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ES-1 

Executive Summary 

Two random-forest classifiers were developed for the identification of whistles produced by five species 
of delphinids (bottlenose dolphin, Tursiops truncatus; Atlantic spotted dolphin, Stenella frontalis; striped 
dolphin, S. coeruleoalba; short-beaked common dolphin, Delphinus delphis; short-finned pilot whale, 
Globicephala macrorhynchus) recorded in the northwestern Atlantic Ocean. Acoustic data were 
provided by the National Marine Fisheries Service’s (NMFS) Northeast and Southeast Fisheries Science 
Centers (NEFSC and SEFSC) and Duke University. One classifier was trained and tested with whistles 
detected and extracted with manual based methods using the bio-acoustic analysis software ROCCA 
(Real-time Odontocete Call Classification Algorithm). The other classifier was trained and tested with 
whistles detected and extracted using the fully automated Whistle and Moan Detector (WMD). Both 
ROCCA and the WMD are integrated as modules in the acoustic analysis software platform, PAMGuard 

(www.pamguard.org). Two classification approaches were tested: a single-stage random-forest 
approach, where whistles were classified directly to species, and a two-stage random-forest approach, 
where whistles were first classified into species groups (i.e., “large dolphin” or “small dolphin”) in stage 
1 and then classified again, to species within those groups, in stage 2. The two-stage approach produced 
more accurate results when the classifier was trained and tested using manually detected/extracted 
whistles and when the classifier was trained/tested using automatically detected/extracted whistles. 
Individual whistles within an acoustic encounter were classified as ‘small dolphins’ (short-beaked 
common dolphins, striped dolphins) or large dolphins (bottlenose dolphins, Atlantic spotted dolphins, 
short-finned pilot whales) in stage 1 of the manual classifier, and as short-finned pilot whales or 
dolphins (short-beaked common, striped, Atlantic spotted, bottlenose) in stage 1 of the automated 
classifier. Both classifiers were used to identify individual whistles to species and then to identify 
encounters (i.e., groups of whistles produced during an acoustic encounter) based on the combined 
classification results for all of the whistles in each encounter. Overall correct classification scores for the 
manual classifier were 78 percent (standard deviation [sd] = 1.2 percent) for individual whistles and 86 
percent (sd = 2.5 percent) for encounters. For the automated classifier, correct classification scores were 
80 percent (sd = 1.9 percent) for whistles and 91 percent (sd = 2.4 percent) for encounters. Both 
classifiers have been incorporated into PAMGuard’s ROCCA module, and will be made available to users 

via PAMGuard’s website (www.pamguard.org) in the next PAMGuard software update. 
Recommendations for future research and further development of ROCCA include testing the Atlantic 
classifiers using recordings containing whistles from visually validated species, as well as those with 
varying signal to noise ratios and noise environments.  ROCCA should also be tested in real time during 
shipboard towed-array surveys.  Several recommendations are provided for future classifier 
development, including: ground-truthing ROCCA and adding species to the Atlantic classifier. Both of 
these tasks could be accomplished using acoustic recordings of delphinids collected during summer 
2013 surveys conducted by NMFS-NEFSC and SEFSC. In addition, collaborations among research groups 
are recommended to explore methods for increasing classification success and creating multi-species 
classifiers for tonal signals produced by baleen whales. Finally, we recommend using a classifier 
developed specifically for the northwest Atlantic Ocean to process archival towed-array and seafloor-
mounted recorder data to examine questions related to occurrence and behavioral responses of animals 
to naval activities. 

http://www.pamguard.org/
http://www.pamguard.org/


ES-2 

This page intentionally left blank. 



i 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY .................................................................................................................. ES-1 

ACRONYMS AND ABBREVIATIONS ...................................................................................................... v 

EXECUTIVE SUMMARY .......................................................................................................................1 

1. INTRODUCTION ........................................................................................................................1 

2. METHODS .................................................................................................................................4 

2.1 Data ........................................................................................................................................... 4 

2.2 Whistle Measurement ............................................................................................................... 5 

2.2.1 Manual Detection and Contour Extraction .................................................................. 6 
2.2.2 Automated Detection and Contour Extraction ............................................................ 6 
2.2.3 Feature Measurement ................................................................................................. 7 
2.2.4 Random-Forest Analysis ............................................................................................... 7 

2.3 Variable Importance .................................................................................................................. 8 

3. RESULTS ................................................................................................................................. 11 

3.1 Acoustic Recordings ................................................................................................................ 11 

3.2 Manual Classifier ..................................................................................................................... 11 

3.2.1 Single-Stage Classifier ................................................................................................. 11 
3.2.2 Two-Stage Classifier ................................................................................................... 13 

3.3 Automated Classifier ............................................................................................................... 16 

3.3.1 Single-Stage Classifier ................................................................................................. 16 
3.3.2 Two-Stage Classifier ................................................................................................... 17 

3.4 Whistle Measurements ........................................................................................................... 19 

3.4.1 Manual Measurements .............................................................................................. 19 
3.4.2 Automated Measurements ........................................................................................ 24 

3.5 PAMGuard ROCCA ................................................................................................................... 29 

4. DISCUSSION ............................................................................................................................ 30 

5. CONCLUSIONS ........................................................................................................................ 34 

6. RECOMMENDATIONS FOR FUTURE RESEARCH ......................................................................... 36 

7. ACKNOWLEDGEMENTS ........................................................................................................... 38 

8. LITERATURE CITED .................................................................................................................. 40 

 

  



ii 

TABLES 

Table 1. Numbers of acoustic encounters per species and total numbers of whistle contours for 
each species detected using ROCCA (Manually Detected) and using PAMGuard's WMD (Auto-
detected). .................................................................................................................................................... 11 

Table 2. Confusion matrices for the single-stage classifier trained using manually detected and 
extracted whistles. The percent of whistles correctly classified for each species is in bold, with 
standard deviations in parentheses. A) Individual whistles. Overall, 60 percent (sd = 1.1 percent) of 
whistles were correctly classified when the strong whistle threshold was 40 percent. Sample size 
(n) is the number of whistles that were strongly classified. B) Encounters. Overall, 65.9 percent (sd 
= 1.5 percent) of encounters were correctly classified when the strong whistle threshold was 40 
percent. Sample size (n) is the number of encounters that could be classified based on strong 
whistles alone. ............................................................................................................................................ 12 

Table 3. Confusion matrices for the two-stage classifier trained using manually detected and 
extracted whistles. The percent of whistles correctly classified for each species is in bold, with 
standard deviations in parentheses. A) Confusion matrix for individual whistles. Overall, 78 
percent (sd = 1.2 percent) of whistles were correctly classified when the strong whistle threshold 
was 50 percent. Sample size (n) is the number of whistles that were strongly classified. B) 
Confusion matrix for overall encounters. Overall, 86 percent (sd = 2.5 percent) of encounters were 
correctly classified when the strong whistle threshold was 50 percent. Sample size (n) is the 
number of encounters that could be classified based on strong whistles alone. ...................................... 14 

Table 4. Percentages of whistles and encounters correctly classified (with standard deviation in 
parentheses) for single-stage and two-stage classifiers trained using manually detected and 
extracted whistles and using whistles detected and extracted automatically. P-values are for 
Fisher's exact test comparing single-stage correct classification scores to two-stage correct 
classification scores for each species and dataset. Significant differences are shown with an 
asterisk. ....................................................................................................................................................... 15 

Table 5. Confusion matrices for the single-stage classifier trained using automatically detected and 
extracted whistles. The percentages of whistles correctly classified for each species is presented in 
bold, with standard deviations in parentheses. A) Confusion matrix for individual whistles. Overall, 
68.2 percent (sd = 0.7 percent) of whistles were correctly classified when the strong whistle 
threshold was 45 percent. Sample size (n) is the number of contours that were strongly classified. 
B) Confusion matrix for overall encounters. Overall, 71.5 percent (sd = 0.8 percent) of encounters 
were correctly classified when the strong whistle threshold was 45 percent. Sample size (n) is the 
number of encounters that could be classified based on strong whistles alone. ...................................... 16 

Table 6. Confusion matrices for the two-stage classifier trained using automatically detected and 
extracted whistles. The percent of whistles correctly classified for each species is in bold, with 
standard deviations in parentheses. A) Confusion matrix for individual whistles. Overall, 80.5 
percent (sd = 1.9 percent) of whistles were correctly classified when the strong whistle threshold 
was 45 percent. Sample size (n) is the number of whistles that were strongly classified. B) 
Confusion matrix for overall encounters. Overall, 91.4 percent (sd = 2.5 percent) of encounters 
were correctly classified when the strong whistle threshold was 45 percent. Sample size (n) is the 
number of encounters that could be classified based only on strong whistles. ........................................ 18 

Table 7. Descriptive statistics (mean, standard deviation, minimum, maximum) of frequency 
variables (in kHz) for manually detected and measured whistles. Because of the large number of 



iii 

features, only those features most important to the classifiers (based on the Gini Importance 
Index) are included in this table. See Appendix B for a description of variables. ...................................... 20 

Table 8. Descriptive statistics (mean, standard deviation, minimum, maximum) for features 
describing shape for manually detected and measured whistles. Duration and delta features (time 
between inflection points) are given in seconds. Because of the large number of features, only 
those features most important to the classifiers (based on the Gini Importance Index) are included 
in this table. See Appendix B for a description of variables. ...................................................................... 21 

Table 9. Descriptive statistics (mean, standard deviation, minimum, maximum) for features 
describing slope (in kHz/sec) for manually detected and measured whistles. Because of the large 
number of features, only those features most important to the classifiers (based on the Gini 
Importance Index) are included in this table. See Appendix B for a description of variables. ................... 22 

Table 10. Ten features most important in the single-stage classifier trained using manually 
detected and extracted whistles. See Appendix B for a description of each feature. ............................... 23 

Table 11. Ten features most important in each classifier in the two-stage classifier trained using 
manually detected and extracted whistles. See Appendix B for a description of each feature. ................ 23 

Table 12. Descriptive statistics (mean, standard deviation, minimum, maximum) for frequency 
variables (in kHz) for automatically detected and measured whistles. Because of the large number 
of features, only those features most important to the classifiers (based on the Gini Importance 
Index) are included in this table. See Appendix B for a description of variables. ...................................... 25 

Table 13. Descriptive statistics (mean, standard deviation, minimum, maximum) for features 
describing shape for automatically detected and measured whistles. Duration and delta features 
(time between inflection points) are given in seconds. Because of the large number of features, 
only those features most important to the classifiers (based on the Gini Importance Index) are 
included in this table. See Appendix B for a description of variables. ........................................................ 26 

Table 14. Descriptive statistics (mean, standard deviation, minimum, maximum) for features 
describing slope (in kHz/sec) for automatically detected and measured whistles. Because of the 
large number of features, only those features most important to the classifiers (based on the Gini 
Importance Index) are included in this table. See Appendix B for a description of variables. ................... 27 

Table 15. Ten features most important in the single-stage classifier trained using automatically 
detected and extracted whistles. See Appendix B for a description of each feature. ............................... 28 

Table 16. Ten features most important in each classifier in the two-stage classifier trained using 
automatically detected and extracted whistles. See Appendix B for a description of each feature. ........ 28 

 

  



iv 

FIGURES 

Figure 1. Example spectrograms of: (a) a dolphin whistle (without a contour outline); (b) contour 
manually traced and extracted using ROCCA; (c) traced and extracted automatically using the 
Whistle and Moan Detector (WMD) in PAMGuard, where different colors represent different 
individual whistles. In this example, WMD has labeled the sample whistle as four separate 
whistles, and false detections are shown in yellow, pink, and green. .......................................................... 3 

Figure 2. Western North Atlantic study area and location of recordings available for this work. 
Each species is represented by a different color. ......................................................................................... 5 

Figure 3. Parameters that can be set in PAMGuard’s whistle and moan detector. ..................................... 7 

   

APPENDICES 

Appendix A:  

Characteristics of the Hydrophone Arrays and Recording Systems Used by the Southeast Fisheries 
Science Center and the Northeast Fisheries Science Center of the National Marine Fisheries 
Service, and Duke University ...................................................................................................................... 43 

Variables Measured by ROCCA ................................................................................................................... 46 

 

  



v 

Acronyms and Abbreviations 

.csv Comma Separated Values text file extension 

.wav Windows Waves audio file extension 

dB decibel 

GUI graphical user interface 

Hz hertz 

PAM  passive acoustic monitoring 

ROCCA Real-time Odontocete Call Classification Algorithm 

kHz kilohertz 

kHz/sec kilohertz per second 

NEFSC Northeast Fisheries Science Center 

nmi nautical miles 

sd standard deviation 

sec second(s) 

SEFSC Southeast Fisheries Science Center 

U.S. United States 

WMD Whistle and Moan Detector 

  



vi 

This page intentionally left blank. 



