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Abstract

Bayesian mark-recapture estimates of survival, abundance,

and trend are reported for Cuvier's beaked whales (Ziphius

cavirostris) using a Navy training range off southern

California. The deep-diving beaked whale family is excep-

tionally vulnerable to mid-frequency active sonar (MFAS),

which has been implicated in mass strandings and altered

foraging behavior. Extremely low sighting probabilities

impede studies of population-level impacts of MFAS on

beaked whales. The San Nicolas Basin hosts a Navy training

range subject to frequent MFAS use and attracts high densi-

ties of Z. cavirostris. An 11-year (2007–2018) photo-

identification program leveraged automated acoustic detec-

tion and location capabilities on the range's 1,800-km2

hydrophone array to enhance capture probability. Estimated

population parameters for Z. cavirostris using the range

included mean (90% credibility intervals) apparent annual

survival of 0.950 (0.899–0.986), annual number of individ-

uals as 121 (71–219), and annual rate of change of −0.8%

(−5.6%–4.1%). Simulations show the probability of

detecting abundance changes is currently low, but can be
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greatly improved through continued monitoring and

increased effort. Complementary data collection on habitat

use and demographic rates in San Nicolas and surrounding

basins is also essential to relating direct effects of MFAS use

to changes in vital rates and broader population outcomes.
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Bayesian mark-recapture, California, Cuvier's beaked whale,

inference error, photo-identification, sonar, Ziphius cavirostris

1 | INTRODUCTION

Anthropogenic noise in the world's oceans, from ship traffic, seismic surveys, military activity, and other sources, can

have negative effects on a broad diversity of marine life (Williams et al., 2015). In cetaceans, which rely on sound to

communicate and to sense prey and their environment, acoustic disturbance has been linked to impacts ranging from

disruption of communication and feeding behavior to direct mortality (Harwood et al., 2016; National Research

Council, 2003; Nowacek, Thorne, Johnston, & Tyack, 2007; Richardson, Greene, Malme, & Thomson, 1995).

Military exercises that use high-powered mid-frequency active sonar (MFAS) for target detection have been

associated with mass strandings of beaked whales (Family Ziphiidae) in several areas of the world (Cox et al., 2006;

D'Amico et al., 2009; Filadelfo et al., 2009a). Cuvier's beaked whales (Ziphius cavirostris) are recorded in mass

strandings associated with MFAS use more often than any other beaked whale species (D'Amico et al., 2009; de

Quirós et al., 2019). Z. cavirostris have the most cosmopolitan distribution of the beaked whales, but they may also

be particularly sensitive to MFAS. Even in a family of prolific divers, these mammalian record-holders for both dive

length and depth stand out, routinely conduct foraging dives deeper than 800 m and longer than 60 min (Schorr,

Falcone, Moretti, & Andrews, 2014). While the link between diving behavior and strandings corresponding with

MFAS use is still unknown, individual or population-level factors may increase susceptibility of some Z. cavirostris to

decompression sickness (de Quirós et al., 2019).

In the Southern California Bight, intensive MFAS use on U.S. Navy training and testing ranges coincides with local-

ized high densities of beaked whales, including Z. cavirostris (Baumann-Pickering et al., 2014; Falcone et al., 2009). Yet

no mass strandings have been reported there, nor has a relationship been found for this area between individual

strandings and MFAS use (Filadelfo et al., 2009a,b). While this does not rule out the occurrence of MFAS-associated

strandings in the region (Faerber & Baird, 2010), MFAS impacts may be mediated by habitat variables, such as bathyme-

try (D'Amico et al., 2009; Filadelfo et al., 2009a), or by behavioral adaptation (Falcone et al., 2017).

Beaked whales are notoriously challenging to study due to their offshore distribution, deep and long foraging

dives, and cryptic surface behavior. The Southern California Anti-Submarine Warfare Range (SOAR), covering most

of the San Nicolas Basin west of San Clemente Island (Figure 1), sees frequent MFAS use and hosts high densities of

Z. cavirostris (Falcone et al., 2009). After several years of research, including photo-identification work, a dedicated

acoustic-visual monitoring program for Z. cavirostris at SOAR was established in 2010. The program leverages the

Navy's Marine Mammal Monitoring on Navy Ranges (M3R) system to guide sampling effort over the range's

1,800-km2 array of bottom-mounted hydrophones (Falcone et al., 2009; Morrissey, Ward, DiMarzio, Jarvis, &

Moretti, 2006). The resulting augmented encounter rates have enabled focused study of these elusive whales via

photo-identification and satellite telemetry.

Dive behavior data from this program have permitted researchers to link MFAS exposure to disruption of

Z. cavirostris foraging (Falcone et al., 2017), in line with previously observed behavioral responses to simulated sonar
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(DeRuiter et al., 2013). These observations join a growing body of evidence for the prevalence of sublethal effects of

MFAS on beaked whales (McCarthy et al., 2011; Tyack et al., 2011). Sublethal effects, such as reduced foraging,

suppressed reproduction, and reduced calf survival, may dominate the impacts of MFAS on some populations of

Z. cavirostris (Falcone et al., 2017).

Satellite telemetry and photo-identification results revealed that at least some Z. cavirostris individuals return to

the San Nicolas Basin repeatedly over weeks, months, and years (Falcone et al., 2009; Falcone & Schorr, 2014), indi-

cating that mark-recapture analysis, and thus local assessment, may be feasible. Local assessment may provide fur-

ther insight to population-level impacts of observed sublethal effects. However, despite increased capture

probabilities made possible by use of the M3R system to localize individual and groups of Z. cavirostris on SOAR, cap-

ture histories in this data set remain sparse. Variable effort also threatened to confound potential population trend.

