. Information needed for each resurfacing is indicated in **bold**.

ETEX D	BEGGDINETOX
FIELD	DESCRIPTION
SIGHTING #	This is the number of each sighting and should be sequential.
RESIGHTING #	The number of times the object has been resighted. The initial sighting will
	have a resighting number of zero and subsequent resightings will be 1, 2,
	etc. Each resighting starts a new column on the sighting report form.
RESIGHTING.	D definite resightings (at least 90% likely to be the same animal or group)
STATUS	P possible resighting (more than 50% likely)
	R remote resighting (less than 50% likely)
TIME	Time of sighting.
SPECIES CODE	The five letter code used to identify the species. Refer to section 4.4. If a
	species is not listed, then include this information in the 'Comment' for the
	record.
DURATION (if cue	If the cue is continuous, then indicate the length of time, you were
continuous)	observing this sighting.
ANIMAL (A) bearing	Estimated angle of the bow of the ship to the sighting. A sighting dead
	ahead is 0° and angles go from 0-360°.
SIGHTING	Estimate of sighting distance in metres?
DISTANCE	
GROUP SIZE	Give the best estimate of group size, including calves. In mixed schools
	enter the number of each species.

DUDI ICHER SICHE	
DUPLICATE SIGHT #	Duplicate sighting number. This allows duplicate sightings to be cross- referenced.
DUPLICATE TRIAL	Indicate if this is a valid duplicate:
	Yes – sighting seen first by MMO
	No – sighting seen first by OT
DUPLICATE STATUS	Duplicate status of a sighting:
	D – definite duplicate (at least 90% likely to be the same animal)
	P – possible duplicate (more than 50% likely)
	R – remote change of being a duplicate (less than 50% likely)
SHIP LATITUDE	remote change of being a aupreate (ress than 6070 mety)
SHIP LONGITUDE	
SHIP (S) BEARING	
RELATIVE MOTION	Indicates of the animal is anoning every from the ship plasing towards the ship
A/S & A'S BEARING	Indicates of the animal is opening away from the ship, closing towards the ship,
A/S & A S BEARING	or moving parallel to the ship's track. "None" if animal is stationary. The
	heading of the animal relative to the ship should be recorded relative to the line
	of sight where 0° indicates the animal is heading directly away, 90° indicates the
	animal is heading from left to right, 180° - directly towards the ship, 270° -
	heading right to left.
DETECTION SENSOR	Observer who made the sighting:
	MMO + observer code
	LO
	Bridge
	Acoustic
NUMBER OF CALVES	Enter the number of calves in a group.
SIGHTING CUE	Indicator of cue which led to the sighting: (just use words if more convenient)
	BL - blow
	BW – bowride
	BY - body
	DV - dive
	FL – fluke up
	GL – glint of sunlight off body
	HS – head slap
	JU - jump /breach/spin
	PA – peduncle arch
	PP – porpoise
	PS – pectoral fin slap
	SL- slick, footprint or ring
	SN – spin
	SP - splash
	TS – tail slap
	WL – seabirds or other associated wildlife
	OT – other
BEHAVIOUR	BR – Breaching
BEIIAVIOOR	5
	BW – Bow riding
	FD – Feeding
	FL - Fluking
	FS – Flipper slapping
	ML – Milling

	LO – Logging
	RE – Resting
	TR – Travelling
	TS – Tail slap
	VO - Vocalizing
END OF TRACK	Reason for stopping a track.
	BE - sighting behind the beam
	LO - sighting lost
	OB - sighting obscured
	NC - no change of the sighting with respect to the boat (this may happen if the
	sighting is far away)
	MA - sighting passed to other LO to follow
	OT – other
OPERATIONS	Were any mitigation measures implemented?
INFORMATION	
COMMENT	Any additional information.