1 

1. INTRODUCTION 

In recent decades, passive-acoustic monitoring (PAM) has been adopted as an effective method for 
obtaining information about the occurrence, distribution, and behavior of marine mammals (Mellinger 
and Barlow 2003). The extensive use and adoption of PAM for detecting and monitoring marine 
mammals has generated huge volumes of data. In order for the data generated from PAM to be 
effectively used, they need to be efficiently analyzed and accurately interpreted. This, in turn, requires 
acoustic analysis software that is comprehensive with respect to species that occur in a given geographic 
region, and that also allow for reliable automated detection and classification of vocalizations.  

Species identification from acoustic recordings of marine mammal vocalizations can be challenging due 
to the high variability in many of the characteristics of sounds that can be easily measured or extracted 
from spectrograms, both within species and among species. The development of classifiers for marine 
mammal vocalizations is a rapidly advancing area of research. Early work on delphinid whistle classifiers 
focused on time-frequency characteristics measured from spectrograms and classification algorithms 
such as discriminant-function analysis and classification-tree analysis (e.g., Steiner 1981, Fristrup and 
Watkins 1993, Wang et al. 1995, Matthews et al. 1999, Rendell et al. 1999, Oswald et al. 2003). More 
recently, other classification algorithms such as Gaussian mixture models (Roch et al. 2007), Hidden 
Markov models (Brown and Smaragdis 2009) and random forests (Oswald et al. 2013) have been used, 
with varying degrees of success.  

ROCCA (Real-time Odontocete Call Classification Algorithm) is one of a few classifiers that are readily 
available for the general marine mammal research, conservation and management community (Oswald 
et al. 2013). At present, ROCCA is available as a module within the program PAMGuard.  PAMGuard is an 
open-source software platform that is freely available to the public to record, process, and analyze bio-
acoustic data (www.pamguard.org; Gillespie et al. 2008). Currently, ROCCA contains a random-forest 
classifier that was developed for whistles from eight different species of delphinids occurring in the 
tropical Pacific Ocean (Oswald et al. 2013). Correct classification scores for all species included in this 
classifier are significantly greater than the 12.5 percent expected by chance alone, and range from a low 
of 35 percent (for short- and long-beaked common dolphin, Delphinus spp., whistles) to a high of 90 
percent (for false killer whale, Pseudorca crassidens, whistles; Oswald et al. 2013).  

Although ROCCA is a useful tool for the classification of whistles from delphinids occurring in the tropical 
Pacific Ocean, geographic variation in whistle characteristics for delphinid species limits its application in 
other geographic areas. For example, May-Collado and Wartzok (2008) examined whistles produced by 
bottlenose dolphins (Tursiops truncatus) in six regions in the western North Atlantic and one in the 
eastern North Atlantic and found that both frequency and duration parameters varied significantly 
between regions. Similarly, Ansmann et al. (2007) determined that short-beaked common dolphins 
(Delphinus delphis) in the English Channel produced whistles that were higher in frequency than those in 
the Celtic Sea. Geographic variation has also been reported for other delphinid species, such as spinner 
dolphin (Stenella longirostris; Bazua-Duran and Au 2004), Indo-Pacific bottlenose dolphin (Tursiops 
aduncus; Morisaka et al. 2005), and Atlantic spotted dolphin (Stenella frontalis; Baron et al. 2008). Given 
that whistle structure has been demonstrated to vary both between and within ocean basins, 
classification algorithms will be more effective when specifically trained for the locations and 
populations for which they will be applied.  

http://www.pamguard.org/
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In order to analyze the enormous volumes of data recorded during PAM efforts, classifiers also need to 
be efficient and user-friendly. Classification of a sound first requires that the sound is detected in a 
recording and then a set of features is measured from the detected sound.  In the case of whistles and 
other frequency modulated sounds, feature measurement generally requires the extraction of time-
frequency contours from spectrograms.  Detection, contour extraction and feature measurement can 
require significant human effort and expertise. In order to reduce these requirements, the entire 
process should be automated to the greatest extent possible. Although automated methods can reduce 
significantly the time required to detect, extract and measure potential whistle contours, they are 
typically less accurate than manual detection methods in which an expert analyst makes the detection 
decision and processes the detected contours. False detections (i.e., detections of sounds other than 
whistles), inaccurate contour extractions, and fragmentation of whistles (i.e., where a single continuous 
whistle is incorrectly labeled as several shorter, separate whistles), can result in biases and inaccuracies 
in the outputs of automated detectors. Because of these errors, the values obtained from whistle 
contours extracted using manual methods can be very different than those extracted using automated 
methods (Figure 1). Therefore, the choice of method used to generate training data for classifiers is 
crucial. It is likely that classifiers that are intended to be used on whistles detected and extracted 
automatically will perform better if trained using auto-detector output data, and classifiers to be used 
on whistles detected and extracted manually will perform better if trained using manually extracted 
whistles.  

Although fully automated methods require less time and user interaction, environmental, electrical (i.e. 
self) and other sources of noise in some datasets makes it difficult or impossible to fully automate the 
process. Therefore, it is important to have classifiers trained using whistles that have been manually 
detected, extracted and measured for these noise conditions. In this effort, we developed ROCCA 
classifiers for whistles produced by delphinids in the western North Atlantic Ocean. Two different 
classifiers were developed—one using whistles detected and extracted using manual methods and a 
second using whistles detected and extracted using an automated detector.  
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Figure 1. Example spectrograms of: (a) a dolphin whistle (without a 
contour outline); (b) contour manually traced and extracted using 
ROCCA; (c) traced and extracted automatically using the Whistle 
and Moan Detector (WMD) in PAMGuard, where different colors 
represent different individual whistles. In this example, WMD has 
labeled the sample whistle as four separate whistles, and false 
detections are shown in yellow, pink, and green. 

a) 

b) 

c) 
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2. METHODS 

2.1 Data 

Acoustic recordings of delphinid encounters were made during ship-based visual and acoustic line-
transect surveys conducted by the Southeast Fisheries Science Center (SEFSC) and the Northeast 
Fisheries Science Center (NEFSC) of the National Marine Fisheries Service, and Duke University. The 
surveys took place off the Atlantic coast of the United States between central Florida and Georges Bank 
(in the Gulf of Maine) (Figure 2). The NEFSC and SEFSC surveys were several months in duration and 
covered large areas of the U.S. Atlantic coast.  During these surveys, a team of experienced marine 
mammal observers searched for cetaceans using 25 × 150 binoculars, hand-held binoculars, and the 
naked eye. The Duke University surveys consisted of multiple one-day trips out of Onslow Bay, North 
Carolina and Cape Hatteras, North Carolina (Hodge 2011). For sightings during all cruises, species 
identification and group-size estimations were recorded. In addition, a hydrophone array was towed 
behind each of the research vessels during daylight hours. Acoustic signals from the arrays were 
monitored by acoustic technicians.  Signals were monitored aurally using stereo headphones, and 
monitored visually from real-time scrolling spectrograms using Ishmael (Mellinger 2000) and PAMGuard 
(Gillespie et al. 2008) software. The frequency response characteristics of the arrays and recording 
equipment used during these surveys are provided in Appendix A.  

Duke University researchers also provided acoustic data recorded with DTAGs (Digital Acoustic 
Recording Tags, Johnson and Tyack 2003) attached to short-finned pilot whales. Recordings from DTAGs 
were used only if the tagged animal was part of a single-species school of short-finned pilot whales and 
if there were no other species that whistle sighted within 3 nmi.  Frequency response characteristics for 
the DTAG hydrophones are given in Appendix A. 
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2.2 Whistle Measurement 

Only whistles produced by single-species delphinid schools that had visual confirmation of species 
identity were included in the analysis. It is possible that some recordings that were labeled as ‘single 
species’ may contain whistles produced by other species in the area. Acoustic localization was not 
performed to obtain exact locations of the dolphins being recorded; however the visual observers did 
note the latitude and longitude of each school periodically throughout the sighting. To reduce the risk of 
measuring whistles produced by other species in the area, encounters were only analyzed if the school 
was greater than 3nmi from sightings of any other whistling species. Based on work done by Rankin et 
al. (2008) we assumed that whistles produced by a school that was greater than 3nmi from the school 
being recorded would not be detected. The distance to the acoustic detection was calculated between 
the previous sighting (or multiple sightings if they were close together) and the position of the school in 

Figure 2. Western North Atlantic study area and location of recordings available for this work. Each 
species is represented by a different color. 
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question at the beginning of the recording.  The distance was also calculated between the next sighting 
(or multiple sightings if they were close together) and the position of the school in question at the end 
of the recording. Acoustic recordings from all acoustic encounters that met the above criteria for 
including in the analysis were processed twice, once using manual methods for whistle detection and 
contour extraction and a second time using automated methods for whistle detection and contour 
extraction. 

2.2.1 Manual Detection and Contour Extraction 

Recordings from each acoustic encounter included in the analysis were examined aurally and visually 
using Raven Pro: Interactive Sound Analysis Software (Version 1.3; Cornell Bioacoustics Research 
Program 2008). Start times were noted for all whistles with a signal-to-noise ratio of 6dB or greater.  
Overlapping whistles were included only if each contour could be traced unambiguously. Selected 
whistles were saved as individual audio files in the “.wav” format for archival purposes. A maximum of 
50 whistles was selected per encounter to avoid over-sampling of groups or individuals. 

Time-frequency contours were extracted from spectrograms using the ROCCA module in PAMGuard. 
First, the start and end points of the whistle were manually selected by the operator by windowing it 
using with a pointing device on the computer.  Next, ROCCA automatically extracted the whistle contour 
by stepping through the spectrogram one time slice at a time and searching for the peak frequency 
within a user-defined frequency band centered around the peak frequency in the previous time slice 
(see Oswald et al. 2007 and Barkley et al. 2011 for details). Once a contour was extracted, it was 
displayed on the spectrogram and the accuracy of the extraction could be adjusted by applying high-
pass and/or low-pass filters, adjusting ROCCA’s sensitivity to noise in the recording, and/or using the 
cursor to manually drag contour points to the correct location on the spectrogram (Oswald et al. 2013). 

