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Many odontocetes produce frequency modulated tonal calls known as whistles. The ability to auto-

matically determine time� frequency tracks corresponding to these vocalizations has numerous

applications including species description, identification, and density estimation. This work devel-

ops and compares two algorithms on a common corpus of nearly one hour of data collected in the

Southern California Bight and at Palmyra Atoll. The corpus contains over 3000 whistles from

bottlenose dolphins, long- and short-beaked common dolphins, spinner dolphins, and melon-headed

whales that have been annotated by a human, and released to the Moby Sound archive. Both

algorithms use a common signal processing front end to determine time� frequency peaks from a

spectrogram. In the first method, a particle filter performs Bayesian filtering, estimating the contour

from the noisy spectral peaks. The second method uses an adaptive polynomial prediction to con-

nect peaks into a graph, merging graphs when they cross. Whistle contours are extracted from

graphs using information from both sides of crossings. The particle filter was able to retrieve 71.5%

(recall) of the human annotated tonals with 60.8% of the detections being valid (precision). The

graph algorithm’s recall rate was 80.0% with a precision of 76.9%.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3624821]

PACS number(s): 43.80.Cs, 43.60.Uv [WA] Pages: 2212–2223

I. INTRODUCTION

The identification and description of individual marine

mammal tonal calls is a task that has numerous applications.

Contour description is useful for describing species’ vocal

repertoires (i.e., Wang et al., 1995) or can be a preliminary

step in a signal processing chain to determine information

about which species generated a set of whistles (Oswald

et al., 2007). Population densities can be estimated from call

detections when the call production rate is known (Marques

et al., 2009), and finally identifying a call recorded at multi-

ple hydrophones can be used to solve the call correspon-

dence task in localization applications.

Over the last two decades, several groups have worked

on methods to automate the description of whistles. Whistles

are tonal calls produced by many species of odontocetes.

Some of these are semi-automated, such as the approaches

used by Buck and Tyack (1993) and Lammers et al. (2003),

where a user is required to provide information to assist the

algorithm such as starting and ending points of the whistles.

Most fully automated algorithms, including the techniques

described in this work, focus on extracting contour ridges

from time � frequency representations of a signal. The time

� frequency representation typically consists of a spectro-

gram computed from sequences of Fourier transforms of

overlapping windowed audio data.

Examples of this type of algorithm include the work of

Datta and Sturtivant (2002) which uses edge-detection tech-

niques from image processing to find and connect areas of

the spectrogram with sharp transitions in intensity. Other
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strategies include identifying peaks in the spectra and con-

necting them in a coherent manner. For algorithms that iden-

tify whistles from time � frequency peaks, the challenge lies

in determining when peaks are in close enough proximity to

be part of the same whistle contour and being able to disam-

biguate individual whistles when they cross one another.

Halkias and Ellis (2006) detected short segments of whistles

and then decided whether or not to connect nearby segments

based upon likelihood models trained on the mean frequency

curvature and energy. Pulsed killer whale calls appear to

have a harmonic structure when analyzed with long windows

relative to the interpulse interval [see Watkins (1967) for a

discussion of this relationship]. Brown and Miller (2007) as

well as Shapiro and Wang (2009) have exploited this struc-

ture to determine call tracks.

An alternative approach is to consider whistle discovery

within the context of Bayesian filtering, with the time-varying

whistle frequency serving as a hidden state that is estimated

from the noisy sound field. Mallawaarachchi et al. (2008)

used Kalman filters, a closed-form solution of the Bayesian

filtering problem, to adaptively predict the next time

� frequency peak along a whistle path, thus solving the dis-

ambiguation problem by retaining state information about

each whistle. Other approaches that use predictions based on

partial detections include the whistle detectors in Ishmael

(Mellinger, 2001) and PamGuard (Gillespie et al., 2008).

Some groups have proposed techniques that are not based

on sequences of short-time Fourier transforms. Adam (2008)

extracted calls of killer whales using the Hilbert-Huang trans-

form. Ioana et al. (2010) proposed a method to extract tonals

when the signal’s phase track can be approximated by a poly-

nomial. The strongest signal is estimated by the product high-

order ambiguity function (Barbarossa et al., 1998), subtracted,

and the process is iterated to find the next strongest signal.

In this work, we consider two methods for the automatic

annotation of whistles. The first uses a particle filter, which

overcomes several shortcomings of Kalman filters which

constrain the probability distributions to Gaussians and only

permits linear state update equations. The second method

uses the formalism of a graph to connect spectral peaks and

permits delayed decisions about which paths are associated

with which whistle (if any) until more information than sim-

ply the next detected peak is available.

Kalman filters become limited in real-world scenarios

and have difficulty when distributions are non-Gaussian,

such as when distributions become multimodal at contour

intersections or when background noise increases suddenly.

As a robust alternative to Kalman filters in more complex

environments, particle filters provide a sequential Monte

Carlo solution for Bayesian filtering that works in non-

linear and non-Gaussian settings (Doucet et al., 2001, pp.

3–14; Arulampalam et al., 2002). In previous work, parti-

cle filters have been used in formant tracking for human

speech (Shi and Chang 2003); however, extensions are

needed for detecting odontocete whistles since their

approach requires that formants remain uninterrupted by

other sounds or formants. White and Hadley (2008)

showed that particle filters have the potential for use in

cetacean whistle extraction by showing that a simple parti-

cle filter can extract a single short whistle. In the work

presented here we extend their approach by accommodat-

ing a more sophisticated particle filter specifically designed

for odontocete whistle extraction in a complex acoustic

environment with numerous overlapping whistles from

multiple individuals.