Detectability is a key source of variation in the data underlying most population assessments of wildlife

(MacKenzie, Nichols, Sutton, Kawanishi, & Bailey, 2005). Adequate accounting for variation in detectability is there-

fore of primary importance to achieving accurate assessment with appropriate estimation uncertainty. In populations

with sparse data, decisions on how to aggregate data and which sources of variation to prioritize with limited poten-

tial parameters become critical. For mark-recapture data, a number of data aggregation and modeling approaches

may aid in inference of population parameters from sparse capture histories. Several common approaches constitute

a form of information-sharing across strata (MacKenzie et al., 2005), including: aggregating information from multiple

occasions per year to annual-level capture histories, representing individual or temporal heterogeneity in capture

probability as a parametric distribution in a hierarchical model (e.g., Dorazio & Royle, 2003), and using a covariate to

parameterize heterogeneity in capture probability. In distance sampling, detection probability is commonly modeled

as a function of sea state, a concept that was recently extended to modeling detection probability on the trackline,

of particular importance for less conspicuous species (Barlow, 2015).

We present estimates of annual apparent survival, recent annual abundance, and annual rate of change of

Z. cavirostris using (i.e., inhabiting or passing through) SOAR, based on eleven years of photo-identification data. We

used a Bayesian framework to estimate parameters for hierarchical models with an effort covariate and random

effects for capture probability, allowing us to explain a key source of variability and capture important sources of

uncertainty. We used a recent methodological advance that integrates data from both left- and right-side captures

(or, more generally, from multiple noninvasive marks; Bonner & Holmberg, 2013; McClintock, 2013) through latent

multinomial capture histories (Link, Yoshizaki, Bailey, & Pollock, 2010), thereby augmenting capture probability with-

out overestimating precision. Motivated by the need to preserve reliable individual identification, requiring a high-

quality photo for each individual, without omitting medium-quality recaptures, we developed a novel data selection

approach to accommodate different capture and recapture probabilities (i.e., trap response) in trend estimation.

Finally, we used simulation to inform recommendations for continued monitoring of Z. cavirostris in SOAR.

F IGURE 1 Locations of Ziphius cavirostris
photo identifications included in analyses
(white triangles), overlaid on bathymetry
(United States Geological Survey, 2009). Each
location represents a sighting, and so may
include several photo identifications. San
Clemente Island (source: Global Self-
consistent, Hierarchical, High-resolution
Shoreline; NOAA National Geophysical Data
Center) and 800-m isobaths are delineated in
black, and the Southern California Anti-
submarine Warfare Range (SOAR) is outlined
in white. Inset shows location of study area
within the Southern California Bight.
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2 | METHODS

2.1 | Field work and photo identification

Photo-identification data for Z. cavirostris were collected at SOAR in the San Nicolas Basin (Figure 1) from 2006

to 2018 (Falcone & Schorr, 2014; Falcone et al., 2009). Data collection involved close collaboration between a

field team, operating in one or two 5- to 7-m rigid-hull inflatable boats, and the M3R passive-acoustic observer

team, who monitored the 1,800-km2 hydrophone array on SOAR remotely from shore. The M3R team interpreted

automated acoustic detections and locations of cetacean vocalizations by the M3R system and provided the

information to the field team (Jarvis, Morrissey, Moretti, DiMarzio, & Shaffer, 2014; Moretti, 2015). Each time

Z. cavirostris were encountered, with or without M3R direction, the field team collected photo-identification and

other data. During effort, the GPS location of the vessel, depth, Beaufort sea state, visibility, and swell height

were recorded continuously. Over the course of the monitoring program, field effort occurred in every month

except September and December. Effort since 2010 focused on winter and spring months to complement the

2006–2009 effort, which occurred predominantly in the late summer and fall, and to maximize encounter rates,

since density of Z. cavirostris on SOAR appears to decline in late summer and early fall (Baumann-Pickering,

Hildebrand, Yack, & Moore, 2015).

Photographs from each Z. cavirostris encounter were reviewed to determine the number of unique individuals

present. At least one image including the dorsal fin, and up to four total images (anterior and dorsal region views of

each side of the body, as available), of each individual were selected for complete photo-identification processing.

Each of these images were scored for four aspects of quality (proportion of the body visible, angle, sharpness, and

exposure) using a three-point scale (1 = best to 3 = worst), which were then averaged to an overall photo quality

score. Individual animals were scored for distinctiveness each time they were photographed based on the number of

distinctive markings (e.g., pigmentation patterns or scars) visible in the best photograph of each side of the body,

with scores ranging from 1 (no marks or scars) to 5 (20 or more marks). Whales were assigned to age and sex classes

using a combination of behavioral (e.g., mother-calf associations), genetic (for individuals that were biopsy sampled

during the study), and appearance data (e.g., erupted teeth, scarring rates) following methods described in Rosso, Bal-

ardini, Moulins, and Würtz (2011) and Coomber, Moulins, Tepsich, and Rosso (2016). Individual sighting histories

were created through the comparison of captured individuals in each sighting to the accrued catalog, as described in

Falcone and Schorr (2014).