2.2.2 Automated Detection and Contour Extraction 

Automated whistle detection and contour extraction was performed using the Whistle and Moan 
Detector (WMD) module within PAMGuard. The WMD automatically detects and extracts whistle 
contours by searching for spectral peaks within a user-specified frequency band. In order to be 
considered a true whistle detection, the spectral peak needs to occur within certain user-defined 
parameters relating to its amplitude and frequency in relation to other candidate spectral peaks 
detected the time-slices directly before and after the peak in question. For each acoustic encounter, 
parameters within the WMD module were adjusted manually via a GUI within the WMD to maximize 
accuracy of contour extraction and minimize false positives (Figure 3, see help files within PAMGuard for 
details on changing WMD parameters).  
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2.2.3 Feature Measurement 

After whistle contours had been extracted they were saved as comma-separated text (.csv) files and 
then used as inputs to ROCCA for feature measurements. Fifty variables from each contour were 
automatically measured, including: duration, frequencies (e.g., minimum, maximum, beginning, ending, 
and at various points along the whistle), slopes, and variables describing shape of the whistles (see 
Appendix B and Barkley et al. 2011 for a complete list and description of variables measured). 

2.2.4 Random-Forest Analysis 

Classification algorithms were developed using random-forest statistical classification methods. A 
random forest is a collection of decision trees grown using binary partitioning of the data. Each binary 
partition of the data is based on the value of one feature (or in this case, a whistle variable; Breiman 
2001). The goal for each split is to divide the data into two nodes, each as homogeneous as possible (i.e., 
containing whistles from the smallest number of species possible). Randomness is introduced into the 
tree-growing process by examining a random subsample of all of the features at each node. The feature 
that produces the most homogeneous split is chosen at each partition. When whistle features are run 
through a random forest, each of the trees in the forest produces a species classification.  Each tree can 
be considered 1 ‘vote’ for a given species classification. Votes are then tallied over all trees and the 
whistle classification is based on the species with the most ‘votes’. In addition to classifying individual 
whistles, entire acoustic encounters were classified based on the number of tree classifications for each 
species, summed over all of the whistles that were analyzed for that encounter.  

The number of tree classifications for the predicted species was also used as a measure of the certainty 
of the classification. It was assumed that if a greater percentage of trees classified the whistle as a 

Figure 3. Parameters tƘŀǘ Ŏŀƴ ōŜ ǎŜǘ ƛƴ t!aDǳŀǊŘΩǎ ǿƘƛǎǘƭŜ ŀƴŘ Ƴƻŀƴ ŘŜǘŜŎǘƻǊΦ 
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particular species, then that classification had a higher degree of certainty. Based on this assumption, a 
‘strong whistle threshold’ was defined.  If the percentage of trees that classified the whistle as a 
particular species was greater than this strong whistle threshold, the whistle was considered strongly 
classified, or simply ‘strong’ (Oswald et al. 2011). If the percentage of trees that classified the whistle as 
a particular species did not exceed the strong whistle threshold, then the classification was considered 
unreliable and the whistle was labeled as ‘ambiguous.’ Higher strong whistle thresholds generally 
resulted in higher correct classification scores, but also resulted in more whistles being labeled as 
ambiguous because fewer classifications will meet the strong whistle threshold. If all of the whistles 
within a single encounter were labeled as ambiguous, then that encounter was also classified as 
ambiguous and could not be classified. Strong whistle thresholds were chosen to maximize correct 
classification scores while minimizing the number of encounters that were labeled as ambiguous. In this 
project, strong whistle thresholds that allowed at least 90 percent of encounters to be classified were 
chosen. 

To test the random-forest models, each dataset was randomly subsampled so that there was a 
maximum of 50 contours per encounter for the manual dataset, and 100 contours per encounter for the 
auto-detector dataset. Because of the higher overall sample size resulting from fragmented whistles, it 
was possible to use a greater number of contours per encounter for the auto-detector dataset (i.e., 
single whistles that were broken into multiple fragments) and false detections. Next, these datasets 
were subsampled so that each contained an equal number of contours per species. This avoided any one 
species dominating the data and skewing the results. The subsampled dataset was randomly divided in 
two, with whistles from the same encounter kept together in the same dataset. One dataset was used to 
train the model, while the other was used to test the model. The datasets were then swapped so that 
each was used both as a training and a testing set. This procedure was repeated 10 times in order to 
produce means and standard deviations for the confusion matrices. 

Two random-forest models were trained, one using manually detected whistles with contours extracted 
by ROCCA and a second using whistles both automatically detected and extracted using the WMD. For 
each model, two different random-forest models were explored. In the first model, whistle contours 
were classified directly to species. The second model used two-stages, in which whistle contours were 
first classified to a broad species-group (such as ‘small-sized delphinid’ or ‘medium-sized delphinid,’) in 
stage one and then classified to species within that species-group in stage two. For each two-stage 
model, several different sets of species-groups were explored for stage one. To prevent whistle 
measurements from any one species from dominating the data and skewing the classification results, 
training datasets first were subsampled to give an equal number of whistles per species-group in stage 
one, and subsampled again to give an equal number of whistles per species in stage two. The manual 
and automated classifiers that produced the most accurate results were used for ROCCA module in 
PAMGuard. 

 

2.3 Variable Importance 

One of the outputs of a random-forest analysis is an estimate of variable importance and provides a 
relative measure of the degree to which each variable contributes to the random forest model 
predictions. This measure of variable importance is uses the Gini Index, which is a measure of the 
‘purity’ of each node in a classification tree (Breiman et al. 1984). In our case, purity refers to the 
number of species represented in a node. Smaller Gini Index values represent increases in purity. 
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Splitting variables are chosen at each node so that the resulting subsets minimize the combined Gini 
Index as possible (Oh et al. 2003). To evaluate variable importance, decreases in the Gini Index from one 
node to the next are summed for each variable over all of the trees. This sum is known as the ‘Gini 
Importance’. Variables with higher Gini Importance values contribute more to the random-forest model 
predictions than do those with lower Gini Importance values. In this project, Gini importance values 
were averaged over the 10 random-forest runs described previously (in Section 2.2.4) to evaluate which 
features were most important to the classification models. 
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3. RESULTS 

3.1 Acoustic Recordings 

Acoustic recordings of single-species schools that met the criteria for analysis were available for nine 
delphinid species. The numbers of acoustic encounters and, the numbers of whistle contours detected 
manually and automatically for each species are compiled in Table 1. For the short-finned pilot whale, 6 
of the 15 encounters were recorded using DTAGs. In general, the number of contours much greater for 
the auto-detector (n = 5,027) than for the manual method (n = 3,525) because the auto-detector 
fragmented some whistles, causing those whistles to be counted more than once. The auto-detector 
also produced false detections that were used as whistle contours in this project. Only species with at 
least four encounters and 200 manually detected whistle contours were included in the analysis. This 
was the minimum amount of data that we considered to be adequate for reliable training and testing of 
classifiers. Because of these strict criteria, data from only the following five species were used: short-
beaked common dolphin, striped dolphin (Stenella coeruleoalba), Atlantic spotted dolphin, bottlenose 
dolphin, and short-finned pilot whale (Globicephala macrorhynchus).  

 

 

 

 

 

 

 

 

 

 

 

3.2 Manual Classifier 

3.2.1 Single-Stage Classifier 

When whistles were classified with the single stage classifier to species, a mean of 60 percent (standard 
deviation [sd] = 1.1 percent) of whistles and 66 percent (sd = 1.5 percent) of encounters were classified 
correctly (strong whistle threshold = 40 percent). Confusion matrices for both individual whistles and 
overall encounters are provided in Table 2. Patterns in classifications were similar between the two, 

Table 1. Numbers of acoustic encounters per species and total numbers of whistle 
contours for each species detected using ROCCA (Manually Detected) and using 
PAMGuard's WMD (Auto-detected). 

Species Encounters 
Whistle Contours 

Manually Detected Auto-detected 

Bottlenose dolphin 74 1,632 1,719 

Atlantic spotted dolphin 45 706 988 

Striped dolphin 12 293 648 

Short-finned pilot whale 15 259 749 

Short-beaked common 
dolphin 

9 249 475 

Risso's dolphin 8 119 99 

Clymene dolphin 2 99 64 

Rough-toothed dolphin 3 98 109 

False killer whale 2 70 176 

Total 170 3,525 5,027 
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with the highest percentage of correct classification scores occurring for short-finned pilot whales (76 
percent and 88 percent for whistles and encounters, respectively) and the lowest percentage of correct 
classification scores attributed to striped dolphins (39 percent and 43 percent for whistles and 
encounters, respectively). Striped and short-beaked common dolphin whistles were most often 
misclassified as each other, bottlenose dolphin whistles were most often misclassified as Atlantic 
spotted dolphins, and Atlantic spotted dolphin whistles were most often misclassified as either short-
finned pilot whales or bottlenose dolphins. Short-finned pilot whale classification errors were spread 
relatively evenly across the other four species. 

Table 2. Confusion matrices for the single-stage classifier trained using manually detected and 
extracted whistles. The percent of whistles correctly classified for each species is in bold, with 
standard deviations in parentheses. A) Individual whistles. Overall, 60 percent (sd = 1.1 percent) of 
whistles were correctly classified when the strong whistle threshold was 40 percent. Sample size (n) is 
the number of whistles that were strongly classified. B) Encounters. Overall, 65.9 percent (sd = 1.5 
percent) of encounters were correctly classified when the strong whistle threshold was 40 percent. 
Sample size (n) is the number of encounters that could be classified based on strong whistles alone. 

A) 

      

Actual species 

Percent classified as 

Short-
beaked 

common 
dolphin 

Short-
finned pilot 

whale 

Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

49.2 (0.8) 0.2 (0.4) 33.0 (2.4) 5.3 (1.3) 12.3 (1.9) 202 (5) 

Short-finned pilot whale 3.7 (0.7) 76.1 (1.4) 6.4 (1.3) 9.0 (1.6) 4.6 (1.2) 210 (5) 

Striped dolphin 35.6 (4.0) 4.1 (0.9) 39.0 (4.2) 8.7 (1.1) 12.8 (1.8) 192 (5) 

Atlantic spotted dolphin 0.8 (0.8) 11.5 (1.4) 3.1 (0.3) 69.8 (3.8) 14.4 (3.1) 201 (6) 

Bottlenose dolphin 5.0 (1.9) 4.5 (0.8) 5.5 (1.4) 19.3 (3.7) 66.0 (4.1) 203 (5) 

B) 

      

Actual species 

% Classified as 

Short-
beaked 

common 
dolphin 

Short-
finned pilot 

whale 

Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

44.0 (0) 0 (0) 19.8 (6.9) 22.0 (0) 13.2 (6.9) 9 (0) 

Short-finned pilot whale 6.0 (0) 88.0 (0) 0 (0) 5.4 (1.9) 0.6 (1.9) 16 (0) 

Striped dolphin 27.5 (8.6) 0.8 (2.5) 43.4 (6.6) 16.1 (2.8) 12.4 (6.1) 12 (0) 

Atlantic spotted dolphin 0 (0) 7.1 (2.8) 0.9 (1.4) 81.7 (4.3) 10.5 (4.4) 38 (2) 

Bottlenose dolphin 3.9 (1.9) 3.2 (1.6) 3.4 (1.6) 16.9 (5.0) 72.5 (4.7) 59.1 (2.1) 
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3.2.2 Two-Stage Classifier 

Based on the confusion matrices for the single-stage classifier, several two-stage classifiers were tested, 
each with different combined species-groups in stage 1. Examples of species-groups that were tested 
include:  

1. Short-finned pilot whales versus dolphins (short-beaked common, striped, Atlantic spotted, 
bottlenose) 

2. Small dolphins (short-beaked common and striped) versus large dolphins (Atlantic spotted, 
bottlenose and short-finned pilot whales) 

3. Small dolphins versus medium dolphins (Atlantic spotted and bottlenose) versus short-finned 
pilot whales 

The small dolphins versus large dolphins combination produced the highest correct classification scores. 
When contours were classified to small versus large dolphins in stage 1, and then to species in stage 2, 
average overall correct classification scores were 78 percent (sd = 1.2 percent) for individual whistles 
and 86 percent (sd = 2.5 percent) for encounters (strong whistle threshold = 50 percent). Confusion 
matrices for these classifiers are given in Table 3.  