As an alternative approach, we also consider the con-

struction of graph representations of whistle networks.

Graphs are commonly used to represent the interconnections

between nodes and have applications in search, path-finding,

etc. (Nilsson, 1980, Chap. 2). Spectral peaks in the time �
frequency space are examined and either appended to exist-

ing graphs or form new graphs. Graphs may contain multiple

whistles, and a disambiguation step analyzes each graph to

extract the multiple whistles that may lie within.

This work uses a common signal processing front-end to

compare the results of particle-filter and graph based meth-

ods for detecting whistle contours. Nearly one hour of

recordings has been hand-annotated for five different species

of odontocetes, and metrics have been defined to determine

the efficacy of the algorithms not only for retrieval and false

detections, but also to characterize the quality of the detec-

tions. Both techniques are capable of real-time whistle

extraction on current-generation workstations such as the

Phenom
TM

II X4 940 (Advanced Micro Devices, Sunnydale,

CA), or Xeon
TM

X3360 (Intel, Santa Clara, CA) with multi-

ple gigabytes of RAM.

II. METHODS

A. Data collection

Data sampled at 192 kHz with 16 or 24 bit quantization

were collected for five species of odontocetes. Calls from

short-beaked and long-beaked common dolphins (Delphinis
delphis and D. capensis, respectively), as well as bottlenose

dolphins (Tursiops truncatus) were collected in the Southern

California Bight between 2004 and 2006. Additional bottle-

nose dolphin recordings along with recordings from melon-

headed whales (Peponocephala electra) and spinner dolphins

(Stenella longirostris longirostris) were collected during

2006 and 2007 at Palmyra Atoll. Two types of hydrophones

were used, the ITC 1042 (Intl. Transducer Corp., Santa Bar-

bara, CA), and the HS150 (Sonar Research and Development

Ltd., Beverly, UK), both of which have flat frequency

responses (63 dB) between 1–100 kHz. Hydrophones were

dipped or towed from small boats, the stationary platform

R/P FLIP (Fisher and Spiess 1963), and the R/V David Starr

Jordan. Hydrophone depths were typically 10 to 30 m.

Trained visual observers confirmed the identity of each

species. Recordings were made only in the presence of sin-

gle-species groups when no other groups were sighted. Limi-

tations of the data collection include differences in the

ability to sight other species due to observation platform

height as well as similarities between long-beaked and short-

beaked common dolphins (Heyning and Perrin, 1994) that

make identification of these species more difficult. The

sightings, recording durations, and specific files of the 56 m

39 s subset of the data used in this study are reported in

Tables I and II.
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B. Signal processing front-end

Spectrograms are formed from the log magnitude spectra

of Hamming-windowed data frames computed every Dt ms.

In this work we use a frame length of 8 ms and a frame

advance of Dt¼ 2 ms, resulting in a per frequency bin band-

width of Df¼ 125 Hz. Only frequency bins between 5 and 50

kHz are processed as most calls of the species of interest lie

within this range. Spectrograms are smoothed by using a me-

dian filter over a 3� 3 time-frequency grid followed by a per

frequency bin spectral means subtraction over a 3 s window.

Spectral peaks are identified for each frame by noting

all frequency bins whose normalized magnitude exceeds 10

dB rel. and have no higher-energy neighbors within 250 Hz

(6 2Df), which is roughly where the first side band of a Ham-

ming window occurs for the 8 ms window used by the algo-

rithm. Part of the motivation for suppressing close peaks is

to prevent detections of peaks from echoes with very short

delay which would have a similar trajectory such as those

that might occur when an animal is near the surface. Regions

of broad band energy, such as those produced by impulsive

sounds such as snapping shrimp or echolocation clicks, are

detected by checking to see if the percentage of frequency

bins identified as peaks has increased dramatically from the

previous frame. When this increases by more than 1%, we

consider it unlikely that the new peaks are attributable to the

start of new whistles, and the frame is not processed. Subse-

quent frames use the number of peaks from the last accepted

frame when determining the percentage increase in peaks,

and the algorithm initializes this value to 5% of the fre-

quency bins at the start of processing. The thresholds for this

ad hoc method will be shown to produce good results for the

species in this study, and would need to be adjusted for any

species that started to chorus in large numbers within Dt s.

The specified analysis and growth rate parameters result in

the admission of up to eighteen calls in the first analysis

frame and up to three new calls within any 2 ms period.

C. Whistle extraction

We compare two competing methods of determining

whistle (tonal) contour patterns from the detected peaks. The

first method employs particle filters to model the trajectory

of hypothesized peaks and incrementally builds candidate

tonal contours. The second method assembles peaks that

meet criteria into a graph representation. No attempt is made

TABLE I. Summary of recordings. Abbreviations: CalCOFI—California Cooperative Oceanic Fisheries Investigations oceanographic survey, SCI—San

Clemente Island small boat survey, SOCAL—SOuthern CALifornia Instrumentation cruises on the R/V Sproul, FLIP—R/P FLIP moored recordings, and

Palmyra—Palmyra Atoll small boat recordings.