4.1.1 Sighting number/Duplicate sighting number

The duplicate sighting number on the sightings form is the number given to the surfacing by the LMMO, and called down to the SMMOs. If the SMMOs think this is the same as a surfacing they sighted, they give write down the LMMOs sighting number under "DUPLICATE SIGHT #" on the form. Two types of duplicate sighting can be distinguished: those that represent valid trials for estimating the OT detection function and those that do not. Valid trials are where the SMMO saw the surfacing independently (for example because they were tracking the group) and then the LMMO radios down to inform the SMMO that a surfacing has been seen by the OT, and the SMMO determines it's the same as the one they just saw. In this scenario, "Yes" should be entered under "DUPLICATE TRIAL". By contrast, trials do not occur when the LMMO alerts the SMMOs to a surfacing and record information on it. In this case, although it's a duplicate (because both OT and SMMO saw the surfacing), it is not a valid trial as the OT saw it first directed the SMMO to see it. Hence "No" should be entered under "DUPLICATE TRIAL".

This duplicate information should be recorded by the SMMO since they are making any duplicate assessment. It is not necessary for the LMMO to fill in this information. The LMMO just need to pass sighting numbers of OT sightings to the SMMO so that the SMMO can fill in the duplicate information on their forms.

4.1.2 Multi species sighting

When recording groups of mixed species, record the information on separate lines but assign the same sighting number.

4.1.3 High density regions

It is anticipated that in the region chosen for the survey, animal density will be low. However, if the density of animals is high, so that the assessment of duplicate status becomes difficult, then indicate this on the effort form (see section 4.2). Cross-referencing of duplicates may need to be reconsidered. If density of animals is high (i.e. detections occur more than once every few minutes), then the timing of sightings becomes critical.

4.2 MMO Effort/weather form

This form should be completed by the LMMO every time an 'event' occurs, for example at the start/end of search effort, observer rotation, changes in the weather. If the density of animals is too high to make it difficult to assess duplicate status, then indicate this in the 'Event' field. Sometimes the weather will be too bad for searching, in which there will be no search effort.

FIELD	DESCRIPTION										
EFFORT	Whether search effort is ON or OFF.										
EVENT	Record the event:										
	1 – begin search effort										
	2 – stop search effort										
	3 - observer rotation										
	4 – weather change										
	5 – transect waypoint										
	6 – hi										
						al densi	tv				
	8 – en						-2				
TIME	Time										
LATITUDE											
LONGITUDE											
Port MMO	MMC) who	o is s	earcl	hing (on port	side of	ves	sel.		
Starboard MMO			_							6	
LMMO	MMO who is searching on starboard of vessel. MMO who is acting as liaison MMO.										
DMMO	MMC										
SEA STATE	Beauf	ort S	lea st	tate o	on a s	cale of	0-7.				
			Wind	lanaad				Wawa	height		
					Mean wind speed (kt / km/h / mph)	Description		1.57	Sea conditions	Land conditions	
	0	<u>kt</u> 0	0	<u>mph</u> 0	<u>m/s</u> 0-0.2	0/0/0	Calm	<u>m</u> 0	<u>ft</u> 0	Flat.	Calm. Smoke rises vertically.
	1	1-3	1-6	1-3	0.3-1.5	02/04/2	Light air	0.1	0.33	Ripples without crests.	Wind motion visible in smoke.
	2	4-6	7-11	4-7	1.6-3.3	05/09/6	Light	0.2	0.66	Small wavelets. Crests of glassy appearance, not breaking	Wind felt on exposed skin. Leaves rustle.
	3	7-10	12-19	8-12	3.4-5.4	9/17/11	<u>breeze</u> Gentle breeze	0.6	2	Large wavelets. Crests begin to break; scattered whitecaps	Leaves and smaller twigs in constant motion.
	4	11-16	20-29	13-18	5.5-7.9	13/24/15	Moderate breeze	3	3.3	Small waves.	Dust and loose paper raised. Small branches begin to move.
	5	17-21	30-39	19-24	8.0-10.7	19/35/22	Fresh breeze	2	6.6	Moderate (1.2 m) longer waves. Some foam and spray.	Smaller trees sway.
	6	22-27	40-50	25-31	10.8- 13.8	24 / 44 / 27	Strong breeze	3	9.9	Large waves with foam crests and some spray.	Large branches in motion. Whistling heard in overhead wires. Umbrella use becomes difficult.
	7	28-33	51-62	32-38	13.9- 17.1	30 / 56 / 35	Near gale	4	13.1	Sea heaps up and foam begins to streak.	Whole trees in motion. Effort to welk against the wind.
	8	34-40	63-75	39-46	17.2- 20.7	37 / 68 / 42	Gale	5.5	18	Moderately high waves with breaking crests forming spindrift. Streaks of foam.	Twigs broken from trees.Cars veer on road.
	9	41-47	76-87	47-54	20.8- 24.4	44 / 81 / 50	Strong gale	7	23	High waves (2.75 m) with dense foam. Wave crests start to roll over. Considerable spray.	Light structure damage.
	10	48-55	88- 102	55-63	24.5- 28.4	52 / 96 / 60	<u>Storm</u>	9	29.5	Very high waves. The sea surface is white and there is considerable tumbling. Msibility is reduced.	Trees uprooted. Considerable structural damage.
	11	56-63	103- 117	64-72	28.5- 32.6	60/111/69	Violent storm	11.5	37.7	Exceptionally high waves.	Widespread structural damage.
	12	>63	>117	>72	>32.0	N/A	Hurricane	14+	46+	Huge waves. Air filled with foam and spray. Sea completely white with driving spray. Visibility very greatly reduced.	Massive and widespread damage to structures.

