Matching of humpback, *Megaptera novaeangliae*, and fin whale, *Balaenoptera physalus*, biopsies collected by HDR.

Authors: Martine Bérubé, and Per J. Palsbøll

Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands

Contact information: p.j.palsboll@rug.nl (phone +31 6 57779495), m.berube@rug.nl

Introduction

This report outlines the molecular genotyping, sexing and DNA sequencing of skin biopsies collected from free-ranging humpback (*Megaptera novaeangliae*) and fin (*Balaenoptera physalus*) whales by HDR. The purpose of the contracted work was to ascertain if any whales sampled by HDR had been sampled elsewhere by means of so-called "genetic tagging", which consists of identifying samples with identical genetic "fingerprints" (Palsbøll, Allen, et al., 1997). Two aspects are key to reliable genetic tagging; (a) employing sufficient genetic markers that each unique genetic fingerprint is distinct for each individual, and (b) low laboratory error rates, which can result in otherwise identical genetic fingerprints becoming non-identical due to random errors. Aspect (a) can be evaluated statistically by estimating and employing a sufficiently low probability of identity (i.e., the probability of two different individuals having identical genetic fingerprints). Aspect (b) is assessed by (i) employing more genetic markers than the bare minimum, and (ii) by conducting regular, internal assessments of the genotype and laboratory error rates. In our laboratory past assessments have yielded an error rate of one incorrect genotype for every 1,000 genotypes.

Materials and methods

HDR biopsy samples

With the exception of a single sample collected with a satellite dart, the remainder 71 samples were collected as skin biopsies from free-ranging whales, using either a compound crossbow or a

B-3

Paxarms[™] biopsy gun. In total eight samples were collected from fin whales and 63 samples from humpback whales. Most humpback whale samples were collected along the coast line, except for two samples; VA180001 (HDR sample no. 2018Feb09_DTE_Mn_001) and VA190001 (HDR sample no. 2019Jan04_DTE_Mn_001). These two latter humpback whale samples were collected in the same offshore area where the fin whale samples were obtained (Figure1).

Laboratory methods

Total-cell DNA was extracted from the supplied tissue samples using Puregene Gentra[™] DNA extraction columns (Qiagen Inc.) according to the manufacturer's instructions. The sex of each sample was determined by the presence of a Y-chromosome specific fragment (a small region of the SRY gene on the Y chromosome), which was co-amplified during the microsatellite multiplex genotyping.

The first 400 nucleotides of the mitochondrial control region (the most variable part) were PCRamplified (polymerase chain reaction, Mullis & Faloona, 1987), using the primers MT4F (Arnason, Gullberg, & Widegren, 1993) and BP16071R (Drouot et al., 2004). The initial PCR amplifications were performed in a 10 μ L volume comprising 0.2 μ M of each dNTP, 67mM Tris-HCl (pH 8.8), 2mM MgCl₂, 17mM NH₃SO₄, 10mM β -mercaptoethanol, 0.1 μ M of each primer, 0.4 units of *Taq* DNA polymerase and approximately 10 - 20 ng of DNA extraction. The thermo-cycling conditions were: 2 min at 94° C, followed by 25 cycles each consisting of 15 sec. at 94°C, 30 sec. at 54°C and 120 sec. at 72°C. After amplification, unincorporated nucleotides and excess primes were enzymatically removed using *shrimp alkaline phosphatase* and *exonuclease* I as described by Werle *et al.* (1994). The cleaned PCR amplification products were sequenced using fluorescently labelled ddNTPs according to the manufacturer's instructions (Big DyeTM v3.1 Terminator Ready Reaction Mix, Life Technologies Inc.), using either the primers MT4F or BP16071R. Excess dideoxy-terminator nucleotides were removed by ethanol/EDTA precipitation and re-suspended in 10 μ L deionized formamide (Calbiochem Inc.). The order of sequencer (Applied Biosystems Inc.).