2.2 | Data selection

We limited the scope of this study to sightings within the San Nicolas Basin (Figure 1), and to photo-identifications

from October 2007 onwards, whereafter the vectoring guidance from the acoustics team improved in accuracy and

the field team was able to reach the full SOAR area for sampling, including favorable habitat for Z. cavirostris that

had previously been undersampled (Falcone & Schorr 2014; Falcone et al., 2009).

Two photo quality criteria and one distinctiveness criterion were used in building the mark-recapture data set

(Figure 2): (1) a higher photo quality criterion (“catalog-qualifying”) for inclusion of an individual in the data set, (2) a

slightly lower bar for photo quality (“recapture-qualifying”) for inclusion of further encounters with that individual in

its capture history, and (3) a distinctiveness criterion ensuring reliable identification in recaptures. A photograph was

catalog-qualifying if it scored ≤2 for all four photo quality aspects. This threshold enabled reliable identification even

for individuals lacking distinctive marks or scars (based on variation in fin shape, pigmentation, and other subtle char-

acteristics). Therefore, since the field team did not discriminate among whales during photographic sampling, all

encountered whales were equally likely to be included as identified individuals in the catalog regardless of age and

sex, with the caveat that the capture probability of calves may be reduced by their small size and/or position relative
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to the mother. Recapture-qualifying photographs were those with a mean photo quality score ≤2, which could reli-

ably be matched to the catalog-qualifying photo for distinctiveness scores ≥2, so these thresholds of quality and dis-

tinctiveness were used to further filter records from the catalog to create a relatively homogeneous population in

terms of identifiability. The difference between recapture-qualifying and catalog-qualifying thresholds led to a differ-

ence between initial capture and recapture probabilities, equivalent to a trap response. The implications for each

mark-recapture model framework are discussed in their respective sections below. This approach allowed us to maxi-

mize our sample size without introducing unquantifiable sources of bias due to variability in distinctiveness, which

changes with age and sex.

Records of calves were excluded from mark-recapture analysis, because the association between a calf and its

mother violates the mark-recapture assumption of independent fates, and because we expected survival rates of cal-

ves to be the most different from other age classes.

Due to the relatively small size of the photo-ID data base, we were able to screen records retrospectively for

matches after a catalog-qualifying record was obtained for an individual. We termed these recapture-qualifying

records that preceded the catalog-qualifying record “precaptures” (elsewhere referred to as retrospective recaptures;

Pace, Corkeron, & Kraus, 2017). We created two data sets for mark-recapture analysis: one which included pre-

captures and one which omitted them. Use of each data set in estimating population parameters (Figure 2) was

guided by simulations (Appendix S1) and sensitivity tests, as detailed below.

Capture data were aggregated into eleven annual occasions from 2007 to 2018, with each annual occasion

beginning August 1, which corresponded to a natural break in timing of sightings across years and fell relatively close

to the start date for data included in the analysis (October 2007).

F IGURE 2 Workflow for
mark-recapture analysis.
Filtering level for each step is
indicated on the left (gray
bubbles), filter criterion on
the right. Precaptures are
photos of catalog-qualifying
individuals taken before the
catalog-qualifying photo was
taken. Technically,
precaptures for individuals in
the mark-recapture data set
were added retroactively.
*Although simulations
showed that including
precaptures could lead, on
average, to slight positive
bias in survival estimates
(Appendix S1), preliminary
analysis of the data set at
hand resulted in equal or

lower survival estimates
when included, so they were
included.
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2.3 | Sex and age composition

Quality and distinctiveness thresholds were relaxed as follows to calculate population composition. Sex and age class

composition were calculated as mean annual proportions of individual annual captures, from recapture-qualifying

sightings of all individuals with catalog-qualifying photos (i.e., not filtered for distinctiveness or age class). Animals

can be classified as calves or not with confidence in recapture-qualifying photos, so we estimated reproductive rate

as the proportion of all otherwise unfiltered recapture-qualifying sightings that were staged as calves (Steiger &

Calambokidis, 2000), with Wilson-score binomial confidence intervals.

2.4 | Model development

A Jolly-Seber model, which would have estimated all three population parameters of interest, failed to converge, and

the associated assumption of equal capture and recapture probabilities was also violated. We used three separate

Bayesian mark-recapture models to estimate apparent annual survival, annual abundance, and annual rate of change.

All three models jointly estimate capture probability and the respective parameter of interest. Our mark-recapture

model development focused on accounting for individual and temporal heterogeneity in capture probability

p (e.g., MacKenzie et al., 2005). We first describe model development for this shared parameter before providing

further detail on the three specific models used to estimate the parameters of interest.

Previous work on Z. cavirostris found age and sex effects on extent of marking (e.g., Rosso et al., 2011) and sex

effects on inter-sighting intervals (McSweeney, Baird, & Mahaffy, 2007). To assess sex-associated heterogeneity in

capture probability, survival, and site fidelity, we calculated sex-specific means of individual (1) number of annual

captures, (2) number of sightings, (3) mean interval between annual captures for recaptured individuals, and (4) length

of positive capture history. Mean statistics for males and females were well within one standard error of each other

(in most cases almost identical), so sex was not considered further in model development.

Satellite telemetry of Z. cavirostris in the San Nicolas Basin suggests individuals vary in the proportion of time

spent in SOAR, and thus in their availability for encounter (Schorr et al., 2014). To allow for individual heterogeneity,

which can otherwise lead to severe underestimates of population size (Carothers, 1973; Cormack, 1972), we

considered a term for individual random effects in capture probability.