SONAR	Is sonar On or Off?	
EXPLOSIVES	Are explosives in use: Yes or No.	
VISIBILITY	General impression for spotting marine animals:	
	B – Bad (<0.5km)	
	P - Poor(0.5 - 1.5 km)	
	M - Moderate (1.5 - 10km)	
	G – Good (10 - 15km)	
	E – Excellent (<15km)	
WAVE HEIGHT	Light $(0-3ft)$	
	Moderate $(4-6ft)$	
	Heavy (>6ft)	
SWELL		
DIRECTION		
WIND		
DIRECTION		
WIND SPEED		
% GLARE PORT		
% GLARE		
STARBOARD		
% CLOUD		
COVER		

4.3 MMO Observer code form

This should be completed at the start of the survey and the observer codes decided. The heights are needed if reticle readings have to be converted to distances.

FIELD	DESCRIPTION
CODE	Two letter code for each observer.
NAME OF OBSERVER	Name of the observer
EYE HEIGHT	Eye height (in feet) of the observer (to be used for converting reticle
	estimates to distances).
PLATFORM HEIGHT	Height of SMMO platform (in feet) above sea level.

4.4 Table of species codes

CODE	COMMON NAME	SCIENTIFIC NAME		
BALMU	Blue whale	Balaenoptera musculus		
BALPH	Fin whale	Balaenoptera physalus		
MEGNO	Humpback whale	Megaptera novaeangliae		
BALAC	Minke whale	Balaenoptera acutorostrata		
BALED	Bryde's whale	Balaenoptera edeni		
BALBO	Sei whale	Balaenoptera borealis		
BAL	Unidentified rorqual	Balaenopteridae		
WHALE	Unidentified whale			
0				
ZIP	Unidentified beaked whales	Ziphiid		
MES	Unidentified Mesoplodon	Mesoplodon spp.		

MESDE	Blainville's beaked whale	Mesoplodon densirostris	
ZIPCA	Cuvier's beaked whale	Ziphius cavirostris	
INDPA	Longman's beaked whale	Indopacetus pacificus	
PHYMA	Sperm whale	Physeter macrocephalus	
KOGBR	Pygmy sperm whale	Kogia breviceps	
KOGSI	Dwarf sperm whale	Kogia simus	
KOG	Unidentified pygmy/dwarf sperm whale	Kogia spp.	
ORCOR	Killer whale	Orcinus orca	
PSECR	False killer whale	Pseudorca crassidens	
FERAT	Pygmy killer whale	Feresa attenuata	
PEPEL	Melon-headed whale	Peponocephala electra	
GLOMA	Short-finned pilot whale	Globicephala macrorhynchus	
TURTR	Bottlenose dolphin	Tursiops truncatus	
STEAT	Pantropical spotted dolphin	Stenella attenuata	
GRAGR	Risso's dolphin	Grampus griseus	
STELO	Spinner dolphin	Stenella longirostris	
STECO	Striped dolphin	Stenella coeruleoalba	
STEBR	Rough-toothed dolphin	Steno bredanensis	
LAGHO	Fraser's dolphin	Lagenodelphis hosei	
DOLPH	Unidentified dolphin		
CET	Unidentified cetacean		
CHEMY	Green turtle	Chelonia mydas	
EREIM	Hawksbill turtle	Eretmochelys imbricata	
DERCO	Leatherback turtle	Dermochelys coriacea	
CARCA	Loggerhead turtle	Caretta caretta	
LEPOL	Olive ridley turtle	Lepidochelys olivacea	
TURTL	Unidentified turtle		
MONSC	Hawaiian monk seal	Monachus schauinslandi	