Sighting

1 2 3

Species Duration Expedition Duration Expedition Duration Expedition Total duration

Bottlenose dolphin 4 m 13 s SCI 6 m 39 s Palmyra 10 m 52 s

Long-beaked common dolphin 5 m 0 s CalCOFI 3 m 54 s SOCAL 5 m 0 s FLIP 13 m 54 s

Melon-headed whale 6 m 57 s Palmyra 1 m 5 s Palmyra 3 m 18 s Palmyra 11 m 20 s

Short-beaked common dolphin 2 m 30 s SCI 6 m 11 s SCI 4 m 47 s SCI 13 m 28 s

Spinner dolphin 2 m 23 s Palmyra 2 m 5 s Palmyra 2 m 37 s Palmyra 7 m 5 s

grand total 56 m 39 s

TABLE II. Audio files corresponding to the summary data of Table I. Files are publicly available in the Moby

Sound archive as part of the 2011 Detection, Classification, and Localization of Marine Mammals Using Pas-

sive Acoustic Monitoring conference dataset.

Species Sighting File(s)

Bottlenose dolphin 1 Qx-Tt-SCI0608-N1-060814-121518.wav

2 palmyra092007FS192-070924-205305.wav and

palmyra092007FS192-070924-205730.wav

Long-beaked common dolphin 1 Qx-Dc-CC0411-TAT11-CH2-041114-154040-s.wav

2 Qx-Dc-SC03-TAT09-060516-171606.wav

3 QX-Dc-FLIP0610-VLA-061015-165000.wav

Melon-headed whale 1 palmyra092007FS192-070925-023000.wav

2 palmyra092007FS192-071004-032342.wav

3 palmyra102006-061020-204327_4.wav

Short-beaked common dolphin 1 Qx-Dd-SCI0608-N1-060815-100318.wav

2 Qx-Dd-SCI0608-Ziph-060817-100219.wav

3 Qx-Dd-SCI0608-Ziph-060817-125009.wav

Spinner dolphin 1 palmyra092007FS192-070927-224737.wav

2 palmyra092007FS192-071011-232000.wav

3 palmyra102006-061103-213127_4.wav

2214 J. Acoust. Soc. Am., Vol. 130, No. 4, October 2011 Roch et al.: Odontocete whistle contour extraction



to disambiguate crossing tonals until after a graph has been

completed. This allows information from both sides of a

crossing to be considered when disambiguating multiple

whistles that cross.

For both methods, false detections are reduced by dis-

carding detections of less than 150 ms duration that are fre-

quently due to noise. While some whistles may be shorter

than 150 ms, results reported by Oswald et al. (2003) for

nine species of odontocetes in the eastern tropical Pacific

(four of which are covered in this study) had mean durations

from 0.3 to 1.4 s, with the species producing the shortest du-

ration whistles having a standard deviation of 0.3.

1. Particle filter

If we have a sequence of detected spectral peaks s1:t from

time index 1 to t that can be used to model a sequence of con-

tour estimates c0:t as a general Markovian process, Bayes’ the-

orem describes the posterior distribution (that of the estimated

contour given the spectral peaks) at any time t as

pðc0:tjs1:tÞ ¼
pðs1:tjc0:tÞpðc0:tÞð

pðs1:tjc0:tÞpðc0:tÞdc0:t

; (1)

where the initial contour estimate, c0 is set to the first spec-

tral peak encountered that is not associated with another

whistle. This joint distribution of the posterior can be written

as a recursive pair of prediction and updating equations

using the Chapman-Kolmogorov equation (Papoulis, 1991,

p. 193) and Bayes’ theorem

Prediction : pðctjs1:t�1Þ ¼
ð

pðctjct�1Þp ct�1js1:t�1ð Þdct�1;

Updating : pðctjs1:tÞ ¼
pðstjctÞpðctjs1:t�1Þð
pðstjctÞpðctjs1:t�1Þdct

:
(2)

This recursion describes a Bayesian filtering process, where

the posterior that is estimated in one time step is used as the

prior distribution (our belief about the previous frequency of

the whistle) in the subsequent time step. If all of these distri-

butions are Gaussian and the state updates are linear, then

Kalman filtering provides a closed-form solution to this

recursion. When this constraint does not hold, as in many

systems of interest, sequential Monte Carlo methods such as

particle filtering can be used to find estimates of this

posterior.

The particle filter estimates the posterior update with a

weighted collection of N point samples or particles ci
t,

p ctjs1:tð Þ �
XN

i¼1

wi
tdðct � ci

tÞ; (3)

where the weights wi
0 are each initialized as 1/N. Here, the

continuous posterior is approximated as a discrete distribu-

tion using the Dirac d function d(�) over each of the i par-

ticles, and the particle weights wi
t are normalized. Since the

shape and peak of the posterior are unknown, we generate

point samples by using a distribution we define. This distri-

bution is referred to as an importance density, qðctjs1:tÞ,
and the particle weights are set proportionally,

wi
tapðctjs1:tÞ=qðctjs1:tÞ. This can be written recursively using

Bayes’ theorem as

wi
t / wi

t�1

pðstjci
tÞpðci

tjci
t�1Þ

qðci
tjci

t�1; stÞ
: (4)

By setting the importance density as the product of particle

weight in the previous time step and the state update prior,

qðci
tjci

t�1; stÞ ¼ wi
t�1pðci

tjci
t�1Þ, the particle weight becomes

wi
t / pðstjci

tÞ: (5)

In this way, the particle weights are resampled at each time

step and normalized to sum one in a process referred to as

sampling importance resampling (Gordon et al., 1993). In

the work presented here, the likelihood function pðstjci
tÞ

takes the form of a normal distribution.

To improve performance, systematic resampling (Kita-

gawa, 1996) is implemented with particle replacement at each

time step. During each recursion, particles with a low weight

are extinguished and replacement particles are regenerated

near particles with a large weight. Particles far from the peak

of the posterior are removed and more particles are added

near the peak so that particles have a better chance of being

distributed within the informative parts of the posterior. This

is done within a continuous resampling space and works

much like a regularized particle filter (Musso et al., 2001).