Social groups and accompanying nonindependence of detection may further inflate variance in capture probabil-

ity and lead to biased abundance estimates, even when individual heterogeneity is included in the estimator or model

(Boulanger, McLellan, Woods, Proctor, & Strobeck, 2004; Gupta, Joshi, & Vidya, 2017). Little is known about the

social structure of beaked whales, but some evidence exists that association in Z. cavirostris is fluid (McSweeney

et al., 2007). Repeat associations among individuals over multiple years account for only a small fraction of sightings

of Z. cavirostris at SOAR, half of which were mother-calf pairs (see Results). Calves were omitted from mark-

recapture analysis (see Data selection), and the few other observed cases of association were of short duration com-

pared to the time series. Association was not considered further in model development.

Effort varied considerably over the time series in terms of total hours and seasonal allocation of sampling

(Figure 3), including the aforementioned shift from summer and early fall months, when density of Z. cavirostris in

SOAR appears to decline (Baumann-Pickering et al., 2015; D.J.M., unpublished data) relative to other months. We

considered two different effort indices as temporal covariates to account for the expected temporal heterogeneity in

capture probability. For both metrics, we only included time spent searching within the San Nicolas Basin over bot-

tom depths >800 m, since no sightings occurred at shallower depths (Figure 1).

The vast majority of sightings occurred in relatively calm conditions, so the first effort metric (β1) was simply

annual hours of search effort in Beaufort sea states 0 through 2. The second effort metric (β2), annual expected cap-

tures, was designed to account for the strong expected and observed pattern in capture rates (r) with Beaufort sea

state and season (Figure 4):
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rb,s =

P
ycy,b,sP
yhy,b,s

where c is captures, defined as all recapture-qualifying records, regardless of inclusion in the data set for analysis

(i.e., not filtered for individuals with catalog-qualifying records, by age class, or by distinctiveness), h is effort hours,

y is year, s is season, and b is Beaufort sea state. We calculated expected annual captures as the summed product of

the rate for each b-s bin and the corresponding annual effort:

β2,y =
X

b,s

hy,b,srb,s

Both effort indices were standardized to a mean of zero and standard deviation of one. We also included a term for

temporal (annual) random effects in capture probability where model flexibility allowed (i.e., for estimating population

growth rate, as it is not an available term in the multimark models fit for survival and abundance), to account for

remaining unexplained temporal variability in capture probability.

F IGURE 3 Total hours of search effort for Ziphius cavirostris in the San Nicolas Basin by season per annual
occasion. Gray represents “summer” effort, defined as effort conducted during July through October, based on
observed shifts in vocalization detection frequency of Z. cavirostris from passive acoustic studies in the Southern
California Bight (Baumann-Pickering et al., 2015). Black represents nonsummer effort (all other months). Annual
occasions begin in August of the occasion year. For periods when two boats were simultaneously on effort (during
2007–2008), individual vessel efforts were summed.

F IGURE 4 Capture rates with Beaufort
sea state and season for Ziphius cavirostris in
the San Nicolas Basin (based on 11 years of

photo-ID data). Captures are defined as
sighting-level recapture-qualifying records,
regardless of inclusion in the data set for
analysis (i.e., not filtered for individuals with
catalog-qualifying records, by age class, or by
distinctiveness), from either left- or right-side
encounters. Summer is defined as July
through October.
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To guide model choice with respect to parameterization of capture probability, we used reversible-jump Markov

chain Monte Carlo (RJMCMC) sampling of candidate model fits of open-population Cormack-Jolly-Seber (CJS)

models in the multimark package in R (Cormack, 1964; Jolly, 1965; McClintock, 2015; R Core Team, 2016;

Seber, 1965). The multimark package implements mark-recapture models that accommodate capture histories for

two nonivasive marks simultaneously, in a Bayesian framework. We fit multimark CJS models to left- and right-side

capture histories for the 11-year time series, followed by RJMCMC sampling of the resulting fits of candidate

models. The CJS model selection results informed model selection for the other two mark-recapture frameworks (for

estimation of abundance and rate of change), which each used a smaller subset of the data (see below and Figure 2).

The CJS model framework, which estimates capture probability (p) and apparent survival (ϕ), conditions on first

capture and is unaffected by a difference between initial capture and recapture probabilities. Including precaptures

may introduce a small positive bias in ϕ (<0.01; see Appendix S1), but preliminary analysis showed little or negative

difference in estimates of ϕ for the data set including precaptures compared to that excluding them. We therefore

included precaptures in the data set used for model selection. We considered four models of increasing complexity

for capture probability (p): an intercept-only model, intercept plus individual random effects, and intercept plus indi-

vidual random effects plus one or the other effort covariate. Apparent annual survival, which includes death and emi-

gration, was modeled as constant among years and individuals. We assumed an equal probability of photographing

either side of an individual in an encounter. The models in the multimark package use known links between left and

right-side capture histories to estimate a latent multinomial. We classified capture histories for left and right sides as

known to be linked for individuals with filtered photo-IDs from both sides within a sighting or characterized by dis-

tinctly shaped or damaged dorsal fins that allowed reliable bilateral identification. Additional details on model, priors,

and MCMC and RJMCMC sampling are in Appendix S2.

2.5 | Estimation of survival

We used the data set including precaptures and the multimark CJS model identified as the most probable through

RJMCMC sampling, as described and justified in the previous section, to estimate annual apparent survival ϕ. Further

details are in Appendix S2.