Humpback whale samples were genotyped at 20 microsatellite loci: AC087 (Bérubé et al., 2005), EV001, EV037, EV094, EV096 (Valsecchi & Amos, 1996), 1996, GATA028, GATA098, GATA053, GATA417, TAA031 (Palsbøll, Bérubé, Larsen, & Jørgensen, 1997), GT011 (Bérubé et al., 1998), GT015, GT023, GT101, GT195, GT211, GT271, GT575 (Bérubé, Jørgensen, McEwing, & Palsbøll, 2000), GATA43950, GATA97408 and the Y-chromosome specific marker SRY (Bérubé, unpublished, and Palsbøll, Vader, & Bakke, 1992).

Fin whale samples were genotyped at 21 microsatellite loci: EV037 and EV094 (Valsecchi & Amos, 1996), GATA028, GATA098, GATA417, and TAA023 (Palsbøll, Bérubé, et al., 1997), GT011 (Bérubé et al., 1998), GT023, GT211, GT271, GT310, and GT575 (Bérubé et al., 2000), AC087 and CA234 (Bérubé et al., 2005), GATA25072, GATA43950, GATA5947654, GATA6063318, GATA91083 (Bérubé, unpublished), and EV001 (Valsecchi & Amos, 1996).

Samples were genotyped in multiplex PCR reactions (between six to eight microsatellite loci per amplification), using the MM2X[™] Multiplex kit Plus (Qiagen Inc.) in 5µL reaction volumes. The thermocycling conditions were: 2 min. at 94°C, followed by 35 cycles each of 30 sec. at 94°C, 90 sec. at 57°C and 30 sec. at 72°C followed by a final cycle of 10 min. at 68°C. The PCR

products were separated by capillary electrophoresis using an ABI Prism[™] 3730 (Applied Biosystems Inc.). The size of the amplification products was estimated against a Genescan[™] ROX-500 size standard (Applied Biosystems Inc.) in the software GENEMAPPER[™] (version 4.0; Applied Biosystems Inc.).

Data analyses

The goodness of fit of the observed sex ratio with parity was assessed using a log-likelihood ratio test.

The multi-locus genotypes obtained from all HDR samples were matched against the collection of individual multi-locus genotypes from North Atlantic humpback and fin whales curated by our group, in the following manner.

The minimum number of identical microsatellite locus genotypes necessary to rigorously identify samples from the same individual was determined from the probability of identity (denoted *I*, Paetkau & Strobeck, 1994) for unrelated individuals, estimated from the entire sample. The parameter *I* denotes the probability that two different individuals have an identical multi-locus genotype, and is simply the product of each locus' *I*. While full-siblings and parent-offspring pairs have the highest probabilities of genotype identity, they constitute a very small fraction of the total number of possible pairs (see Rew, Robbins, Mattila, Palsbøll, & Bérubé, 2011). Therefore, we employed *I* for unrelated individuals as guide for determining the minimum required genotypes to discern among individuals by adding loci (starting with the locus with the highest estimate of *I*) until the total number of expected chance matches (assuming all samples were unrelated) was below 0.001.

All samples genotyped at less than the minimum loci required to discern among different individuals (above) were removed from the data set prior to matching.

Results

The sex ratio among the seven fin whale samples were heavily male biased (6 males:1 female). Such male-bias among fin whales on foraging grounds was reported earlier by Berube and coworkers and may represent pre-mating behavior (Bérubé, Berchok, & Sears, 2001). We detected

B-6

32 males and 31 females among the 63 individual humpback whales (Table 1), a ratio that did not differ significantly from parity ($\chi^2_{1df} = 0.016$, P = 0.90).

The North Atlantic genetic humpback whale catalogue comprised a total of 9,265 genotyped at 20+ microsatellite loci. Among the 9,265 samples were 4,121, and 5,049 females and males, respectively. Sex was undetermined in 95 samples. The total number of expected single-locus genotypes (i.e., 9,265 times 20 loci) was 185,300 among which were 4,680 missing single-locus genotypes yielding an overall genotype rate at 0.975. Locus GATA43950 was only typed in 72 % of all samples. The reason for the lower genotyping rate was the identification of a so-called null-allele (and allele that is undetected), which implied that we needed to redesign the PCR amplification oligos and retype all homozygote individuals genotyped with the original PCR amplification oligos. This work update is yet to be completed and consequently, locus GATA43950 was removed from all samples resulting in a genotype rate at 0.988 for 19 loci.