When compared to the single-stage results, correct classification scores for whistles in the two-stage 
classifier were higher for every species. These differences were statistically significant (Fisher’s exact 
test, α = 0.05) for every species except for bottlenose dolphin and Atlantic spotted dolphin (Table 4). For 
encounters, correct classification scores for the two-stage classifier were significantly greater (Fisher’s 
exact test, α = 0.05) than the single-stage classifier for striped and short-beaked common dolphins.  
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Table 3. Confusion matrices for the two-stage classifier trained using manually detected and extracted 
whistles. The percent of whistles correctly classified for each species is in bold, with standard 
deviations in parentheses. A) Confusion matrix for individual whistles. Overall, 78 percent (sd = 1.2 
percent) of whistles were correctly classified when the strong whistle threshold was 50 percent. 
Sample size (n) is the number of whistles that were strongly classified. B) Confusion matrix for overall 
encounters. Overall, 86 percent (sd = 2.5 percent) of encounters were correctly classified when the 
strong whistle threshold was 50 percent. Sample size (n) is the number of encounters that could be 
classified based on strong whistles alone. 

A) 
      

Actual species 

% Classified as 

Short-
beaked 

common 
dolphin 

Short-
finned pilot 

whale 

Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

85.5 (2.5) 0.9 (0.3) 0 (0) 3.5 (0.5) 9.9 (2.4) 244 (2) 

Short-finned pilot whale 2.6 (0.8) 86.4 (1.6) 11.2 (1.3) 0 (0) 0 (0) 181 (0) 

Striped dolphin 2.6 (1.2) 3.8 (0.6) 77.8 (1.7) 7.6 (1.1) 8.3 (2.2) 279 (2) 

Atlantic spotted dolphin 1.3 (0.8) 3.8 (1.1) 11.2 (2.3) 77.6 (3.7) 6.2 (2.3) 166 (4) 

Bottlenose dolphin 5.6 (1.9) 3.7 (1.8) 18.5 (2.5) 8.3 (2.9) 63.8 (2.6) 164 (4.0) 

B) 
      

Actual species 

% Classified as 

Common 
dolphin 

Pilot whale 
Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

84.6 (5.7) 0 (0) 0 (0) 11 (0) 4.4 (5.7) 9 (0) 

Pilot whale 0 (0) 94.6 (1.9) 5.4 (1.9) 0 (0) 0 (0) 16 (0) 

Striped dolphin 0 (0) 0 (0) 91.1 (2.8) 8.0 (0) 0.8 (2.5) 12 (0) 

Atlantic spotted dolphin 0.3 (0.9) 2.5 (2.6) 4.8 (3.1) 90 (6.6) 2.5 (2.6) 36.7 (1.6) 

Bottlenose dolphin 5.4 (2.2) 2.7 (1.6) 14.7 (4.2) 7.2 (2.9) 70 (4.3) 56.5 (2.4) 
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Table 4. Percentages of whistles and encounters correctly classified (with standard deviation in parentheses) for single-
stage and two-stage classifiers trained using manually detected and extracted whistles and using whistles detected and 
extracted automatically. P-values are for Fisher's exact test comparing single-stage correct classification scores to two-
stage correct classification scores for each species and dataset. Significant differences are shown with an asterisk. 

Species 

% correct classification - manual % correct classification - automated 

whistles encounters whistles encounters 

single-
stage 

two-
stage 

p 
single-
stage 

two-
stage 

p 
single-
stage 

two-
stage 

p 
single-
stage 

two-
stage 

p 

Short-beaked 
common 
dolphin 

49.2    
(0.8) 

85.5 
(2.5) 

<0.0001*  
44.0     
(0) 

84.6 
(5.7) 

<0.0001* 
37.0   
(0.8) 

85.6 
(3.4) 

<0.0001* 
25.8 
(1.7) 

95.2 
(6.2) 

0.007*  

Short-finned 
pilot whale 

76.1 
(1.4) 

86.4 
(1.6) 

0.01* 
88.0     
(0) 

94.6 
(1.9) 

1 
81.3 
(1.9) 

83.6 
(0.8) 

0.383 
94.0 
(2.8) 

95.2 
(2.5) 

1 

Striped 
dolphin 

39.0 
(4.2) 

77.8 
(1.7) 

<0.0001* 
43.4 
(6.6) 

91.1 
(2.8) 

<0.0001* 
49.3 
(1.6) 

71.8    
(3) 

<0.0001* 
55.0    
(0) 

87.9 
(7.8) 

<0.000
1* 

Atlantic 
spotted 
dolphin 

69.8 
(3.8) 

77.6 
(3.7) 

0.098 
81.7 
(4.3) 

90 
(6.6) 

0.516 
85.0 
(1.5) 

77.2 
(1.6) 

0.037* 
93.8 
(2.8) 

89.7 
(5.8) 

0.668 

Bottlenose 
dolphin 

66.0 
(4.1) 

63.8 
(2.6) 

0.74 
72.5 
(4.7) 

70 
(4.3) 

0.838 
88.6 
(1.8) 

84.4 
(2.9) 

0.58 
88.7 
(2.8) 

88.9 
(2.2) 

1 
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3.3 Automated Classifier 

3.3.1 Single-Stage Classifier 

Using the single stage classifier, when whistles were classified directly to species, overall means of 68 
percent (sd = 0.7 percent) of whistles and 71 percent (sd = 0.8 percent) of encounters were correctly 
classified (strong whistle threshold = 45 percent). Confusion matrices for both individual whistles and 
overall encounters are provided in Table 5. Correct classification scores for Bottlenose dolphin, Atlantic 
spotted dolphin, and short-finned pilot whale all were greater than 80 percent for whistles and close to, 
or greater than, 90 percent for encounters. Correct classification scores were lowest for short-beaked 
common dolphins (whistles: 37 percent, sd = 0.8 percent; encounters: 26 percent, sd = 1.7 percent). 
Short-beaked common dolphin whistles were most often misclassified as bottlenose, striped, or Atlantic 
spotted dolphin.  

Table 5. Confusion matrices for the single-stage classifier trained using automatically detected and 
extracted whistles. The percentages of whistles correctly classified for each species is presented in 
bold, with standard deviations in parentheses. A) Confusion matrix for individual whistles. Overall, 
68.2 percent (sd = 0.7 percent) of whistles were correctly classified when the strong whistle threshold 
was 45 percent. Sample size (n) is the number of contours that were strongly classified. B) Confusion 
matrix for overall encounters. Overall, 71.5 percent (sd = 0.8 percent) of encounters were correctly 
classified when the strong whistle threshold was 45 percent. Sample size (n) is the number of 
encounters that could be classified based on strong whistles alone. 

A) 
      

Actual species 

% Classified as 

Common 
dolphin 

Pilot whale 
Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

37.0 (0.8) 4.2 (0.6) 19.5 (1.1) 14.5 (1.8) 24.5 (1.2) 299 (7) 

Pilot whale 1.6 (0.7) 81.3 (1.9) 3.9 (0.9) 8.5 (0.5) 4.6 (0.9) 343 (8) 

Striped dolphin 13.5 (1.4) 12.6 (0.9) 49.3 (1.6) 10.1 (0.9) 14.5 (1.3) 294 (6) 

Atlantic spotted dolphin 1.2 (0.6) 5.9 (1.1) 2.2 (0.6) 85 (1.5) 6.0 (0.9) 311 (9) 

Bottlenose dolphin 2.8 (0.9) 1.8 (0.8) 1.4 (0.7) 5.1 (1.4) 88.6 (1.8) 328 (14) 
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B) 
      

Actual species 

% Classified as 

Common 
dolphin 

Pilot whale 
Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

25.8 (1.7) 0 (0) 10.4 (5.5) 20.7 (6.5) 44.0 (7.1) 8 (0.4) 

Pilot whale 0 (0) 94.0 (2.8) 0 (0) 6.0 (2.8) 0 (0) 17 (0) 

Striped dolphin 0 (0) 13.5 (4.7) 55.0 (0) 14.4 (4.6) 17.1 (6.6) 11 (0) 

Atlantic spotted dolphin 0 (0) 2.0 (1.8) 0.9 (1.4) 93.8 (2.8) 3.6 (2.4) 35 (2) 

Bottlenose dolphin 0.6 (0.9) 0 (0) 0.6 (0.9) 10.1 (3.5) 88.7 (2.8) 57 (1) 

 

3.3.2 Two-Stage Classifier 

Results of the species-groups tested in stage 1 of the two-stage classifier were similar to those described 
for the manual classifier (see Section 3.2.2). The combination that produced the highest correct 
classification scores for the auto-detector data was short-finned pilot whales versus dolphins (short-
beaked common, striped, Atlantic spotted, bottlenose). When test data were run through this two-stage 
classifier, mean overall correct classification scores were 80 percent (sd = 1.9 percent) for individual 
whistles and 91 percent (sd = 2.4 percent) for encounters (strong whistle threshold = 45 percent). For 
this classifier, correct classification scores for whistles were above 70 percent for all species and close to 
85 percent for short-beaked common dolphins, bottlenose dolphins, and short-finned pilot whales. 
Correct classification scores for encounters were close to or above 90 percent for every species (Table 
6).  

The two-stage classifier resulted in statistically significant increases in correct classification of whistles 
for every species except short-finned pilot whales and bottlenose dolphins (Fisher’s exact test, α = 0.05; 
Table 4). For overall encounters, correct classification scores increased significantly (Fisher’s exact test, 
α = 0.05) for short-beaked common dolphins and striped dolphins (Table 4). For short-beaked common 
dolphins, mean correct classification scores increased from 37.0 percent (sd = 0.8 percent) to 85.6 
percent (sd = 3.4 percent) for whistles and from 25.8 percent (sd = 1.7 percent) to 95.2 percent (sd = 6.2 
percent) for encounters when using the two-stage classifier. For striped dolphins, correct classification 
scores increased from 49.3 percent (sd = 1.6 percent) to 71.8 percent (sd = 3.0 percent) for whistles and 
from 55.0 percent (sd = 0 percent) to 87.9 percent (sd = 7.8 percent) for encounters when using the two-
stage classifier. 
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Table 6. Confusion matrices for the two-stage classifier trained using automatically detected and 
extracted whistles. The percent of whistles correctly classified for each species is in bold, with 
standard deviations in parentheses. A) Confusion matrix for individual whistles. Overall, 80.5 percent 
(sd = 1.9 percent) of whistles were correctly classified when the strong whistle threshold was 45 
percent. Sample size (n) is the number of whistles that were strongly classified. B) Confusion matrix 
for overall encounters. Overall, 91.4 percent (sd = 2.5 percent) of encounters were correctly classified 
when the strong whistle threshold was 45 percent. Sample size (n) is the number of encounters that 
could be classified based only on strong whistles. 