In the predictive step, the particle locations are updated

according to the motion model for the whistle update. When

the whistle estimate is at least seven samples long, it is used

to approximate the first and second order time derivatives of

the whistle frequency at time t� 1. These rates of change are

used with a standard second order equation of motion (6) to

estimate the new location for each particle at time t. As a

way to further increase the chances that the particles will be

well distributed throughout the measureable space spanned

by the posterior and to avoid being gradually herded off

course by perpetuating state estimate errors, a small random

noise is included in the prediction step model. This adjust-

ment is accounted for as a Gaussian random walk and

applied within the motion model. The random adjustment �
is drawn from a Gaussian distribution such that 95% of the

draws are within about 40 Hz of the prediction (zero mean,

variance of 375 Hz, or a few frequency bins) and added into

the particle motion model to update particle positions ci
t,

� � Nðl ¼ 0; r2 ¼ 375Þ;

ci
t ¼ ci

t0
þ _f ðt� t0Þ þ

1

2
€f ðt� t0Þ2 þ �:

(6)

Here, the estimated first and second derivatives of the whis-

tle contour at an initial time step are _f and €f , respectively.

Prediction is typically for a single time step ðt0 � t� 1Þ;
however, larger time steps can occur when trying to reac-

quire whistle contours that have been lost due to brief signal

masking such as echolocation clicks.
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The likelihood function pðstjci
tÞ describes how likely the

updated estimates are with the observations, and can take the

form of a Gaussian distribution without restricting the ability

of the particle filter to estimate non-Gaussian posteriors. In

cases where the particles span multiple sound intensity

peaks, treating the likelihood as a sum of Gaussians using

each observation instead of taking the “best” data point

increases the power of the particle filter to navigate a whistle

contour when the observations present a more complicated

scene. Once the weights are determined by calculating the

likelihood for each particle update, the center of mass of the

particles represents the best estimate for the peak of the pos-

terior, and is used as the estimated frequency of the whistle

contour at time t. To improve performance, the whistle con-

tour is modeled as a three dimensional feature, including not

only frequency, but also the first and second order deriva-

tives of the contour, c ¼ f ; _f ; €f
� �T

. The added shift in fre-

quency described in Eq. (6) is applied directly to the first

component of c, and the first and second derivatives of the

contour are estimated using the last five samples of the con-

tour estimate. The likelihood function is chosen as a multi-

variate normal distribution with the mean defined by the

location of each particle, a zero covariance, and the diagonal

variance R¼Df � [3, 1.5, 1]. This can be written as

pðstjci
tÞ ¼ Nðstjci

t;
P
Þ, where st ¼ ½s1;t; s2;t; s3;t�T is generated

from a spectral peak at time t. The first component s1;t is the

frequency of the spectral peak, and the second s2;t and third

s3;t components represent the rates of change _f and €f , respec-

tively, as determined by treating s1;t as the subsequent con-

tour update. Early in contour finding, before enough contour

updates have been found to approximate _f or €f , a lower

dimensional likelihood function is used that is scaled to the

number of features available. In this way, the best matches

of both the particles and the spectral peaks are found based

on the available information.

A set of particles is used to estimate a single whistle

contour, as shown in Fig. 1. When there are multiple whistle

contours present, each contour is estimated with its own set

of particles in each time step. New whistles are initiated

each time a sound level peak occurs that cannot be associ-

ated with an existing set of particles describing current whis-

tle contours. This can happen due to spectral separation, on

the order of 500 Hz difference between a sound level peak

and a current whistle contour using the given likelihood

function, or it can occur due to having more numerous sound

level peaks than current whistle contours. Groups of particles

are not considered to be a whistle contour until a minimum

number of time updates occur. The threshold is based on a

user specified minimum whistle duration.

2. Graph detection of tonals

The graph search algorithm maintains two sets of graphs

to organize candidate detections. The first set is the fragment
set and in general contains small fragments of whistles that

are identified. As these fragments grow, they are migrated to

the active set which consists of longer sets of time�fre-

quency peaks without any attempt to disambiguate tonal

crossings. Each graph has a set of endpoints that may be

extended as new time� frequency peaks are discovered. Af-

ter a period of inactivity where no new elements are added

to an active graph, it is removed from the active set and a

disambiguation algorithm extracts individual whistles.

The two major operations for each frame of the spectro-

gram consist of graph extension and graph pruning. Exten-

sion consists of examining the peaks and determining if they

are appropriate for extending an existing graph in the frag-
ment or active sets. The pruning step identifies graphs whose

endpoints are too far away from time t to be extended, and

identifies the whistles contained therein. Throughout this

section, t denotes start times of spectrogram frames.

a. Graph extension. Criteria for graph extension are

based on an adaptive polynomial fit of a recent portion (25

ms) of the path to be extended. When the multiple paths are

possible due to recent whistle crossing, each possible path is

fit. The fit uses an ordinary least squares criterion (Press,

1992, Chap. 15.4). The goodness of the fit is measured by an

adjusted R2 coefficient (Dillon and Goldstein, 1984, Chap.

6.3.2), which penalizes the fitness measure by a function of

the number of parameters and data points:

R̂2 ¼

X
t

st � p̂f ðtÞ
� �2

N � ðdegreeðp̂f Þ � 1ÞX
t

ðst � lsÞ2

N � 1

; (7)

where t varies over the N regression samples, ls is the mean

of the regression sample frequencies, and p̂f ð� � �Þ is a predic-

tion polynomial of order degreeðp̂f Þ. The fit is initially tried

with a first order polynomial. A heuristic that accounts for

FIG. 1. (Color online) Particle filter performance in whistle discovery as

shown with a spectrogram. Approximate boundary of an odontocete whistle

is marked by the solid lines. Detected peaks of whistle are shown as squares.