The expected number of pairs of different individuals matching at all 19 loci among a total of 579,726 possible pairs (63 HDR samples compared to 9,202 non-HDR samples) were estimated at 4.2 10⁻³, 5.52 10⁻⁷ and 1.82 10⁻¹⁵ for full-siblings, parent-offspring pairs and unrelated individuals, respectively (Table 1). Since a chance match at 11 loci between unrelated individuals (the vast majority of comparisons) was estimated at less than 0.001 pairs (of 579,726); a match at 11 loci was set as the threshold for identifying unique individuals (Table 1). Accordingly, all specimens with identical microsatellite genotypes at minimum 11 loci were inferred as duplicate specimens collected from the same individual.

# Loci	Locus		Full siblings		Parent-offspring		Unrelated			
		$I_{ m locus}$	Icumulative	Nexpected matches	$I_{ m locus}$	Icumulative	$N_{ m expected\ matches}$	$I_{ m locus}$	Icumulative	Nexpected matches
1	GATA028	0.516	5.16E-01	2.99E+05	0.531	5.32E-01	3.08E+05	0.304	3.05E-01	1.77E+05
2	EV001	0.462	2.38E-01	1.38E+05	0.424	2.26E-01	1.31E+05	0.23	7.01E-02	4.06E+04
3	GT271	0.462	1.10E-01	6.39E+04	0.425	9.59E-02	5.56E+04	0.209	1.46E-02	8.49E+03
4	GT195	0.427	4.70E-02	2.73E+04	0.353	3.39E-02	1.96E+04	0.197	2.88E-03	1.67E+03
5	EV094	0.395	1.86E-02	1.08E+04	0.291	9.84E-03	5.70E+03	0.134	3.86E-04	2.24E+02
6	GATA098	0.411	7.65E-03	4.43E+03	0.322	3.17E-03	1.84E+03	0.131	5.04E-05	2.92E+01
7	GT575	0.398	3.04E-03	1.76E+03	0.295	9.37E-04	5.43E+02	0.108	5.47E-06	3.17E+00
8	GT101	0.372	1.13E-03	6.55E+02	0.243	2.28E-04	1.32E+02	0.094	5.16E-07	2.99E-01
9	GATA97408	0.362	4.09E-04	2.37E+02	0.223	5.09E-05	2.95E+01	0.077	3.96E-08	2.30E-02
10	GT015	0.35	1.43E-04	8.29E+01	0.2	1.02E-05	5.91E+00	0.064	2.53E-09	1.46E-03
11	GT211	0.342	4.90E-05	2.84E+01	0.185	1.88E-06	1.09E+00	0.06	1.52E-10	8.81E-05
12	GT023	0.341	1.67E-05	9.68E+00	0.182	3.43E-07	1.99E-01	0.057	8.70E-12	5.04E-06
13	TAA031	0.341	5.70E-06	3.30E+00	0.182	6.26E-08	3.63E-02	0.056	4.90E-13	2.84E-07
14	EV096	0.341	1.94E-06	1.13E+00	0.181	1.13E-08	6.57E-03	0.056	2.74E-14	1.59E-08
15	GT011	0.337	6.54E-07	3.79E-01	0.174	1.97E-09	1.14E-03	0.053	1.46E-15	8.45E-10
16	GATA053	0.334	2.19E-07	1.27E-01	0.169	3.33E-10	1.93E-04	0.05	7.24E-17	4.20E-11
17	AC087	0.334	7.30E-08	4.23E-02	0.167	5.58E-11	3.23E-05	0.047	3.41E-18	1.98E-12
18	GATA417	0.321	2.34E-08	1.36E-02	0.142	7.90E-12	4.58E-06	0.035	1.19E-19	6.92E-14
19	EV037	0.31	7.27E-09	4.21E-03	0.12	9.52E-13	5.52E-07	0.026	3.14E-21	1.82E-15

Table 1. Probability of identical multi-locus genotypes between different individuals

Removing all samples typed at fewer than 11 loci (a total of 51 samples) resulted in a final data set at 9,214 samples (incl. the 63 HDR samples) typed at 11 - 19 loci and an overall genotyping rate at 0.992 (i.e., the vast majority of samples were genotyped at all 19loci). The samples sizes per general area and range of sampling years are summarized in Table 2. It is important to realize that apart from a few areas then the overall sampling effort has been highly heterogenous across space and time.