2.6 | Estimation of abundance

To estimate the annual number of Z. cavirostris using SOAR, we fitted a closed population model in multimark to the

three most recent years of annual-level capture histories, August 2015 through July 2018 (Huggins, 1989;

McClintock, 2015). Capture probability was parameterized as for the CJS model chosen through RJMCMC, as

described above. Simulation showed that including precaptures when fitting closed-population models could lead to

substantial underestimation of abundance (see Appendix S1), because it interferes with correct estimation of initial

and recapture probabilities, and capture probability is the linchpin of mark-recapture abundance estimation. We

excluded precaptures for this analysis. Closed-population models allow separate estimation of initial and recapture

probabilities, but this parameterization resulted in a slightly higher estimate for initial than recapture probability, so

we used a single-intercept model for capture probability. Further details are in Appendix S2.

We used the approach of Wilson, Hammond, and Thompson (1999) to estimate a correction factor to calculate

noncalf and total abundances from the model estimate, which was based on a filtered subset of animals. We applied

their method at the annualized capture record level, to all individuals with catalog-qualifying records (regardless of

age class or distinctiveness). We corrected for annual mean proportions of (1) noncalf animals that were insufficiently

marked to be included in the analysis, to obtain a noncalf population estimate (Nnc); and (2) calves and insufficiently

marked animals, for a total population estimate (N).
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2.7 | Estimation of annual rate of change

To estimate the mean annual rate of change in abundance of Z. cavirostris using SOAR, we fit single-side capture

histories with a Bayesian Pradel-lambda model, which estimates λ (annual rate of change plus one, henceforth

“population growth rate”), ϕ, and p (Pradel, 1996; Tenan et al., 2014). The Pradel-lambda mark-recapture model

framework uses reversed capture histories to estimate population growth rate in the same manner that ϕ is esti-

mated from forward-moving capture histories in a CJS model. Given greater recapture than initial capture proba-

bility, λ will tend to be overestimated by an amount that depends on the magnitude of that difference (Hines &

Nichols, 2002). Simulations for our parameter space showed that λ may be positively biased by as much as 0.01

to 0.02, but that this bias is eliminated when precaptures are included in the data (see Appendix S1), so we

included precaptures for this analysis. Capture probability was modeled as above, but with temporal (annual)

rather than individual random effects. Individual random effects do not bias estimation of constant population

growth rate in mark-recapture models (Hines & Nichols, 2002). To incorporate the better-informed estimate of ϕ

from the multimark CJS model in our estimate of λ, we fixed ϕ as a constant in the Pradel-lambda model, and

used multiple imputation to estimate the other model parameters over successive values of ϕ sampled from the

posterior distribution of ϕ from the CJS model. We adapted the BUGS code written by Tenan et al. (2014) by

(1) fixing the value of ϕ to a constant; (2) moving the temporal random effects term from λ to p; (3) moving the

temporal covariate from ϕ to p; and (4) changing the prior for the logit-transformed intercept for p to (0, 10),

because our parameter space is near the boundaries and could thus be unduly influenced by the original prior of

(0, 100). See Appendix S2 for more details.

We fitted the model with the rjags package in R (Plummer, 2016, R Core Team, 2016). We used right-side cap-

ture histories, because in preliminary analyses with a Bayesian CJS model, posteriors for apparent survival were bet-

ter resolved from the upper boundary of one for the right-side capture histories than for the left. We used data

cloning with CJS models in MARK through RMark to ensure that the parameters near boundaries (ϕ and p) are identi-

fiable (Cooch & White, 2016; Lele, Dennis, & Lutscher, 2007; Lele, Nadeem, & Schmuland, 2010). For each of

250 sampled values of ϕ, we fitted a Pradel-lambda model, and the resulting posteriors for λ were combined to

obtain an aggregate result. Further details are in Appendix S2. To evaluate the effect of including the effort covari-

ate, we fitted the same Pradel-lambda model (with ϕ as an estimated parameter with the same prior as p), with a vec-

tor of zeros instead of the annual effort index.

2.8 | Convergence diagnostics

All model fits were evaluated for mixing and convergence by examining trace plots, running mean plots, and potential

scale reduction factors (psrf) for each parameter with the coda and mcmcplots packages in R (Curtis, 2015; Plummer,

Best, Cowles, & Vines, 2006). In all cases, trace plots showed good mixing of all three chains, running mean plots

demonstrated stable results, and psrf was ≤1.01 for both point estimates and credible intervals.

For the multiple-imputation fit of the Pradel-lambda model, we examined running mean plots and successive

density plots of the posterior distribution for λ with increasing numbers of imputations to assess sufficiency of the

number of imputations used.

2.9 | Inference error and sampling design

We used simulation to provide insights into our current and potential future ability to detect a decline in abundance.

Understanding potential errors in inference is critical in a decision-making framework, where management action or

lack thereof may result in overprotective (inferring a decline when there is none) or underprotective (failing to infer a

CURTIS ET AL. 9



true decline) management errors, respectively. We thus refer to errors in inference as over- or underprotective. We

focused on inference from the Pradel-lambda model described above, with an effort covariate and temporal random

effects for capture probability, but with survival as one of the parameters to be estimated.