Particles in each time step are shown as �’s, and the center of mass of the

particles is depicted as circles. These are the effective measures of the whis-

tle contour in each time step. Tracking continues even through time frames

without nearby whistle peaks allowing whistle contour detection to resume

once peaks are detected again. Locations where the whistle contour detec-

tion is resumed are denoted with darker circles.
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the sensitivity of polynomial prediction to quantization noise

along with a check for goodness of fit and quantity of estima-

tion data is used to determine whether or not a higher order

polynomial should be applied. Letting rp̂f
denote the stand-

ard deviation of the squared residuals, poor fits are re-esti-

mated with the next higher order polynomial when the

heuristic

R̂2 < 0:6; rp̂f
> 2Df ; and N > 3 degreeðp̂f Þ (8)

is satisfied.

A new peak, st, extends one or more paths in an existing

graph(s) if it is within 50 ms of the path’s endpoint and

p̂f ðtÞ � st

�� �� 	 1000 (Fig. 2). Connections are first tried in the

active set to favor well established paths. If no match is

found, the fragment set is searched. Should an appropriate

path from a fragment set graph be found, the duration of the

newly extended path is examined and the graph is moved to

the active set if the longest possible path exceeds 50 ms.

When no viable extensions of existing paths are feasible, a

new graph consisting of the detected peak is added to the

fragment set.

There are two special cases that merit discussion. It is

possible for a peak to be added to more than one graph. An

example of this occurs when tonal contours cross. In this

case, the graphs are merged using the union-find algorithm

(Cormen et al., 1990, Chap. 21) which permits efficient

merging of sets with near constant-time performance. By

merging the graphs, we delay the decision about which path

should be taken on the other side of the crossing until the

graph has been completed, allowing information from both

sides of the crossing to be used. The second case arises when

two tonals are in close proximity to one another and share a

similar slope. Such spectral peaks are typically within the

tolerance range of the predicted path, and the ability to con-

nect multiple peaks to the same graph endpoint can result in

a lattice structure where two roughly parallel segments are

bridged many times. To prevent this, the same peak is not

permitted to be joined to two endpoints that are part of the

same graph.

b. Graph pruning. After each graph extension, graphs

are pruned. When a graph has no end points that are within

50 ms of the current frame, it is no longer possible to extend

the graph. Consequently, the graph is removed from the

active or fragment set. When the time difference between

the first and last nodes of the graph are less than 150 ms, the

graph is discarded. An example of graphs produced by ana-

lyzing common dolphin whistles can be seen in the third

panel of Fig. 3.

Graphs that are retained are subjected to a disambigua-

tion step. Conceptually, graph paths are reduced to a set of

nodes that are either start/termination points for a candidate

whistle or intersection points. Each intersection is resolved

into one or more contour segments by examining each possi-

ble pairing between arcs leading into and out of an intersec-

tion node. Nodes with longer paths associated with them are

more likely to be important and are processed first. Ordering

is established by multiplying the length of the longest input

and output paths associated with each node.

FIG. 2. (Color online) Graph extension. Dashed curves depict an active

graph. A peak is depicted by an asterisk and ordinary least squares regres-

sion curves are fit along the closest 25 ms of paths near the peak as indicated

by the change in shade and dash pattern. Peaks that are within 1 kHz of the

path predicted by the polynomial fits will be added to the graph.

FIG. 3. Whistle detection algorithm performance amid the interference of

odontocete echolocation clicks. The uppermost panel shows a spectrogram

of 5 s of long-beaked common dolphin call data (analysis bandwidth 125

Hz) with relative dBs of signal to noise ratio encoded by gray levels. The

second panel shows the whistles detected by the particle filter algorithm.

The last two panels show the whistle graphs and extracted whistles as

detected by the graph search algorithm.
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Input and output path pairs are assigned scores based on

a heuristic derived from the adaptive polynomial fit used in

the graph extension step. Forward and backward average

squared prediction errors from up to 300 ms of the incoming

and outgoing paths are summed to determine the feasibility

of each pairing:

penaltyðini;k;outj;kÞ¼
1

pathk;ini;k

��� ���
X

tin�pathk;ini;k

stin� p̂
outj;k
f ðtinÞ

� �2

þ 1

pathk;outj;k

��� ���
X

tout�pathk;outj;k

stout
� p̂

ini;k

f ðtoutÞ
� �2

;

(9)

where tnode is the time in s associated with the junction node,

ini,k and outj,k represent the ith input and jth output edges,

respectively, from intersection node k, pathp;k ¼ fall nodes

along path p 	 0:3 s from intersection node kg. The predic-

tion polynomials p̂
ini;k

f and p̂
outj;k
f are estimated from .3 s of

data or to the nearest intersection node along the input and

output paths. An example can be seen in the crossing whis-

tles of Fig. 4. A total of four penalties will be computed, the

first two of which are between one of the incoming edges

and the two outgoing ones (highlighted). The first of these

penalties is formed by estimating predictor polynomials for

edges DA
	!

and AB
	!