General area	sampling years	samples
eastern US sea border	1990-2019	2,546
eastern Canadian sea border	1990-2019	1,157
Central Atlantic	1991-2017	419
eastern North Atlantic sea border	1988-2019	473
western Caribbean	1989-2005	4,538
eastern Caribbean and Cape Verde	1995-2015	78
Miscellaneous		3

Table 2. Sample sizes per general area and sampling years

No duplicate samples were identified among the HDR humpback whale samples. A total of 18 HDR samples matched to samples collected elsewhere along the US eastern sea border (Table 3). All samples matched 100% on all loci genotyped in both samples in each pair (i.e., no mismatching genotypes were detected). In addition, as an additional affirmation, the sex and mitochondrial control region DNA sequences agreed for all matching pairs. The sample identification numbers in Table 3 are reference numbers for the matching samples. Additional information regarding each matching individuals can be obtained by contacting the institution that provided the sample. These institutes have also been informed about matches and provided the HDR reference number. Contact information to the relevant person is provided in Table 3. Samples collected by WCS are mainly from the New York coastal area. Although the majority of samples provided by the Center for Coastal Studies (CCS) originate from the Gulf of Maine, CCS also receives samples from their network of collaborators from other areas along the US eastern sea border.

Sample ID	ID Matching Sex		Matching sample	# Matching loci	
	reference		reference		
VA150001	HDR001	female	WCS001	18	
VA150006	HDR002	female	WCS002	19	
VA150007	HDR003	male	CCS001	18	
VA150011	HDR004	female	CCS002	14	
VA160009	HDR005	male	CCS003	19	
VA160011	HDR006	female	CCS004	19	
VA160011	HDR007	female	CCS005	19	
VA160014	HDR008	female	CCS006	18	
VA170005	HDR009	male	CCS007	19	
VA170006	HDR010	male	CCS008	18	
VA170009	HDR011	female	CCS009	19	
VA170009	HDR012	female	CCS010	15	
VA170010	HDR013	male	CCS011	19	
VA180001	HDR014	male	CCS012	19	
VA190003	HDR015	female	CCS013	18	
VA190004	HDR016	female	CCS014	14	
VA190005	HDR017	female	CCS015	19	
VA190006	HDR018	male	CCS016	19	

 Table 3. HDR humpback whale samples matching to samples collected by other institutions

 Sample ID Matching Sex Matching sample # Matching loci

Notes: WCS reference samples contact: Dr. Howard Rosenbaum, Wildlife Conservation Society, email: hrosenbaum@wcs.org, CCS reference samples contact: Dr. Jooke Robbins, Center for Coastal Studies, email: jrobbins@coastalstudies.org

Following the above procedures nine loci were deemed sufficient to discern amongst individuals. A single pair of duplicate samples was detected between two fin whale samples (the two HDR fin whale biopsy samples collected in 2015). None of the HDR fin whale samples matched to the 1,789 (incl. HDR samples) samples contained in the North Atlantic genetic fin whale archive genotyped at 21 microsatellite loci at a genotyping rate of 0.9909. The samples in the data base are summarized in Table 4.

General area	sampling years	total sample size	
eastern US sea border	1991-2019	193	
eastern Canadian sea border	1990-2019	582	
Central North Atlantic	1985-2018	479	
eastern North Atlantic	1982-2020	535	

 Table 4. Sample areas, years and sample sizes for fin whales

Data availability

All genetic data generated from the HDR samples were transmitted by in attachments along with this report. The sex and microsatellite genotypes are provided in a so-called one-line STRUCTURE format (Pritchard, Stephens, & Donnelly, 2000), where the first column after sample identification number denotes the sex, and a -9 denotes missing data. The humpback file is named hdr_mn_genotpes_w_sex.str. The fin whale genotype data are in file hdr_bp_genotypes_w_sex.str. Mitochondrial control region DNA sequences are also provided as an attachment in fasta format. The file for the humpback DNA sequence data is named hdr_mn_mt_sequences.fas, and the fin whale DNA sequence data file hdr_bp_mt_sequences.fas.