A) 
      

Actual species 

% Classified as 

Short-beaked 
common 
dolphin 

Short-
finned 
pilot 

whale 

Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

85.6 (3.4) 14.4 (3.4) 0 (0) 0 (0) 0 (0) 188 (0) 

Short-finned pilot whale 2.0 (0.5) 83.6 (0.8) 2.9 (0.6) 7.4 (0.7) 4.0 (0) 695 (8) 

Striped dolphin 1.4 (0.8) 22.5 (2.8) 71.8 (3.0) 1.7 (1.2) 3.1 (1.4) 177 (3) 

Atlantic spotted dolphin 0.8 (0.6) 18.8 (1.3) 1.0 (0.7) 77.2 (1.6) 2.1 (1.4) 176 (3) 

Bottlenose dolphin 2.0 (0.9) 9.6 (2.0) 1.1 (0.7) 2.7 (1.2) 84.4 (2.9) 160 (5) 

B) 
      

Actual species 

% Classified as 

Short-beaked 
common 
dolphin 

Short-
finned 
pilot 

whale 

Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

n 

Short-beaked common 
dolphin 

95.2 (6.2) 5.2 (6.7) 0 (0) 0 (0) 0 (0) 8 (0) 

Short-finned pilot whale 0 (0) 95.2 (2.5) 0 (0) 4.8 (2.5) 0 (0) 17 (0) 

Striped dolphin 0 (0) 12.1 (7.8) 87.9 (7.8) 0 (0) 0 (0) 11 (0.4) 

Atlantic spotted dolphin 0 (0) 8.9 (5.3) 0 (0) 89.7 (5.8) 1.2 (1.5) 32 (2) 

Bottlenose dolphin 0.8 (1.4) 5.6 (2.5) 0.4 (0.8) 4.1 (2.0) 88.9 (2.2) 49 (3) 
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3.4 Whistle Measurements 

3.4.1 Manual Measurements 

Descriptive statistics for features that were important in the classifiers based on Gini Importance values 
are presented in Tables 7-9. The Gini Importance values indicated that features that characterize the 
slope and shape of whistles were most important in the single-stage classifier (Table 10). The range for 
the slope of whistles was large when compared among species (Table 9). For example, mean positive 
slope ranged from 101.5 kilohertz per second (kHz/s) (sd = 44.5 Hz/sec) for Atlantic spotted dolphins to 
35.9 kHz/s (sd = 37.3 Hz/s) for short-beaked common dolphins. Features describing slope were similar 
for short-beaked common dolphins and striped dolphins, and for Atlantic spotted dolphins and 
bottlenose dolphins. 

For the two-stage classifier, a different set of variables was most important in each stage. The most 
important variables in stage 1 (small dolphins versus large dolphins) were similar to the variables that 
were important in the single-stage classifier (Tables 10, 11). In stage 2, the small dolphins (short-beaked 
common and striped) were classified based on a mix of shape, slope, and frequency variables (Table 11). 
Striped dolphins produced whistles that were shorter and steeper with fewer inflection points than 
short-beaked common dolphins (Tables 8, 9). The most important features in the large dolphin classifier 
(Atlantic spotted dolphins, bottlenose dolphins, and short-finned pilot whales) were frequency variables 
(Table 11). Short-finned pilot whales produced the lowest frequency whistles and bottlenose dolphins 
produced the highest frequency whistles (Table 7). 
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Table 7. Descriptive statistics (mean, standard deviation, minimum, maximum) of frequency variables (in kHz) for manually detected and 
measured whistles. Because of the large number of features, only those features most important to the classifiers (based on the Gini 
Importance Index) are included in this table. See Appendix B for a description of variables. 

Species n 
 

Max Min Beg End Mean 
Standard 
deviation 

Median Center 1/4 1/2 Range COFM 

Short-beaked 
common 
dolphin 

249 

mean 14.4 9.4 12.1 11.9 11.5 1.4 11.3 11.9 11.2 11.5 5 0.8 

sd 3.2 2.0 3.7 2.9 1.9 0.9 2.1 2.1 2.4 2.5 3.4 0.8 

min 7.1 5.2 5.6 5.2 6.4 0.1 6.0 6.7 5.8 6.0 0.2 0.0 

max 37.7 16.4 37.7 21.6 18.1 5.0 18.2 23.8 19.5 20.2 27.7 7.0 

Short-finned 
pilot whale 

256 

mean 8.3 4.9 6.3 6.7 6.6 0.9 6.6 6.6 6.6 6.7 3.4 0.6 

sd 3.7 2.7 3.2 3.8 2.9 0.8 3.1 2.9 3.0 3.2 2.9 0.7 

min 2.4 1.1 1.1 1.4 1.6 0.03 1.5 2.1 1.7 1.5 0.2 0.0 

max 20.1 15.7 17.2 20.0 16.3 3.9 17.4 17.9 17.1 19.3 14.8 7.8 

Striped 
dolphin 

293 

mean 14.6 8.7 10.7 11.5 11.3 1.7 11.2 11.6 11.1 11.6 5.8 0.9 

sd 3.7 2.3 3.8 3.6 2.5 1.1 2.6 2.6 3.1 3.1 3.4 0.9 

min 2.7 1.2 1.2 2.7 2.1 0.1 2.2 1.9 1.6 2.2 0.2 0.0 

max 23.8 19.3 22.9 23.8 20.8 5.3 21.0 20.3 21.8 21.4 15 6.3 

Atlantic 
spotted 
dolphin 

706 

mean 13.9 8.2 9.9 12.5 10.4 1.6 10.2 11.1 9.6 10.3 5.7 1.0 

sd 3.9 2.4 3.3 4.1 2.6 1.1 2.6 2.7 2.8 2.9 3.6 1.4 

min 3.0 2.8 2.8 2.8 3.0 0.0 3.0 3.0 3.0 3.0 0 0.0 

max 27.6 20.6 27.4 25.3 23.5 7.0 23.8 22.8 24.4 24.3 20.1 12.5 

Bottlenose 
dolphin 

1632 

mean 16.8 8.5 11.9 12.0 12.5 2.4 12.4 12.7 12.8 12.7 8.3 2.0 

sd 4.4 2.9 4.6 4.9 3.2 1.4 3.5 3.0 4.1 4.1 4.4 2.2 

min 3.2 2.4 2.6 3.2 2.8 0.0 2.8 2.8 2.4 2.6 0 0.0 

max 38.4 26.4 30.0 38.4 28.4 10.6 31.9 27.9 34.4 37.9 31.5 18.2 
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Table 8. Descriptive statistics (mean, standard deviation, minimum, maximum) for features describing shape for manually detected and 
measured whistles. Duration and delta features (time between inflection points) are given in seconds. Because of the large number of 
features, only those features most important to the classifiers (based on the Gini Importance Index) are included in this table. See Appendix B 
for a description of variables. 

Species n 
 

Duration Max delta Min delta 
Mean 
delta 

# inflections/ 
duration 

# up-
down 

# down-
flat 

# flat-
down 

Short-beaked 
common dolphin 

249 

mean 0.8 0.4 0.2 0.3 4.7 1.0 4.7 4.7 

sd 0.5 0.5 0.2 0.3 4.9 2.8 7.6 7.6 

min 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 2.0 1.8 1.2 1.2 28.3 42.0 42.0 43.0 

Short-finned pilot 
whale 

256 

mean 0.5 0.3 0.1 0.2 5.2 7.0 6.1 6.2 

sd 0.3 0.3 0.1 0.2 5.3 14.4 6.6 6.4 

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 3.1 3.1 0.6 1.6 37.0 137.0 41.0 37.0 

Striped dolphin 293 

mean 0.7 0.3 0.1 0.2 4.3 0.7 4.7 4.8 

sd 0.3 0.3 0.2 0.2 6.9 0.7 7.3 7.3 

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 2.0 1.5 1.3 1.3 111.1 4.0 35.0 35.0 

Atlantic spotted 
dolphin 

706 

mean 0.3 0.2 0.1 0.1 12.0 4.4 3.2 2.9 

sd 0.3 0.3 0.1 0.2 12.9 9.6 3.9 3.9 

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 2.4 2.2 0.7 1.1 137.9 87.0 29.0 28.0 

Bottlenose 
dolphin 

1632 

mean 0.7 0.5 0.1 0.3 4.5 11.0 12.9 13.1 

sd 0.5 0.6 0.1 0.3 5.5 21.7 12.5 12.5 

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 3.7 3.6 1.0 1.8 100.0 129.0 79.0 76.0 
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Table 9. Descriptive statistics (mean, standard deviation, minimum, maximum) for features describing slope (in kHz/sec) for manually 
detected and measured whistles. Because of the large number of features, only those features most important to the classifiers (based on the 
Gini Importance Index) are included in this table. See Appendix B for a description of variables. 

Species n 
 

Mean 
slope 

Absolute slope Positive slope Negative slope 
Percent 
upswept 

Percent 
downswept 

Percent 
flat 

Short-beaked 
common 
dolphin 

249 

mean 1.2 12.2 35.9 -38.1 45.5 36.7 17.8 

sd 9.6 9.2 37.3 38.9 20.4 18.5 11.2 

min -26.9 0.6 0 -178.9 0.0 0.0 0.0 

max 57.1 59.1 281.2 0 100.0 100.0 32.5 

Short-finned 
pilot whale 

256 

mean 1.9 22.4 71.2 -66.9 38.6 35.8 25.5 

sd 12.3 21.1 35.8 40.3 8.9 7.8 7.4 

min -58.3 0.3 0 -234.4 0.0 0.0 0.0 

max 100.0 100 183.6 0 100.0 100.0 33.2 

Striped dolphin 293 

mean 1.5 15.1 48.9 -43.2 42.2 39.3 18.5 

sd 11.4 12.1 36.5 42.5 17.8 18.2 11.6 

min -68.4 0.4 0 -272.6 0.0 0.0 0.0 

max 71.4 112.3 164.7 0 100.0 100.0 32.7 

Atlantic spotted 
dolphin 

706 

mean 14.5 49.3 101.5 -92.7 46.1 33.3 20.6 

sd 31.6 39.7 44.5 53.8 13.3 10.7 8.1 

min -125.0 0 0 -390.6 0.0 0.0 0.0 

max 242.8 281.2 406.2 0 100.0 100.0 33.3 

Bottlenose 
dolphin 

1632 

mean 1.2 40.7 92.1 -90.5 39.3 38.4 22.3 

sd 17.9 30.1 44.2 48.5 9.4 8.4 7.1 

min -79.6 0 0 -1031.2 8.0 0.0 0.0 

max 255.7 264.2 502.4 0 100.0 83.9 33.3 
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Table 10. Ten features most important in the single-stage 
classifier trained using manually detected and extracted 
whistles. See Appendix B for a description of each feature. 

Feature Gini Importance value 

positive slope 104.1 

# flat-down 93.7 

absolute slope 86.1 

# down-flat 78.1 

negative slope 76.5 

# inflection points/duration 76.5 

duration 75.8 

% flat 72.5 

center frequency 70 

1/4 frequency 69.2 

 

Table 11. Ten features most important in each classifier in the two-stage classifier trained using 
manually detected and extracted whistles. See Appendix B for a description of each feature. 

Stage 1 Stage 2 

Small dolphins vs. large dolphins 
Short-beaked common dolphins vs. 