: pDA
!
f and p AB

!
f . The average squared error

of the predictions of pDA
!
f onto the closest 0.3 s of AB

	!
and

vice-versa are summed. This is repeated for the other three

possible combinations, and a greedy algorithm connects the

paths with the lowest penalties. When no more pairs can be

processed, the next intersection node is examined. The proc-

essing of intersection nodes is ordered by the lengths of the

longest possible pair of paths to favor longer whistles. As

will be shown empirically, spurious detections tend to have

higher false positive rates, and the rationale is to build on

what are likely to be better detections first.

Due to the frequency quantization in discrete Fourier

transforms, an optimization was added to address whistles

with similar slopes. When this occurs, the whistles’ paths

may fall in the same time � frequency bin for multiple

frames. This results in two intersection nodes that may have

a single output and input path between them that corresponds

to both whistles. When two intersection nodes share a single

path with multiple inputs on one side and outputs on another,

we permit the path that bridges the two nodes to belong to

multiple whistles (Fig. 5).

The disambiguation algorithm results in a new set of

graphs where each candidate tonal has no crossings, but may

have one or more extraneous edges. These are removed by a

final pass that filters out short edges of less than 5 ms, which

are not part of an interior path.

D. Ground truth and metrics

An important component of an automated detection sys-

tem is the ability to measure its performance. This must be

done by comparing the system output with a set of known

detections, referred to as ground truth information. Although

spectrograms of whistles can be subjective, humans typically

perform well on visual separation tasks and a trained analyst

(author Y.B.) used custom software that permitted the user

to interactively specify tonal contours. The analyst placed

points along a whistle through which cubic B-spline curves

were fit. B-splines consist of multiple piecewise Bezier

curves that are constrained to have smooth transitions

between certain points through which the B-spline must pass

(Dierckx, 1993, Chap. 1). It is important to recognize that

while efforts were made to carefully record accurate ground

truth information (including inspection of randomly sampled

FIG. 4. Graph disambiguation. When deciding whether the incoming arc

DA
	!

should be joined with the outgoing arc AB
	!

or AC
	!

, polynomials p̂f are

estimated for all three arcs. The sum of the squared prediction errors of pairs

of incoming and outgoing edges [Eq. (9)] is used to determine which pairs

should be joined. In this example, DA
	!

is joined to AC
	!

.

FIG. 5. (Color online) Common subpaths. The graph for these common dol-

phin whistles shows a dashed segment that is shared between two whistles.

The intersection nodes are characterized by having multiple inputs on one

side and multiple outputs on the other, joined by a single segment. When

this occurs, the disambiguation algorithm permits the segment to be used in

more than one whistle, permitting both whistles in the figure above to be

recognized.
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segments for quality control), some decisions are subjective

and some amount of error is nearly inevitable.

In general, the analyst worked on short segments of 3–5 s

of recording and would adjust the spectrogram contrast and

brightness to most favorably display the tonal contours.

Complete tonals as well as fragments were noted, regardless

of their length or signal-to-noise ratio (SNR). Stepped whis-

tles were recorded as single tonals, while harmonics were

recorded separately. When echoes could be clearly distin-

guished they were not recorded.

The analyst-specified ground truth information was

compared to the detected whistles using a series of metrics

and selection criteria. The metrics are designed to measure

the correctness and quality of detections. The selection crite-

ria are used to determine which tonals were expected to be

detected, and are based on SNR and length metrics. As the

SNR of tonal calls can vary depending upon the part of the

call, tonals are only expected to be detected when a certain

percentage of the contour exceeds a specified SNR. A second

criterion rejects tonals that are less than a minimum duration.

We set the selection criteria to be appropriate for the types

of signals that could possibly be detected based on the

thresholds used in our algorithms: whistles of 150 ms or lon-

ger with a third of the whistle having a SNR
 10 dB.

For each tonal in the ground truth tonal list, we examine

the set of detected tonals that overlap the start and end time

of the detected tonal. This is done regardless of whether or

not the tonal meets the selection criteria. All ground truth

tonals are processed so that it can be determined whether or

not a detection matches some ground truth tonal that failed

the selection criteria. In such cases, the matched tonal will

not be included in the metrics that describe the quality and

quantity of matches, but neither will it be considered to be a

false positive (bad match).

As the cubic spline interpolations may have minor devi-

ations from the actual tonal path, the recorded frequencies

are quantized to the nearest 125 Hz (based on an 8 ms analy-

sis window) and a search is conducted within 6500 Hz (64

bins) for the frequency bin with maximal energy. For each

overlapping point between a detected tonal and a specific

current ground truth tonal, the absolute frequency difference

between the detection and ground truth peak is computed. If

the mean difference is 
350 Hz (a few frequency bins

away), the detected tonal is rejected as a false positive. Oth-

erwise, it is marked as a valid detection.

Measurements of system performance describe the sys-

tem’s ability to retrieve tonals as well as the quality of the

retrieved matches. The primary system metrics are recall and

precision. Recall measures the percentage of the expected

detections that were retrieved,

recall ¼

X
g�groundc

matchðdetections; gÞ

groundcj j � 100; (10)

where groundc is the set of ground truth tonals subject to the

aforementioned selection criteria, and matchðt1; t2Þ is an in-

dicator function that returns one if tonal t2 has one or more

valid detections in t1, and zero otherwise. Precision is a met-

ric that measures the percentage of detections that are

correct:

precision ¼

X
d�detections

matchðd; groundcÞ

detectionsj j � 100; (11)

and the false positive rate is simply 100-precision.