A brief cautionary note on interpretations of matches

While matches identified in this analysis can be viewed as "true" and provide insights into connections between the whales sampled by HDR and other areas, great caution should be applied with regards to absences of matches as well as relative matching rates. As mentioned above the sampling effort varies substantially across time and space. The lack of any matches to the fin whale HDR biopsies in our database is likely due to the observation that the overall abundance of fin whales in the North Atlantic is \sim 70,000 individuals, which implies that \sim 1,800 samples represent a very low sampling proportion and hence a low chance of a match overall.

Acknowledgements

The work presented here would have been impossible but for our many collaborators who have tirelessly collected and contributed samples over three decades

Appendix I. HDR and corresponding laboratory sample identification numbers and molecular sex determinations

Original Animal Number	Current Animal Number	Species	MarECon Ids	Sex
This is HDR's ID number	This is SAMPLE number			
HDRVAMp009	20150102 DTE Mn 001	M novaeanaliae	VA150001	female
	20150102_DTE_Mn_001	M. novacangliac	VA150001	male
	20150106_DTE_MII_001	W. novueungilue	VA150002	fomalo
HDRVAMIOII	20150106_DTE_MIN_002	N. novaeangliae	VA150003	female
HDRVAMIN013	20150111_DTE_Mh_001	IVI. novaeangilae	VA150004	lemale
HDRVAMn014	20150111_DTE_Mn_002	M. novaeangliae	VA150005	female
HDRVAMn015	20150111_DTE_Mn_003	M. novaeangliae	VA150006	female
HDRVAMn023	20150120_DTE_Mn_001	M. novaeangliae	VA150007	male
HDRVAMn024	20150122_DTE_Mn_001	M. novaeangliae	VA150008	male
HDRVAMn025	20150122 DTE Mn 002	M. novaeanaliae	VA150009	male
HDRVAMn005	20150129 DTE Mn 001	M. novaeanaliae	VA150010	female
HDRVAMn027	20150129 DTE Mp 002	M novaeanaliae	VA150011	female
HDRVAMp029	20150209 DTE Mp 001	M novaeanaliae	VA150012	male
	20150205_DTE_MII_001	R physoluc	VA150012	male
	20150429_DTE_BP_001	B. physulus	VA150015	male
HDRVABp005	20150429_DTE_BP_002	B. physalus	VA150014	male
HDRVAMIn039	20151207_DTE_MIn_001	NI. novaeangliae	VA150015	male
HDRVAMn041	2015Dec09_DTE_Mn_001	M. novaeangliae	VA150016	male
HDRVAMn044	2015Dec10_DTE_Mn_001	M. novaeangliae	VA150017	female
HDRVAMn045	2015Dec20_DTE_Mn_001	M. novaeangliae	VA150018	male
HDRVAMn048	2015Dec20 DTE Mn 002	M. novaeangliae	VA150019	male
HDRVAMn052	2016Jan15 DTE Mn 001	M. novaeanaliae	VA160001	female
HDRVAMn050	2016Jan15 DTF Mn 002	M novaeanaliae	VA160002	male
HDRVAMp051	2016Jan15_DTE_Mn_003	M novaeanaliae	VA160003	male
	2016Jan15_DTE_Mn_004	M. novacangliac	VA100003	male
	2010Jan15_DTL_MIN_004		VA100004	male
HDRVAIVIN063	2016Feb09_DTE_MIN_001	IVI. novaeangilae	VA160005	male
HDRVAMIn061	2016Feb17_DTE_Mn_001	NI. novaeangliae	VA160006	male
HDRVAMn069	2016Nov01_DTE_Mn_001	M. novaeangliae	VA160007	female
HDRVAMn071	2016Nov01_DTE_Mn_002	M. novaeangliae	VA160008	male
HDRVAMn031	2016Nov03_DTE_Mn_001	M. novaeangliae	VA160009	male