Striped dolphins 

Atlantic spotted dolphins vs. 
bottlenose dolphins vs. short-

finned pilot whales 

Feature 
Gini 

Importance 
value 

Feature 
Gini 

Importance 
value 

Feature 
Gini 

Importance 
value 

positive slope 64.9 duration 11.7 center frequency 34.9 

absolute slope 54.8 positive slope 11.4 mean frequency 26.9 

negative slope 53.7 
# inflection 
points/duration 

10.4 minimum frequency 24 

% flat 32.4 
beginning 
frequency 

9.9 
maximum 
frequency 

23.8 

duration 23.5 absolute slope 8.8 median frequency 22.5 

mean slope 15.8 1/2 frequency 8.7 1/4 frequency 21.3 

# up-down 11.2 mean frequency 8.4 
# inflection 
points/duration 

19.3 

# down-flat 11.1 median frequency 8.1 1/2 frequency 19 

% downswept 11.1 center frequency 7.3 # flat-down 19 

# inflection 
points/duration 

10.7 1/4 frequency 6.9 absolute slope 18.6 
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3.4.2 Automated Measurements 

Descriptive statistics for features that were important in the classifiers based on Gini Importance values 
are presented in Tables 12ς14. Based on Gini Importance values, duration was the most important 
feature in both the single-stage and the two-stage automated classifiers (Tables 15 and 16). Atlantic 
spotted dolphins and short-finned pilot whales produced the shortest whistles (mean = 0.3 seconds 
(sec), sd = 0.1 sec and 0.3 sec, sd = 0.2 sec, respectively; Table 13), and short-beaked common dolphins 
produced the longest whistles (mean = 0.6 sec, sd = 0.4 sec). For the single-stage classifier, features 
describing slope were also important (Table 15).  

For the two-stage classifier, features describing frequency were most important (after duration) in stage 
1 (short-finned pilot whales versus dolphins, Table 16). All frequency features were lowest for pilot 
whale contours (Table 12) and highest for bottlenose and short-beaked common dolphins. Atlantic 
spotted and striped dolphin contours were generally in the middle of the frequency range relative to the 
other species and their frequency features were similar to each other. In stage 2, features describing 
slope were the most important for separating the four smaller dolphin species (short-beaked common, 
striped, Atlantic spotted, and bottlenose; Table 16). Slopes of whistle contours were steepest for 
Atlantic spotted dolphin (mean absolute value = 147 kHz/s, sd = 68 kHz/s; Table 14) and were 
predominantly positive (mean slope = 9.6 kHz/s, sd = 20.1 kHz/s). Bottlenose dolphins were the only 
species with contours containing predominantly negative slopes (mean slope = -1.4 kHz/s, sd = 16.1 
kHz/s). 
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Table 12. Descriptive statistics (mean, standard deviation, minimum, maximum) for frequency variables (in kHz) for automatically detected 
and measured whistles. Because of the large number of features, only those features most important to the classifiers (based on the Gini 
Importance Index) are included in this table. See Appendix B for a description of variables. 

Species n 
 

Max Min Beg End Mean 
Standard 
deviation 

Median Center 1/4 1/2 Range COFM 

Short-
beaked 
common 
dolphin 

475 

mean 16.5 11.6 13.6 14.6 13.9 1.4 13.8 14.0 13.6 13.7 4.9 1.0 

sd 6.1 5.3 6.0 6.0 5.4 0.9 5.5 5.5 5.6 5.6 3.2 1.4 

min 2.6 0.9 0.9 1.1 1.5 0.1 1.3 1.8 0.9 1.5 0.2 0.0 

max 44.8 39.9 44.1 43.7 42.9 7.9 43.7 41.5 43.7 44.2 28.5 17.3 

Short-
finned pilot 
whale 

749 

mean 10.9 7.6 9.1 9.2 9.2 0.9 9.2 9.2 9.3 9.2 3.3 0.4 

sd 6.1 5.1 5.8 5.8 5.5 0.8 5.6 5.5 5.7 5.6 2.8 0.5 

min 1.3 0.9 0.9 0.9 0.9 0.03 0.9 1.1 0.9 0.9 0.2 0.0 

max 39.9 35.8 38.2 39.6 38.5 4.6 38.3 37.9 37.7 38.1 19.7 4.1 

Striped 
dolphin 

648 

mean 13.8 9.0 11.2 11.9 11.1 1.4 11.0 11.4 10.9 10.9 4.8 0.9 

sd 4.3 3.5 4.2 4.4 3.7 0.8 3.7 3.6 3.9 3.8 2.9 1.4 

min 2.1 0.9 1.9 1.7 1.9 0.03 1.9 1.9 0.9 1.9 0.2 0.0 

max 42.2 32.4 42.2 41.6 36.3 4.8 35.3 37.3 39.0 35.2 17.1 19.7 

Atlantic 
spotted 
dolphin 

988 

mean 14.5 8.2 10.3 12.8 10.9 1.7 10.7 11.3 9.9 10.6 6.3 1.2 

sd 4.8 3.4 4.4 5.0 3.8 1.0 3.8 3.8 3.8 3.9 3.4 1.2 

min 2.2 0.9 0.9 0.9 1.5 0.1 1.7 1.6 1.5 1.3 0.6 0.0 

max 44.6 42.2 43.1 44.4 42.7 8.6 42.7 42.7 42.7 42.7 22.7 12.0 

Bottlenose 
dolphin 

1719 

mean 17.4 9.3 13.7 13.0 13.1 2.3 13.0 13.3 13.4 13.0 8.1 1.5 

sd 4.8 3.5 5.4 5.3 3.8 1.2 3.9 3.7 4.4 4.3 3.9 2.3 

min 6.0 3.4 3.7 4.3 5.1 0.2 5.2 5.2 3.9 4.7 0.7 0.1 

max 44.8 33.0 44.8 39.6 36.2 9.6 35.6 36.7 39.2 44.4 32.2 55.5 
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Table 13. Descriptive statistics (mean, standard deviation, minimum, maximum) for features describing shape for automatically detected and 
measured whistles. Duration and delta features (time between inflection points) are given in seconds. Because of the large number of 
features, only those features most important to the classifiers (based on the Gini Importance Index) are included in this table. See Appendix B 
for a description of variables. 

Species n 
 

Duration Max delta Min delta 
Mean 
delta 

# Inflections/ 
duration 

# up-
down 

# down-
flat 

# flat-
down 

Short-beaked 
common 
dolphin 

475 

mean 0.6 0.5 0.1 0.3 24.1 3.9 5.8 5.9 

sd 0.4 0.4 0.2 0.3 25.1 3.3 7.4 7.4 

min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 3.1 2.3 1.2 1.3 114.1 19.0 44.0 44.0 

Short-finned 
pilot whale 

749 

mean 0.3 0.1 0.03 0.1 27.2 2.2 4.4 4.8 

sd 0.2 0.1 0.05 0.1 24.8 2.3 5.7 5.7 

min 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 1.2 1.0 0.4 0.7 145.2 14.0 45.0 46.0 

Striped dolphin 648 

mean 0.5 0.4 0.1 0.2 19.3 3.0 4.8 4.8 

sd 0.3 0.3 0.2 0.2 17.7 3.2 6.9 7.0 

min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 2.7 2.6 1.1 1.5 88.7 33.0 57.0 58.0 

Atlantic 
spotted 
dolphin 

988 

mean 0.3 0.2 0.04 0.1 51.1 5.9 3.1 3.1 

sd 0.1 0.2 0.1 0.1 28.0 4.4 3.1 3.0 

min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 1.4 1.3 0.4 0.8 166.7 32.0 23.0 20.0 

Bottlenose 
dolphin 

1719 

mean 0.5 0.4 0.1 0.2 18.3 3.4 13.7 14.0 

sd 0.3 0.3 0.1 0.2 15.5 3.5 12.1 12.0 

min 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

max 4.3 4.3 0.9 1.5 105.5 35.0 109.0 105.0 
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Table 14. Descriptive statistics (mean, standard deviation, minimum, maximum) for features describing slope (in kHz/sec) for automatically 
detected and measured whistles. Because of the large number of features, only those features most important to the classifiers (based on the 
Gini Importance Index) are included in this table. See Appendix B for a description of variables. 

Species n 
 

Mean 
slope 

Absolute slope Positive slope 
Negative 

slope 
Percent 
upswept 

Percent 
downswept 

Percent 
flat 

Short-beaked common 
dolphin 

475 

mean 2.6 39.4 95.8 -98.5 42.2 37.4 20.3 

sd 13.1 50.8 133.3 123.1 15.0 14.0 8.2 

min -46.2 1.3 0 -1229.6 5.3 3.2 0.0 

max 5.5 385.1 1143.1 0 96.8 94.7 32.1 

Short-finned pilot whale 749 

mean 1.1 35.1 98.5 -93.1 37.7 39.0 23.4 

sd 21.3 38.2 82.7 74.7 14.5 15.5 7.8 

min -15.9 0.6 0 -690.5 0.0 0.0 0.0 

max 20.6 385.2 928.8 0 100.0 100.0 33.1 

Striped dolphin 648 

mean 1.9 31.8 86.5 -93.3 41.6 39.4 19.0 

sd 12.2 37.9 93.4 116 17.0 17.4 10.0 

min -65.8 0.8 4.3 -1343.7 0.0 0.0 0.0 

max 62.1 339.6 633.7 0 100.0 100.0 32.7 

Atlantic spotted dolphin 988 

mean 9.6 86.6 146.7 -155.6 46.6 35.5 17.9 

sd 20.1 56.8 67.7 82.6 11.3 10.7 6.5 

min -76.9 6.8 62.5 -864.6 8.2 10.8 0.0 

max 84.8 399.9 724.3 0 83.1 83.6 32.0 

Bottlenose dolphin 1719 

mean -1.4 40.5 123.4 -113.9 36.8 38.8 24.3 

sd 16.1 37.4 121.9 87.9 9.7 9.2 4.7 

min -64.8 3.7 0 -1348.8 5.4 5.7 5.0 

max 64.0 541.2 2495.2 0 88.7 89.3 32.5 
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Table 15. Ten features most important in the single-stage 
classifier trained using automatically detected and extracted 
whistles. See Appendix B for a description of each feature. 

Feature Gini Importance value 

duration 137.4 

absolute slope 80.1 

negative slope 70.8 

% flat 70.5 

positive slope 66.7 

# inflection points/duration 61 

center frequency 60.8 

maximum frequency 57.6 

mean frequency 56.3 

maximum delta 52.6 

 

Table 16. Ten features most important in each classifier in the two-stage classifier trained using 
automatically detected and extracted whistles. See Appendix B for a description of each feature. 

Stage 1 Stage 2 

Short-finned pilot whales vs. dolphins 
Short-beaked common dolphins vs. striped dolphins 

vs. Atlantic spotted dolphins vs. bottlenose 
dolphins 

Feature Gini Importance value Feature Gini Importance value 

duration 63 duration 93.9 

maximum frequency 45.8 % flat 64.1 

coefficient of frequency 
modulation 

45.5 
negative slope 

63.4 

center frequency 40.7 absolute slope 61.7 

mean frequency 32.8 positive slope 56.9 

standard deviation of the 
frequency 

29 
# inflection points/duration 

56.9 

maximum delta 28.1 # down-flat 52.9 

frequency range 26.9 # flat-down 50.9 

mean delta 21.6 max delta 35.7 

minimum frequency 21.4 1/4 frequency 35.5 
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3.5 PAMGuard ROCCA 

Both the manual classifier and the automated classifier have been incorporated into the ROCCA module 
in PAMGuard. The updates to ROCCA will be available for users at www.pamguard.org in the next 
PAMGuard update. Until that time, users can obtain the update directly from Bio-Waves, Inc. (www.bio-
waves.com). With these new ROCCA updates, users can now choose to run the automated Atlantic 
classifier, the manual Atlantic classifier, or the manual tropical Pacific classifier when starting ROCCA. 
Whistles are detected, extracted and measured using the methods described in Sections 2.2.1ς2.2.3. A 
User’s Manual describing the set-up and use of both the manual and the automated classifiers is 
available, and detailed help files are contained within the software (Oswald and Oswald 2013). 