Several other metrics are defined to assess the quality of

matches. Coverage is an indication of the average percentage

of a ground truth tonal that is matched and is truncated at

100% to prevent artificial inflation of the coverage statistic

should a detection be slightly longer than a ground truth

tonal. As multiple detections may cover a single ground truth

tonal, fragmentation is a measure of the average number of

detections per ground truth tonal. Deviation is a measure of

the average frequency deviation between the path of ground

truth tonal and its corresponding detection(s). Metrics are

summarized in Fig. 6.

III. RESULTS

Over three thousand ground truth whistles met the selec-

tion criteria that tonals must be at least 150 ms in duration

and that at least a third of the tonal had to have a SNR

of
10 dB. The number of whistles meeting these criteria

and the metrics associated with their detections are summar-

ized by sighting and species in Table III. The particle filter

was able to retrieve 71.5% (recall) of the 3372 ground truth

tonals with a precision of 60.8%. The graph algorithm

showed a recall rate of 80.0% with a precision of 76.9%.

The average deviation from the ground truth frequency was

low for both algorithms (particle filter 161 Hz, r¼ 51, graph

search 70 Hz, r¼ 76). Both algorithms performed reason-

ably well on the coverage (particle filter 79.7% r¼ 23.2,

graph search 86.0% r¼ 20.5) and fragmentation (1.2 detec-

tions per tonal for both algorithms) metrics. Sample

FIG. 6. (Color online) Metrics used to characterize detections. The Venn

diagram on the left shows the overlap between the detected tonals and

ground truth data. Recall computes the percentage of correct detections

relative to the ground truth while precision is the percentage of detec-

tions that were correct. The exaggerated caricatures of a call and associ-

ated detections on the right illustrate the quality metrics. Average

deviation is the mean frequency deviation between the tonal call and

detection(s). As systems may detect a call in multiple pieces, or frag-

ments, the number of fragments per call is recorded. Coverage is an in-

dication of the percentage of the tonal that was detected and in this case

would be ðt1 � t0Þ þ ðt3 � t2Þ½ �= t4 � t0ð Þf g100. Call and detection data

are caricatures with exaggerated frequency deviation.
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detections for various levels of acoustic clutter can be seen

in Figs. 3 and 7.

IV. DISCUSSION

Both algorithms demonstrate the ability to extract whis-

tles from very complex auditory scenes with many animals

vocalizing simultaneously. The precision associated with

both algorithms deserves further analysis, as the values indi-

cate that both algorithms produce a fair number of false posi-

tives. The majority of these false positives are quite short, as

seen in the cumulative distribution function for false positives

with respect to length (Fig. 8). They occur most often in

regions with strong noise and in areas where the noise floor

rises suddenly. Examples of phenomena that can give rise to

this include increases in wind velocity, rainfall, and anthropo-

genic sources. The large number of false positive in the sec-

ond melon-headed whale recording is directly attributable to

TABLE III. Performance comparison of graph and particle filter algorithms for the detection of odontocete whistle contours. Summary statistics are computed

across all ground truth tonals meeting SNR and duration selection criteria (see text) and are not averages of sighting statistics. When given, 6r indicates stand-

ard deviation.

Particle filter Graph search

Species Sighting Tonals Precision Recall

l deviation

6r Hz

Coverage

6r % Fragments Precision Recall

l deviation

6r Hz

Coverage

6r % Fragments

Bottlenose dolphin 1 89 69.9 79.8 170 6 53 84.1 6 21.2 1.3 67.6 84.3 44 6 59 83.1 6 21.6 1.3

2 265 95.9 82.6 141 6 51 76.4 6 22.8 1.2 95.5 82.6 128 6 51 77.0 6 22.3 1.3

all 354 87.2 81.9 148 6 53 78.3 6 22.7 1.2 86.4 83.1 106 6 65 78.5 6 22.2 1.3

Long-beaked

common dolphin

1 300 11.4 26.3 173 6 64 57.5 6 32.0 1.5 18.0 20.3 148 6 71 71.0 6 25.0 1.2

2 10 84.6 90.0 138 6 27 70.3 6 24.7 1.2 100.0 80.0 94 6 15 78.1 6 24.7 1.5

3 247 92.5 86.6 148 6 52 84.3 6 21.2 1.3 93.6 86.6 44 6 64 88.1 6 18.3 1.2

all 557 29.9 54.2 154 6 56 76.9 6 27.2 1.3 49.4 50.8 68 6 78 84.1 6 21.2 1.2

Melon-headed

whale

1 90 78.5 67.8 140 6 52 74.8 6 22.0 1.0 81.2 71.1 40 6 51 79.0 6 23.3 1.1

2 78 21.8 69.2 166 6 46 78.4 6 18.7 1.1 17.6 64.1 100 6 35 80.8 6 17.4 1.1

3 170 86.5 74.1 151 6 51 78.6 6 23.6 1.2 88.2 72.9 108 6 54 81.0 6 20.0 1.2

all 338 52.7 71.3 151 6 50 77.6 6 22.2 1.1 48.5 70.4 88 6 58 80.4 6 20.4 1.1

Short-beaked

common dolphin

1 92 73.5 78.3 155 6 52 79.6 6 20.0 1.2 66.9 83.7 137 6 71 73.6 6 23.5 1.1

2 1112 66.8 64.4 166 6 64 81.9 6 23.5 1.1 96.7 90.5 18 6 51 95.0 6 15.0 1.1

3 233 76.3 86.3 146 6 42 83.2 6 20.5 1.2 79.2 89.7 46 6 63 85.8 6 20.5 1.3

all 1437 69.1 68.8 161 6 60 82.0 6 22.7 1.1 90.7 89.9 30 6 61 92.2 6 17.6 1.1

Spinner dolphin 1 357 85.4 88.2 177 6 50 76.0 6 22.7 1.2 88.8 89.1 130 6 59 77.6 6 21.8 1.4