HDRVAMn059	2016Nov03 DTE Mn 002	M. novaeangliae	VA160010	male
HDRVAMn049	2016Nov18 DTE Mn 001	M. novaeanaliae	VA160011	female
HDRVAMn064	2016Dec13_DTF_Mn_001	M novaeanaliae	VA160012	female
HDRVAMn012	2016Dec21_DTE_Mn_001	M novaeanaliae	VA160013	female
HDRV/AMp092	2016Dec21_DTE_Mn_002	M. novacangliac	V/160013	female
	2010Dec21_DTE_MII_002		VA100014	fomalo
HDRVAMI081	2016Dec28_DTE_MIN_001	IVI. novaeangilae	VA160015	famala
HDRVAMIN084	201/Jan01_DTE_Mn_001	M. novaeangliae	VA1/0001	temale
HDRVAMn084?	2017Jan01_DTE_Mn_001	M. novaeangliae	VA170002	female
HDRVAMn066	2017Jan01_DTE_Mn_002	M. novaeangliae	VA170003	male
HDRVAMn092	2017Jan11_DTE_Mn_001			
HDRVAMn095	2017Jan16_DTE_Mn_001*Jan17 on tube	M. novaeangliae	VA170004	male
HDRVAMn092	2017Jan19 DTE Mn 001	M. novaeangliae	VA170005	male
HDRVAMn090	2017Jan21 DTE Mn 001	M. novaeanaliae	VA170006	male
HDRVAMn101	2017Jan21_DTF_Mn_002	M novaeanaliae	VA170007	male
HDRVAMn102	2017Jan25 DTE Mn 001	M novaeanaliae	VA170008	male
HDRV/AMp007	20175ah25_DTE_Mn_001	M. novacangliac	V/4170009	female
	2017Feb01_DTE_MI1_001	M. novacangliac	VA170003	malo
HDRVAMI091	2017Feb02_DTE_MIN_001	w. novaeangilae	VA170010	female
HDRVAMIn099	2017Feb02_DTE_Min_002	M. novaeangliae	VA170011	Temale
HDRVAMn088	201/Feb06_DTE_Mn_001	M. novaeangliae	VA1/0012	maie
HDRVAMn093	2017Feb06_DTE_Mn_002	M. novaeangliae	VA170013	female
HDRVAMn098	2017Feb06_DTE_Mn_003	M. novaeangliae	VA170014	female
HDRVAMn104	2017Feb17_DTE_Mn_001	M. novaeangliae	VA170015	female
HDRVAMn105	2017Feb17_DTE_Mn_002	M. novaeangliae	VA170016	female
HDRVAMn111	2017Feb24 DTE Mn 001	M. novaeanaliae	VA170017	female
HDRVAMn096	2017Feb24 DTE Mn 002	M. novaeanaliae	VA170018	male
HDRVAMn112	2017Mar21 DTF Mn 001	M. novaeanaliae	VA170019	male
HDRVAMn109	2017Mar21_DTF_Mn_002	M povgegnalige	VA170020	male
	2017Mar21_DTE_Nm_002	R physike	VA170020	female
		B. physulus	VA170021	mala
	2017Aug17_DTE_BP_001	B. physalus	VA170022	male
HDRVABp027	201/Aug1/_DIE_Bp_002	B. pnysalus	VA1/0023	male
HDRVAMn120	201/Dec22_DTE_Mn_001	M. novaeangliae	VA1/0024	male
HDRVAMn122	2017Dec29_DTE_Mn_001	M. novaeangliae	VA170025	male
HDRVAMn126	2018Feb09_DTE_Mn_001	M. novaeangliae	VA180001	male
HDRVAMn132	2018Jul31_DTE_Mn_001	M. novaeangliae	VA180002	female
HDRVAMn146	2019Jan04_DTE_Mn_001	M. novaeangliae	VA190001	female
HDRVAMn153	2019Feb03_DTE Mn 001	M. novaeangliae	VA190002	female
HDRVAMn154	2019Feb03 DTE Mn 002	M. novaeanaliae	VA190003	female
HDRVAMn151	2019Jan31 DTF Mn 001	M. novaeanaliae	VA190004	female
HDRVAMp152 changed to HDRVAMp156	2019Feb14_DTF_Mp_001	M novgegnglige	VA190005	female
HDRVAMp154 changed to HDRVAMII150	2019 C014_DTC_WII_001	M. novacanglia	VA100005	malo
		N. novueangliae	VA100007	fomela
HDKVAMn163	2019May04_DTE_Mn_001	ivi. novaeangilae	VA190007	iemale
HDRVABp049	2018Apr22_DTE_Bp_001	B. pnysalus	VA180003	male
HDRVABp048	2018Apr22_DTE_Bp_002	B. physalus	VA180004	male
HDRVABp046	2018Apr22 DTE Bp 003	B. physalus	VA180005	male