We considered 14 scenarios and simulated 1,000 sets of capture histories for the population for each sce-

nario. Simulated populations experienced one of two constant rates of decline, corresponding to 50% declines

over 20 or 10 years (i.e., 21 or 11 years of mark-recapture), or λ of 0.966 (ϕ = 0.95) and 0.933 (ϕ = 0.91), respec-

tively. Other parameters were based on posteriors from the preceding analyses. The first two scenarios served as

“base case” scenarios, one each for the two rates of decline, with 11 years of simulated sampling at current

effort/capture probability levels, including a known effort covariate as well as temporal and individual random

effects, all three of which were modeled as draws from normal distributions with means of zero and specified

variances. Scenarios 3 through 12 varied duration of simulated sampling and annual effort. In Scenario 13, we

explored our ability to detect an extreme rate of decline in abundance of 75% over the 11-year capture history

(λ = 0.87, ϕ = 0.85). In Scenario 14, we set λ = 1 to characterize probability of overprotective error for our cur-

rent data complement.

Pradel-lambda models were fitted to the resulting simulated data sets for each scenario using three MCMC

chains, each including an adaptation phase of 500 samples, burn-in of 1,000 samples, and 10,000 iterations, resulting

in 30,000 samples. For each simulation, we tracked (1) whether the model had converged (i.e., psrf <1.05 for all

parameters), (2) percentage of posterior probability distribution of λ < 1, (3) percentage of time that true φ fell within

the 80% and 95% posterior credible intervals, and (4) percentage of time that true λ fell within the 80% and 95%

posterior credible intervals. Probability of detecting declines and under- and overprotective error rates were evalu-

ated based on those simulations for which the model converged.

3 | RESULTS

3.1 | Photo identification data

For individuals with catalog-qualifying records (see Methods), mean sightings per individual showed no consis-

tent trend with distinctiveness. The annual-level discovery curves for right-side and left-side filtered capture

histories show slowing over the time series, but continue to rise steadily (Figure 5). Capture frequencies for all

individuals and encounters included in the analyses are summarized in Table 1. Although most individuals were

seen only within one annual occasion, positive capture histories spanning more than one annual occasion

included every possible duration from 2 to 11 years, with 25 individuals having positive capture histories of

5 years or longer. The mean interval between positive occasions for individuals that were recaptured, weighted

by individual, was 3.1 years. Individuals with repeated photo-IDs across years showed no seasonal pattern in

occurrence. The most recent three years of mark-recapture data from both sides, to which the closed-

population multimark model was fitted, include 46 capture histories, 37 of which are known for both sides,

with a mean of 1.26 captures each.

We examined observations of repeated association among all individuals with catalog-qualifying records, regard-

less of age class or distinctiveness. Repeated associations among individuals were relatively rare. Repeated associa-

tions among three or more individuals (three instances) were only observed within a few days of each other.

Repeated associations among individuals over periods longer than 6 months included three between an adult female

and a calf, two of which matured to juveniles while in association, which lasted as long as 4.5 years; two between an

adult female and an adult male (observed over a maximum of 1.2 years); and one between a subadult male and an

adult male (2.4 years).

Group sizes of sighted whales averaged 3.0 (± 1.8 SD, 0.2 SE), somewhat lower than the mean of 3.8 first

reported in Falcone et al. (2009) for the same study area and data collection methods.
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3.2 | Sex and age composition

The following data summaries are based on a mean of 18.9 individual captures per occasion over 11 annual occa-

sions. The mean annual sex ratio of annual captures of individuals with catalog-qualifying records is similar to those

reported in Falcone et al. (2009), with 45.3% female, 38.5% male, and 16.2% unknown. The mean annual age class

distribution of annual captures of individuals with catalog-qualifying records is 61.5% adults, 21.5% subadults, 8.5%

juveniles, 4.7% calves, and 3.9% unknown. The reproductive rate, i.e., the proportion of calves among all otherwise

unfiltered recapture-qualifying records, was 6.0% (16 of 267 sightings; 95% CI 3.7%, 9.5%). The percentage of calves

may exceed annual calf production, since one individual was staged as a calf in two successive years. On the other

hand, these estimates may be biased low, because calves may be less likely to be successfully photographed than

older animals due to their smaller size.

3.3 | Model selection

Relative probabilities of the four candidate multimark CJS models included in RJMCMC sampling are in Table 2. The

most likely model included individual heterogeneity and the effort covariate that accounts for Beaufort Sea State

and season. Effective sample size for the model selection parameter was 721, and the multivariate psrf was 1.006.

F IGURE 5 Discovery curves for right-side
(black, circles) and left-side (gray, triangles)
capture histories of total individuals versus
number of identifications made on an annual
basis from August 2007 through July 2018.
Dashed line is 1:1.

TABLE 1 Capture frequency summaries for annual captures of Ziphius cavirostris. Total number of individuals (n),
average annual capture frequency (x), and capture frequency counts for capture histories containing photographs (1)
from only the left side, (2) from both sides within a sighting or characterized by a distinctively damaged or shaped
fin, and (3) from only the right side. Analyses with multimark models included all three types of capture histories. The
Pradel-lambda analysis was limited to (4) right-sided capture histories from individuals known only from the right
side or from both sides.

Capture frequency

Capture history type n x 1 2 3 4 5 6 7

Left side only 18 1.06 17 1 — — — — —

Both sides or fin 87 1.69 54 16 11 4 1 — 1

Right side only 21 1.14 18 3 — — — — —

All right-sided captures 105 1.42 74 22 6 2 1 — —
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3.4 | Abundance, trend, and demographic rates

Estimates for survival, slope of capture probability with effort index, abundance, and annual rate of change for non-

calf Z. cavirostris using SOAR are summarized in Figure 6 and Table 3 (see Appendix S2 for all estimated parameters).