2 146 87.9 81.5 162 6 45 76.6 6 22.0 1.1 86.4 82.9 127 6 56 77.2 6 18.5 1.2

3 183 86.2 84.2 175 6 53 86.6 6 19.2 1.3 83.3 82.0 141 6 59 83.4 6 21.1 1.5

all 686 86.1 85.7 173 6 50 78.9 6 22.1 1.2 86.8 85.9 132 6 58 79.0 6 21.1 1.4

Overall 3372 60.8 71.5 161 6 56 79.7 6 23.2 1.2 76.9 80.0 70 6 76 86.0 6 20.5 1.2

FIG. 7. Sample detections of acoustic scenes with differing degrees of clutter.
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broadband hydrophone tow noise between 5–25 kHz that

occurred when the tow vessel executed tight turns. A third

contributor to erroneous detections is echo sounder pings that

produce chains of peaks that the algorithms organize into

tonals (Fig. 9). This is the major cause for the poor precision

observed in the first long-beaked common dolphin sighting.

Just as transitions into higher noise regions can cause false

positives, transitions into lower noise regions can result in

misses due to low signal to noise estimates in the peak detec-

tion algorithm. Both types of errors suggest that improvements

to the noise estimation and removal portion of the common

signal processing chain could be a productive area for future

performance gains. Finally, missed detections also occur in

regions of very high impulsive noise density such as occur in

strong burst pulsed calls which are series of echolocation

clicks produced with a very short interclick interval.

There are a number of situations where a single whistle

will commonly result in multiple detections. As the system

does not track harmonics or associate echoes with the first

arrival, these are seen as separate events. Similarly, stepped

whistles are tracked as separate entities when the step size is

large. Some of these events have the potential to be associ-

ated during post-processing analysis; however, this will

require non-trivial effort due to phenomena such as incom-

plete detections and propagation loss at higher frequencies.

A final type of duplicate detection occurs in the particle filter

detector only. Occasionally, when spectral peaks are in close

proximity, one of the peaks will be used to form a new hy-

pothesis instead of updating an existing hypothesis. Subse-

quent peaks alternate between the two hypotheses,

leapfrogging one another and forming two tonal paths

instead of one. Improving the rules in governing the update

of whistle paths might alleviate this problem, particularly

since whistle paths that missed an update have first priority

when new peaks are presented.

For the whistles that are correctly detected, performance is

overall quite good. Detected tonals follow the human analyst’s

ground truth track closely, and typically cover 80–85% of the

whistle as recorded by the analyst. The majority of times, whis-

tles are detected as single contours, although the fragmentation

rate of 1.2 indicates that this is not always the case.

Data from other common and bottlenose dolphin sight-

ings collected using the same equipment and methods were

used in the development of the algorithms, and there was no

significant tuning of algorithm parameters for the data

reported in these experiments. As developed, these algo-

rithms are quite effective for determining presence/absence

of animals and should be able to provide reasonable esti-

mates of contour statistics for longer calls. When visual

observations are available, the extracted contours are suita-

ble for development of species recognition algorithms as

well as the exploration of associations between behavioral

state and whistle content. The minimum length threshold of

150 ms along with the propensity for false detections in

FIG. 8. (Color online) Cumulative density function for incorrect detections

whose duration is less than or equal the duration indicated on the False Posi-

tive Duration axis. Both algorithms require that a hypothesized tonal have a

duration 
 150 ms to be reported as a detection. The vast majority of false

positive detections for both algorithms have short duration.

FIG. 9. Example of false positive detections caused by echosounders in both algorithms.
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shorter whistles could impact behavioral studies, and future

work should investigate additional noise reduction techni-

ques to more reliably extract shorter whistles.

V. CONCLUSIONS

Both the particle filter and the graph search algorithms

show the ability to extract whistles from complex auditory

scenes from five different species containing multiple over-

lapping simultaneous whistles. This is demonstrated on a

diverse five species dataset consisting of nearly one hour of

recorded data with 3372 ground truthed (analyst detected)

calls meeting retrieval criteria of having a relative SNR
10

dB for at least one third of the call and a duration
150 ms.

The algorithms are capable of retrieving tonal contours

at a speed of several times real-time on modern computer

architectures. The graph search algorithm outperformed the

particle filter, retrieving 80.0% of the whistles versus 71.5%

by the particle filter. A higher percentage of the detections

from the graph search algorithm (76.9%) matched ground

truth calls than those produced by the particle filter (60.8%),

and in both cases the false positives were dominated by short

duration detections. Correct matches were typically within

one to two frequency bins of the ground truth tonal. Approxi-

mately 80% or more of each tonal was detected (79.7% parti-

cle filter, 86.0% graph search) and whistles were on average

split into 1.2 detections indicating that most tonals were not

split. The most challenging environments for either algorithm

include those with echo sounders, heavy burst pulse call ac-

tivity, and regions of noise state transition, all of which are

areas for further development of the spectral peak detector.

Direct comparisons with other algorithms are difficult

due to differences in data sets, and we avoid making any

claims about our algorithms versus others for this reason. In

an effort to encourage such comparisons, the audio data from

these experiments have been made available to the bioacous-

tics community in the Moby Sound archive (Heimlich et al.,
2011) as part of the Fifth International Detection, Classifica-

tion, and Localization Workshop dataset. The ground truth

information will be released to the Moby Sound archive after

the workshop (August 22–25, 2011 in Portland, OR).
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