Cited literature

- Arnason, U., Gullberg, A., & Widegren, B. (1993). Cetacean mitochondrial DNA control region:
 Sequences of all extant baleen whales and two sperm whale species. *Molecular Biology* and Evolution, 10(5), 960–970.
- Bérubé, M., Aguilar, A., Dendanto, D., Larsen, F., Notarbartolo di Sciara, G., Sears, R., ...
 Palsbøll, P. J. (1998). Population genetic structure of North Atlantic, Mediterranean Sea and Sea of Cortez fin whales, *Balaenoptera physalus* (Linnaeus 1758): Analysis of mitochondrial and nuclear loci. *Molecular Ecology*, 7(5), 585–599.
- Bérubé, M., Berchok, C., & Sears, R. (2001). Observation of a male-biased sex ratio in the Gulf of St. Lawrence fin whales (\emphBalaenoptera physalus): Temporal, geographical or group segregation? *Marine Mammal Science*, 17(2), 251–268.
- Bérubé, M., Jørgensen, H., McEwing, R., & Palsbøll, P. J. (2000). Polymorphic di-nucleotide microsatellite loci isolated from the humpback whale, *Megaptera novaeangliae*. *Molecular Ecology*, 9(12), 2181–2183. doi: 10.1046/j.1365-294X.2000.01053.x
- Bérubé, M., Rew, M. B., Skaug, H., Jørgensen, H., Robbins, J., Best, P., ... Palsbøll, P. J.
 (2005). Polymorphic microsatellite loci isolated from humpback whale, *Megaptera novaeangliae* and fin whale, *Balaenoptera physalus*. *Conservation Genetics*, 6(4), 631–636. doi: 10.1007/s10592-005-9017-5
- Drouot, V., Bérubé, M., Gannier, A., Gould, J. C., Reid, R. J., & Palsbøll, P. J. (2004). A note on genetic isolation of Mediterranean sperm whale, *Physeter macrocephalus*, suggested by mitochondrial DNA. *Journal of Cetacean Research and Management*, 6, 29–32.
- Mullis, K. B., & Faloona, F. (1987). Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. *Methods in Enzymology*, *155*, 335–350.

- Paetkau, D., & Strobeck, C. (1994). Microsatellite Analysis Of Genetic-Variation In Black Bear Populations. *Molecular Ecology*, 3(5), 489–495.
- Palsbøll, P. J., Allen, J. M., Bérubé, M., Clapham, P. J., Feddersen, T. P., Hammond, P. S., ...
 Øien, N. (1997). Genetic tagging of humpback whales. *Nature*, *388*(6644), 767–769. doi: 10.1038/42005
- Palsbøll, P. J., Bérubé, M., Larsen, A. H., & Jørgensen, H. (1997). Primers for the amplification of tri- and tetramer microsatellite loci in baleen whales. *Molecular Ecology*, 6(9), 893–895. doi: 10.1111/j.1365-294X.1997.tb00146.x
- Palsbøll, P. J., Vader, A., & Bakke, I. (1992). Determination of gender in cetaceans by the polymerase chain reaction. *Canadian Journal of ...*, 70(11), 2166–2170. doi: 10.1139/z92-292
- Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. *Genetics*, 155(2), 945–959.
- Rew, M. B., Robbins, J., Mattila, D. K., Palsbøll, P. J., & Bérubé, M. (2011). How many genetic markers to tag an individual? An empirical assessment of false matching rates among close relatives. *Ecological Applications*, 21(3), 877–887. doi: 10.1890/10-0348.1
- Valsecchi, E., & Amos, W. (1996). Microsatellite markers for the study of cetacean populations. *Molecular Ecology*, 5(1), 151–156. doi: 10.1111/j.1365-294X.1996.tb00301.x
- Werle, E., Schneider, C., Renner, M., Volker, M., & Fiehn, W. (1994). Convenient Single-Step, One Tube Purification of Pcr Products for Direct Sequencing. *Nucleic Acids Research*, 22(20), 4354–4355.