For skewed posterior distributions, such as annual apparent survival and abundance, the posterior mode is most anal-

ogous to a frequentist maximum likelihood estimate. The abundance estimate has been multiplied by a correction

factor that accounts for the proportion of animals that were calves or did not meet distinctiveness criteria (uncer-

tainty is negligible relative to that of the abundance estimate; 1.052 for the noncalf abundance, 1.107 for total abun-

dance, including calves).

The slope of capture probability with effort has a 99.3% posterior probability of being greater than zero,

supporting a positive relationship between effort and capture probability (Figure 6). The closed-population estimate

of noncalf abundance for effort years 2015–2017 has a mode of 84 (90% credible interval: 67–208; Table 3), placing

TABLE 2 Relative probabilities of the four candidate multimark CJS models included in RJMCMC sampling.
Model variations for capture probability include intercept-only, intercept plus individual random effects εi, and
intercept plus εi and either β1, annual hours of search effort in Beaufort sea states 0 through 2, or β2, effort adjusted
for season and Beaufort sea state.

Model Posterior probability

p(.) ϕ(.) 0.013

p(�1 + εi) ϕ(.) 0.265

p(�1 + β1 + εi) ϕ(.) 0.275

p(�1 + β2 + εi) ϕ(.) 0.447

F IGURE 6 Posterior probability densities for estimated parameters for Ziphius using SOAR on an ongoing basis.
Estimates of apparent annual survival rate ϕ and probit-link slope of annual capture probability with the Beaufort-

and season-adjusted effort index are from the most probable multimark CJS model fit, based on RJMCMC (above).
Total abundance N as estimated from a closed-population multimark model fitted to data from the most recent three
occasions, spanning 2015–2018, and includes a correction factor of 1.107 to account for Ziphius that did not meet
distinctiveness criteria and calves. Population growth rate λ for Ziphius using SOAR was estimated with a Pradel-
lambda model fitted to right-side capture histories and imputed over 250 values of ϕ drawn from the posterior
distribution from the multimark CJS model (see Methods).
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it at the low end of earlier adult-only estimates of abundance based on a Lincoln-Peterson estimator and single-

side capture histories, which ranged from 101 to 332 with CVs of 15% to 29% for several combinations of

2-year intervals from 2007 through 2014 (Falcone & Schorr, 2014). The estimate for λ suggests the abundance is

stable or decreasing slowly (mean of 0.8% annual decrease), with 62% of the posterior distribution <1. By com-

parison, the model with no effort covariate resulted in a mean λ of 1.02 with a 31% posterior probability of being

<1, despite also producing a lower estimate of ϕ than the CJS model from which the multiple imputation samples

were drawn, underscoring the importance of accounting for nonrandom sources of variation in capture probability

when estimating λ.

TABLE 3 Summaries of posterior distributions for ϕ (apparent annual survival), Nnc and N (corrected annual
abundance excluding calves and corrected total annual abundance, respectively), and λ (population growth rate). Px is
the xth percentile of the posterior distribution for each parameter, SD is standard deviation, and n is effective sample
size. Estimate of ϕ is from the most probable multimark CJS model fitted to capture histories from both sides
simultaneously, based on RJMCMC (above). Abundance was estimated from a closed-population multimark model
fitted to capture histories from both sides from the most recent three occasions, spanning 2015–2018, and
multiplied by either a correction factor of 1.052 to account for noncalf Ziphius that did not meet distinctiveness

criteria (Nnc) or 1.107 to account for both insufficiently marked animals and calves (N). λ was estimated with a
Pradel-lambda model fitted to right-side capture histories and imputed over 250 values of ϕ drawn from the
posterior distribution from the multimark CJS model (see Methods).

Model Mean SD Mode P5 P25 P50 P75 P95 n

multimark CJS ϕ 0.950 0.027 0.962 0.899 0.934 0.954 0.970 0.986 9,811

multimark Closed Nnc 115 49 84 67 83 101 131 208 5,207

multimark Closed N 121 52 89 71 87 106 138 219 5,207

Pradel-lambda λ 0.992 0.029 0.989 0.944 0.972 0.991 1.011 1.041 39,021

F IGURE 7 Overprotective (black) and underprotective (gray) error rates for detecting a decline in abundance at
varying levels of quasi-α and rates of decline, given current sampling effort and inference from a Bayesian Pradel-
lambda model with fixed and random temporal effects (11 years, capture probability of 0.085, and fixed temporal
effects and temporal and individual random effects as specified in Methods). Overprotective error is the probability
of falsely inferring a trend if none exists. Underprotective error is the probability of failing to detect a true decline.
Error rates for each scenario (i.e., each line) are based on 1,000 simulations. Quasi-α is the threshold at which
evidence is considered “strong” that abundance is declining.
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3.5 | Inference error and sampling design

Several parameters for simulated capture histories were drawn from posteriors from the above mark-recapture ana-

lyses, including p (0.085 for current effort, increasing by 40% at doubled effort), starting abundance (100), temporal

fixed (i.e., effort) and random effects (σtFE2 = 0.2, σtRE2 = 0.15), and individual random effects (σiRE2 = 0.25). At most

four simulations failed to converge (psrf for all parameters <1.05) for any given scenario, and were filtered out before

summarizing the results.