  

http://www.pamguard.org/
http://www.bio-waves.com/
http://www.bio-waves.com/


30 

4. DISCUSSION 

Two new classifiers were trained for whistles produced by delphinid species in the northwestern Atlantic 
Ocean. One classifier was trained and tested using whistles detected and extracted manually and the 
second was trained and tested using whistles detected and extracted automatically (using PAMGuards 
WMD module). These  are the only classifiers that we are aware of that currently are available to the 
general public and scientific community specifically for classifying whistles of delphinid species occurring 
in the western Atlantic ocean. These classifiers will be valuable tools in the analysis of acoustic data, 
both in real time and for post-processing. Correct classification scores were excellent for both classifiers, 
with 78 percent and 80 percent of whistles, and 86 percent and 91 percent of schools being correctly 
classified using the manual classifier and the automated classifier, respectively. These results compare 
very favorably with multi-species classifiers trained for other species-groups and locations. For example, 
the original ROCCA classifier is a single-stage random-forest classifier that was trained using whistles 
recorded from eight delphinid species in the tropical Pacific Ocean (Oswald et al. 2013). Overall correct 
classification scores for this classifier were only 43 percent for whistles and 60 percent for encounters 
(Oswald et al. 2013). Other researchers have used multivariate discriminant function analysis to classify 
whistles produced by five species in the western North Atlantic, with an overall correct classification 
score of 70 percent (Steiner, 1981). Roch et al. (2007) used cepstral feature vectors and Gaussian 
mixture models to classify whistles and clicks produced by four species recorded in the Southern 
California Bight and the Gulf of California. Correct classification scores in this study ranged from 67 
percent to 75 percent, depending on how their training and test data were partitioned. 

We believe the main reason for the high correct classification scores that were obtained in this project 
were due to the use of a two-stage classifier. For both the manual and automated data, the two-stage 
classifier was able to classify whistles and encounters more accurately than the single-stage classifier 
(Table 4). This is because different features were important for separating certain species or species 
groups. Using two classifiers instead of only one, allows different feature-sets to be exploited more 
effectively. For example, in the single-stage manual classifier, short-beaked common dolphins were 
most often misclassified as striped dolphins (and vice versa), and bottlenose dolphins were most often 
misclassified as Atlantic spotted dolphins (and vice versa; Table 2). It is likely that this is because of the 
similar slope and shape features for whistles from those two species-groups. When species with similar 
slope and shape whistle features were combined into two groups and the whistles were first classified 
into either the small dolphin or large dolphin class, correct classification scores increased dramatically. 
Stage two contained two different classifiers that used different sets of features in each. The most 
important features in the small dolphin classifier (striped versus short-beaked common dolphins) were a 
mixture of shape, slope, and frequency features (Table 11). Although the differences in those features 
did not seem large for common dolphins and striped dolphins, they were sufficient to create a classifier 
that could distinguish between those two species with almost 100 percent accuracy. A different set of 
features was most important in the large dolphin (bottlenose, Atlantic spotted dolphin and short-finned 
pilot whale) classifier. The ten most important features in this classifier primarily consisted of frequency 
variables (Table 11). The whistles produced by pilot whales were much lower in frequency than those 
produced by Atlantic spotted and bottlenose dolphins and as a result, no pilot whale whistles were 
misclassified as Atlantic spotted or bottlenose dolphins, and very few Atlantic spotted or bottlenose 
whistles were misclassified as pilot whales.  

The two-stage approach also worked well for the automated data. In the single-stage automated 
classifier, duration and contour slope features were most important for separating species (Table 15). In 
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this classifier, classification errors for all species were distributed relatively evenly among all species 
(Table 5). Major sources of these errors are likely due to the similar durations of whistles for pilot 
whales and Atlantic spotted dolphins, and similar slope characteristics for Atlantic spotted and 
bottlenose dolphins and striped and short-beaked common dolphins (Tables 13 and 14). In addition, 
frequency characteristics were similar for short-beaked common and bottlenose dolphins, as well as for 
Atlantic spotted and striped dolphins (Table 14). 

The two-stage classifier had higher correct classification scores because in stage one, pilot whales were 
effectively separated from the other species based mainly on duration and frequency characteristics 
(Table 16). Although whistles from the four smaller species had frequency characteristics that were 
similar, pilot whale whistles were consistently lower in frequency than the whistles of all other species.  
Pilot whale whistles also had shorter durations than whistles from all other species with the exception of 
Atlantic spotted dolphin whistles (Tables 12 and 13). Separating pilot whales from the other species 
based on frequency in stage one removed some of the sources of error. These sources of error included 
slope characteristics (similar between pilot whales and striped dolphins and pilot whales and short-
beaked common dolphins) and duration (similar between pilot whales and Atlantic spotted dolphins) 
(Tables 13 and 14). In stage two, frequency variables were not as important as they were in stage one 
because these features were so similar among the small dolphins. Instead, duration and slope variables 
were used to separate the small dolphin species (Table 16). Because pilot whales were not included in 
stage 2, Atlantic spotted dolphins could be separated based on duration. Contours of the remaining 
three species had similar durations, and so slope variables were important for their identification. 
Bottlenose dolphins had the most distinctive slope characteristics of the remaining three species (Table 
14). Most of the classification errors in the two-stage classifier were common, striped, and bottlenose 
dolphins being misclassified as pilot whales (Table 6), which suggests that frequency variables should be 
refined further to allow greater separation between pilot whales and smaller dolphins.  

The accurate performance of the automated classifier in relation to the manual classifier was 
unexpected. For each encounter, WMD settings were optimized for whistle detection and contour 
extraction; however, as with any automated system, inaccurate extractions and false detections were 
unavoidable. In addition, the WMD sometimes fragmented whistles, resulting in a single whistle 
incorrectly labeled as multiple individual whistles (Figure 1). Because the goal of this work was to create 
a fully automated classifier, it was decided that inaccurately extracted whistles, false detections, or 
fragmented whistles would not be removed. Only by using the entire output of the WMD to train a 
classifier is it possible to create a classification system that is fully automated from start to finish. An 
advantage to using the entire output of the WMD is that it provided a larger sample size for training and 
testing the classifier. The larger sample size likely allowed the classifier to capture a greater amount of 
the variability in the dataset and consequently resulted in higher correct classification scores. One 
disadvantage to the fully automated classifier is that its performance is affected, to a greater extent, by 
noise and other sounds in the recordings than the performance of the manual classifier is. However, this 
is true of most automated acoustic detection and classification systems. The manual classifier requires 
the user to detect whistles so there are no (or very few) false detections caused by noise. In addition, 
the user has the option to adjust the extracted contour to make it more accurate. Low signal-to-noise 
ratios in the recordings can cause the automated detector to produce false detections or inaccurate 
whistle extractions. In addition, noise can mask portions of whistles, causing them to be fragmented. 
Adjusting the noise and thresholding settings in the WMD (Figure 3) can reduce the effects of noise in 
the recordings, but it is not always possible to remove it completely. The amount and type of noise in 
recordings will vary by location, recording equipment, and time. The recordings used to train this 
classifier were made using towed hydrophone arrays, which have very different self and ambient noise 
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characteristics than recordings made using other devices such as seafloor-mounted hydrophones and 
acoustic recorders. It is important to test the classifier on each new dataset to evaluate whether the 
automated classifier is appropriate for that dataset. In some cases, interference from noise may be too 
great, and it may be necessary to use the manual classifier. 

While both the manual and automated classifiers produced good results when evaluated using the test 
data, it is important to treat these results with caution, especially when using the classifiers to analyze 
novel data.  Differences in recording platforms and noise environments may affect the performance of 
automated detectors as well as whistle measurements made using manual methods. For example, 
ROCCA’s classifiers were trained with data collected using an array of hydrophones towed near the 
surface of the water. Whistles recorded at depth (ex. using seafloor mounted autonomous recorders) 
may have different characteristics due to propagation effects and attenuation. In addition, animals may 
produce whistles with different characteristics in response to the presence of a research vessel towing a 
hydrophone array. If this is the case, then the classifiers may perform differently when used on 
recordings made using less obtrusive platforms such as autonomous recorders or sonobuoys. It is not 
possible to assess the performance of classifiers without ground-truthing them using visually validated 
acoustic recordings. If possible, it is important to ground-truth the classifiers using visually validated 
acoustic data before each new analysis.  This will provide error rates specific to the recordings in 
question and will allow a more accurate assessment of the results.   

Although ROCCA does not classify with 100 percent accuracy, we believe that the correct classification 
scores of ~ 85-90 percent that we achieved are high enough to provide reliable information about the 
identity of whistles produced by many species of odontocete that are monitored with passive acoustics.  
These results can be used to provide new and important information on occurrence, distribution, and 
even the behaviors of dolphins and pilot whales that would not be possible (or would be extremely 
difficult or expensive) to obtain otherwise. Nevertheless, additional effort is needed to continue to 
improve classification success. Some of the features (ex., duration, beginning and ending frequencies, 
maximum frequency) currently included in the classifier could be unreliable, depending on the SNR of 
the recording. Alternative features that may be more robust to noise may increase the accuracy and 
reliability of classifiers.  Additional variables such as cepstral features (Roch et al. 2007) or statistical 
measures of signals such as those used by Fristrup and Watkins (1993) in the program ACOUSTAT should 
be explored. 