5 OTHER ACTIVITIES

5.1 Final cruise report

At the end of the cruise a brief report which contains a general evaluation of the survey (i.e. suitability of vessel, platform locations, search procedure, sighting protocol, equipment, general operation etc.) would be helpful. Perhaps include a summary of the survey data collected (number of miles/km searched, number of sightings of each species) and any problems that have occurred, any adaptations to the protocol that may have been implemented or if any new species codes have been added. This information will be useful to refine survey methods for the next survey and in the analysis of the data. This cruise report should describe the trials that are to be included in the analysis, unambiguously indicating only the trials that should be used. This list of trial numbers would integrate all information contained in the data commentary from the perspective of the observers who collected the data.

5.2 And finally! Have a good time and enjoy the survey! Don't forget you can contact the St Andrews team at any time (time difference allowing).

APPENDIX A EQUIPMENT LIST

LO Equipment

Each LO should have the following equipment, which are all provided:

- Compass for measuring sighting angle
- 7x50 binoculars for searching
- Big Eyes for group size
- Headsets or other means of communicating with bridge

MMO Equipment

Each MMO should have the following equipment:

- 7x50 Binoculars with reticles
- Compass (provided on platform)
- GPS or synchronised digital watch
- Radios (handheld or headsets to communicate with other MMO)
- Clipboard
- Pencils
- MMO sighting forms
- MMO effort/weather forms (LMMO only)
- Equipment to communicate with bridge
- Crib sheet for converting reticles to distances
- Crib sheet of species codes.

APPENDIX B LO DATA – DAILY MARINE MAMMAL LOG

The following table describes the data recorded in the LO 'Daily marine mammal log'.

FIELD	DESCRIPTION			
A. DTG	Date and time of sighting DDHHMM Z MMM YY			
B. Species/Type of mammal	Types are			
	Whale/Dolphin/Porpoise/Seal/Sea lion/Turtle/Generic (i.e. unknown)			
C. Number of mammals	Number			
D. Calves	Yes/No			
E. Initial detection source	Visual/Aural			
F. Initial bearing/range	Bearing in degrees (true)/ Range in yards			
G. Unit position	Latitude DDMMSS N/S and Longitude DDDMMSS E/W			
H. Unit course/speed	Course in degrees (true)/ Speed in knots			
I. Last known bearing/range	Bearing in degrees (true)/ Range in yards			
J. Total time visually	Time in minutes			
observed				
K. Wave height	Wave height in feet			
L. Visibility	Visibility in nautical miles			
M. MFAS status	On/Off			
N. MFAS action taken	Powerdown -6dB/Powerdown -10dB/Shutdown/None			
The following fields are comp	pleted if MFAS was transmitting when a mammal was sighted and			
subsequently powered down/s	shut down, or course changed.			
O. Duration of action	Minutes			
P. Maneuver conducted	Turn STBD/Turn PORT			
Q. Degrees of course change	Degrees			
R. Range action taken	Range in yards			
S. Action impact	Tactical degradation assessment – examples:			
	None			
	Slight - degraded ASW screen integrity when ship manoeuvred to open			
	whales			
	Moderate – lost contract when power reduced			
	Significant – engagement interrupted when MFAS as shutdown			
T. Narrative of observation	Examples:			
	Dolphins sighted at 1200yds off port bow, closing on ship. Manoeuvred			
	to confirm bow riding and continued MFAS operations.			