Finally, it is important to note that the classifiers presented here include only five whistling species that 
occur in the northwest Atlantic Ocean.  At least seven additional species that occur in this region are 
known to produce whistles (pantropical spotted dolphin, Stenella attenuata; rough-toothed dolphin, 
Steno bredanensis; Clymene dolphin, Stenella clymene; long-finned pilot whale, Globicephala melas; 
false killer whale; Risso’s dolphin, Grampus griseus; Atlantic white-sided dolphin, Lagenorhynchus 
acutus) (Palka 2012, Waring et al. 2012). These species are not yet included in ROCCA because 
recordings of single-species schools either were unavailable or there were not enough acoustic 
encounters to reliably train the classifier. This lack of data for some species is due to the fact that these 
species were either rarely encountered during the NEFSC, SEFSC and Duke surveys or, if they were 
encountered, they produced few or no whistles near the survey vessel. Unfortunately, If recordings 
containing any of these species are analyzed using ROCCA, they will be misclassified as one of the five 
species included in the classifier. This type of error will result in an incorrect picture of the occurrence of 
species in recordings analyzed using ROCCA. Given the fact that whistles produced by these species 
were rare during the surveys, it is  expected that the magnitude of this error will be low for at least some 
species. Some species may change their acoustic behavior (i.e. stop whistling) in response to the 
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presence of ships. A lack of recordings does not necessarily reflect low abundance for those species. 
Therefore, we believe that it is important to add all missing species to the classifier. The ability to 
identify the full complement of species in the northwest Atlantic would allow for a more complete 
understanding of the occurrence and distribution of whistling species in the northwest Atlantic Ocean.  
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5. CONCLUSIONS 

This project resulted in the successful development of delphinid whistle classifiers that are user-friendly, 
accurate and freely available for download, making them useful tools for the analysis of acoustic data 
collected along the Atlantic coast of the United States. Classifiers were trained using whistles detected 
both manually and automatically, providing alternative methods for analyzing data with a wide variety 
of signal-to-noise characteristics. The ability to identify delphinid species based on whistles will allow a 
deeper understanding of the distribution, occurrence, and vocal behaviors of these important, federally 
protected, living marine resources. 
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6. RECOMMENDATIONS FOR FUTURE RESEARCH 

Although results from the manual and automated classifier processes as developed and applied here 
were good, there are several important tasks that should be undertaken to make ROCCA more 
complete, accurate, precise, and dependable. Perhaps the highest priority is testing the Atlantic 
classifiers using visually validated recordings containing different noise levels and characteristics. This is 
particularly important for the automated classifier, and for recordings made from different platforms, 
such as seafloor recorders. Testing classifiers on recordings made using seafloor recorders is challenging 
because seafloor recordings rarely have associated visual observations of marine mammals, which are 
often necessary to validate species acoustic identifications. In cases when acoustic identification is 
uncertain, surface observations concurrent with seafloor-mounted acoustic recordings and localizations 
should be conducted in order to confirm species identity. 

When possible, classifiers should be tested in real time to assess their capabilities for field-work 
applications. The classifiers in this study were trained using data analyzed during post-processing, which 
allowed more time for ensuring accuracy and testing of WMD parameters. In a real time setting, there 
are often many activities occurring simultaneously and conditions are constantly changing. In the field, 
detection-classification software needs to be robust, easy to use, and time-efficient in order to be truly 
useful. ROCCA should be tested in real time scenarios in order to evaluate its robustness, accuracy, and 
user-friendliness, as well as the frequency with which WMD settings need to be adjusted. Based on such 
at-sea testing and evaluation, improvements can be made to make ROCCA a more effective field tool. 

ROCCA’s Atlantic classifier currently contains five delphinid species recorded off the East Coast of the 
United States. Recordings are currently available for five additional species (i.e., not currently included 
in ROCCA): pantropical spotted dolphin, rough-toothed dolphin, Clymene dolphin, false killer whale and 
Risso’s dolphin. Unfortunately, sample sizes are not yet large enough for training and testing detectors 
and classifiers for these species. In order to be able to correctly identify all of the whistles on recordings 
made in the western North Atlantic Ocean, it is necessary to add these species, and any others that are 
missing, to the classifier. During the summer of 2013, the SEFSC conducted a concurrent visual and 
acoustic survey off the East Coast of the United States. Because this survey occurred as work on the 
Atlantic classifier was wrapping up, recordings made during the survey were not included in our dataset.  
It is recommended that the data recorded during SEFSC's 2013 survey be analyzed and  existing data 
from other researchers be obtained to increase sample sizes and allow additional species to be included 
in the Atlantic classifiers. 

While ROCCA’s classifiers have been trained using tonal whistles produced by delphinids, these are not 
the only marine mammal species that produce tonal signals. Many baleen whale species, including right 
(Eubalaena glacialis), fin (Balaenoptera physalus), blue (Balaenoptera musculus), and humpback whales 
(Megaptera novaeangliae), also produce tonal signals (Payne and McVay 1971, Mattila et al. 1987, 
Thompson et al. 1992, Matthews et al. 2001, Mellinger and Clark 2003). These signals can easily be 
detected and extracted using either the WMD or ROCCA’s manual methods. ROCCA’s random-forest 
classifiers have proven to work well with variable high-frequency tonal sounds and are likely to also 
work well with low-frequency tonal sounds such as those produced by baleen whales. Fristrup and 
Watkins (1993) showed that the same feature vectors can be used to classify delphinids, baleen whales 
and pinnipeds.  Their detection/classification system, AcouSTAT correctly classified 85 percent of sounds 
produced by 53 marine mammal species.  However, this classifier has not been optimized or tested 
specifically on data collected in the northwest Atlantic Ocean. A collaboration with the developers of 
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AcouSTAT and/or other researchers working on the detection and classification of sounds produced by 
baleen whales is recommended to develop a multi-species baleen whale classifier specifically for the 
northwest Atlantic Ocean and other areas of high naval activity.   

Although the western Atlantic contains areas that are important areas for PAM (especially related to 
United States (U.S.) Navy activities), there are many other locations for which classifiers should be 
created. Previous studies have shown geographic variation in characteristics of whistles (e.g., Bazua-
Duran and Au 2004, Morisaka et al. 2005, Ansmann et al. 2007, Baron et al. 2008, May-Collado and 
Wartzok 2008), and so it is important to develop classifiers for the specific locations in which they will be 
used. Areas such as the Gulf of Mexico, the Gulf of Alaska, the temperate Pacific, the waters surrounding 
the Mariana Islands, and the Caribbean Sea are all being monitored using passive acoustics and are 
important areas for naval exercises. A standardized method for detection and classification of delphinids 
would allow results to be compared among locations. It is recommended that detectors and classifiers 
be developed using data specific to each of the locations mentioned above.  It is also recommended that 
these detection/classification systems be based on common software systems so that operators can 
easily work in multiple areas without having to learn new methods for different study areas.  

Methods for efficiently analyzing acoustic data and examining questions related to occurrence, 
distribution, and behavior of animals are greatly needed. For example, it is crucial to be able to 
accurately and efficiently identify species in order to evaluate potential responses to naval and other 
human activities. Lumping species into a ‘delphinid’ group instead of examining individual species may 
result in the reactions of one species being masked by the opposite reactions of another species. A large 
amount of archival towed-array and seafloor-mounted recorder data exist for the northwestern Atlantic 
Ocean. It is recommended that a detector/classifier developed specifically for the northwestern Atlantic 
Ocean  be used to process these data and examine questions related to the occurrence of animals and 
responses to naval activities such as sonar exercises, explosions and ship traffic.  
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APPENDIX A: 

CHARACTERISTICS OF THE HYDROPHONE ARRAYS AND RECORDING SYSTEMS 

USED BY THE SOUTHEAST FISHERIES SCIENCE CENTER AND THE NORTHEAST 

FISHERIES SCIENCE CENTER OF THE NATIONAL MARINE FISHERIES SERVICE, AND 

DUKE UNIVERSITY 
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 Appendix A: 
Characteristics of the hydrophone arrays and recording systems used by the Southeast Fisheries 

Science Center and the Northeast Fisheries Science Center of the National Marine Fisheries Service, 
and Duke University. 

Source Cruise Year 
Number of 

Hydrophones 
Array Frequency Response 

Recording 
Medium 

Sampling 
Rate 

SEFSC AMAPPS 2011 6 
+/- 3 dB from 1 to 180 kHz 
except for a 3 dB peak at 150 
kHz  

Computer 
hard drive 

192 kHz 

SEFSC GU-02-01 2002 5 
+/- 3dB from 2 to 15 kHz, except 
for a 4dB peak at 35 kHz  

Digital 
Audio 
Tape 

48 kHz 

SEFSC GU-02-01 2002 2 
+/- 1 dB from 1 Hz to 15 kHz and 
+/- 2 dB from 15 to 25 kHz.  

Digital 
Audio 
Tape 

48 kHz 

SEFSC GU-06-03 2006 2 
+/- 1 dB from 1 Hz to 15 kHz 
and +/- 2 dB from 15 to 25 kHz.  

Digital 
Audio 
Tape 

4 kHz 

NEFSC AMAPPS 2011 2-3 
 +/- 1.5 dB up to 15 kHz and +/- 2 
dB up to 25 kHz 

Computer 
hard drive 

192 kHz 

Duke One-day surveys 
2007-
2010 

4 +/- 3dB from 2 kHz to 100 kHz 
Computer 
hard drive 

192 kHz 

Duke DTAG 
2008, 
2011, 
2012 

1 +/- 3dB from 400 Hz to 96 kHz DTAG 96 – 192 kHz 

Key: AMAPPS = Atlantic Marine Assessment Program for Protected Species; dB = decibel(s); Duke = Duke University; GU = NOAA 
Ship Gordon Gunter; Hz = Hertz; kHz = kilohertz; NEFSC = Northeast Fisheries Science Center; SEFSC = Southeast Fisheries 
Science Center 
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APPENDIX B: 

VARIABLES MEASURED BY ROCCA  
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Appendix B: 
Variables measured by ROCCA. 

Variable Explanation 

Begsweep slope of the beginning sweep (1 = positive, -1 = negative, 0 = zero) 

Begup binary variable: 1 = beginning slope is positive, 0 = beginning slope is negative 

Begdwn binary variable:  1 = beginning slope is negative, 0 = beginning slope is positive 

Endsweep slope of the end sweep (1 = positive, -1 = negative, = 0 zero) 

Endup binary variable: 1 = ending slope is positive, 0 = ending slope is negative 

Enddwn binary variable: 1 = ending slope is negative, 0 = ending slope is positive 

Beg beginning frequency (Hertz [Hz]) 

End ending frequency (Hz) 

Min minimum frequency (Hz) 

Dur duration (seconds) 

Range maximum frequency - minimum frequency (Hz) 

Max maximum frequency (Hz) 

mean freq mean frequency (Hz) 

median freq median frequency (Hz) 

std freq standard deviation of the frequency (Hz) 

Spread difference between the 75th and the 25th percentiles of the frequency 

quart freq frequency at one-quarter of the duration (Hz) 

half freq frequency at one-half of the duration (Hz) 

Threequart frequency at three-quarters of the duration (Hz) 

Centerfreq (minimum frequency + (maximum frequency-minimum frequency))/2 

rel bw relative bandwidth: (maximum frequency - minimum frequency)/center frequency 

Maxmin maximum frequency/minimum frequency 

Begend beginning frequency/end frequency 

Cofm 
coefficient of frequency modulation (COFM): take 20 frequency measurements equally 
spaced in time, then subtract each frequency value from the one before it. COFM is the 
sum of the absolute values of these differences, all divided by 10,000 

tot step 
number of steps (10 percent or greater increase or decrease in frequency over two 
contour points) 

tot inflect 
number of inflection points (changes from positive to negative or negative to positive 
slope) 

max delta maximum time between inflection points 

min delta minimum time between inflection points 

maxmin delta maximum delta/minimum delta 

mean delta mean time between inflection points 

std delta standard deviation of the time between inflection points 

median delta median of the time between inflection points 
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Variable Explanation 

mean slope overall mean slope 

mean pos slope mean positive slope 

mean neg slope mean negative slope 

mean absslope mean absolute value of the slope 

Posneg mean positive slope/mean negative slope 

perc up percent of the whistle that has a positive slope 

perc dwn percent of the whistle that has a negative slope 

perc flt percent of the whistle that has zero slope 

up dwn number of inflection points that go from positive slope to negative slope 

dwn up number of inflection points that go from negative slope to positive slope 

up flt number of times the slope changes from positive to zero 

dwn flt number of times the slope changes from negative to zero 

flt dwn number of times the slope changes from zero to negative 

flt up number of times the slope changes from zero to positive 

step up number of steps that have increasing frequency 

step dwn number of steps that have decreasing frequency 

step.dur number of steps/duration 

inflect.dur number of inflection points/duration 

 
 