Over- and underprotective inference error rates for data scenarios representative of the current sampling pro-

gram (Figure 7) show we currently have low probability (high underprotective error rate) of detecting a decline

corresponding to a 29% cumulative decrease in abundance (λ = 0.966) over the 11-year time series (10 intervals). A

50% cumulative decrease (λ = 0.933) would not be reliably detected either. There is high probability of detecting an

extreme decline (λ = 0.87), corresponding to a 75% decrease in abundance over the time series.

Simulations with increased effort or additional years of effort (Figure 8) show that doubling effort would have

led to modestly increased probability of detecting rates of decline of −3.4% or −6.7% per annum (λ of 0.966 or

0.933) at 10 or 15 years. But at 20 years, when a −3.4% per annum decline (λ = 0.966) would correspond to a 50%

cumulative decrease in abundance, all scenarios have fairly high probability of inferring a decline.

4 | DISCUSSION

We analyzed 11 years of photo-ID data from the San Nicolas Basin to produce the first estimates of apparent survival,

abundance, and annual rate of change of Z. cavirostris on a Navy training range subject to frequent MFAS use. Beaked

whales are notoriously challenging to assess due to low sighting probability; for example, Cañadas et al. (2018) had to

combine 27 years of visual survey data in the Mediterranean to obtain a single abundance estimate for Z. cavirostris. In

the California Current Ecosystem (CCE), Bayesian hierarchical models were used to infer broad-scale abundances and

trends for several species of beaked whales from visual transect data (Moore & Barlow, 2013, 2017), but coefficients

of variation remained high, circa 70% for Z. cavirostris. As such, a more localized assessment, e.g., to investigate impacts

of MFAS use within the Southern California Bight, was not possible from their data set. The results of our mark-

recapture and simulation analyses provide robust estimates of local abundance, apparent annual survival, and change in

number of Z. cavirostris using SOAR, but they also underscore that we do not yet have the sample size to reliably detect

even a 50% decline in abundance over the course of the 11-year monitoring program (λ = 0.933).

The high density of Z. cavirostris in SOAR and long-term site fidelity of individuals despite repeated MFAS use

suggest that the San Nicolas Basin contains important foraging habitat. Evidence for widespread, long-term site

F IGURE 8 Probability of detecting a
declining trend with additional years of effort
or increased effort per year. Probability of
detecting decline is the percentage of
simulations with 80% posterior probability of
λ (population growth rate) <1, given model
convergence. Black points and lines
correspond to scenarios with λ = 0.966; gray
points and lines to λ = 0.933.
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fidelity to the San Nicolas Basin, based on telemetry data (Schorr et al., 2014) and photographic resightings over

5 years or longer for 25 individuals, reinforces the conceptual model of small resident populations as an important

component of Z. cavirostris demographics (Allen, Brownell, Yamada, & Mead, 2012). Similar behavior has been

observed in beaked whales at other long-term study sites off Hawaii and the Bahamas (Claridge, 2013; McSweeney

et al., 2007). The additional support presented here for a resident population in the San Nicolas Basin and immediate

vicinity bolsters the rationale for long-term monitoring and assessment of Z. cavirostris at SOAR.

Several lines of evidence also support the prevalence of transients passing through SOAR. In the filtered data,

we found that individuals only seen on one occasion tended to have a lower probability of multiple sightings per

annual occasion than individuals seen over multiple years (0.12 versus 0.16). The discovery curves, though showing

initial slowing, continued to rise steadily in the last few years (Figure 5). A CJS model with separate survival rates for

the first year after initial capture and subsequent years, which would eliminate negative bias in the survival estimate

due to transients that arrive and depart within an annual occasion (Pradel, Hines, Lebreton, & Nichols, 1997), was

supported in RJMCMC model selection. However, this model did not result in estimates of long-term survival that

were resolved from one, so it was not presented here. Dedicated simulation work is merited to better understand

how transience factors into population assessment for Z. cavirostris in SOAR.

The number of Z. cavirostris that use SOAR annually is on the order of a few percent of the estimated broader

population in the CCE (Moore & Barlow, 2017). The short-term, closed-population abundance estimate that we pres-

ented minimizes the influence of transients, but may all the same overestimate the resident population and underes-

timate the superpopulation for that period of time. Additional potential sources of bias are also towards

overestimation: false negatives are usually more likely than false positives in photo-ID studies (Stevick, Palsbøll,

Smith, Bravington, & Hammond, 2001), and the use of 3 years of data (2015–2018), rather than one, would permit

some turnover due to apparent survival and new recruitment. However, our estimates of survival rate and annual

rate of change suggest the latter bias is likely less than 10%.

The estimate of annual survival rate (ϕ; M = 0.95) is within the range expected for long-lived cetaceans, particularly

considering that the analysis included juveniles that had distinctive marks (8% of filtered annual-level photo-IDs) and

the potential for negative bias due to transience. This estimate exceeds that for pooled adult and subadult Z. cavirostris

off El Hierro, in the Canary Islands of the Northeast Atlantic, where sonar use has been banned within 92.6 km since

2004, which was estimated at 0.91 (95% CI 0.82, 0.95; Suárez, 2018). In Blainville's beaked whales (Mesoplodon den-

sirostris) at Abaco, The Bahamas, where sonar use is limited, estimated ϕ is only slightly higher than for Z. cavirostris in

SOAR, and is heterogeneous among sexes and age classes, with higher ϕ in adults and females than subadults and

males (Claridge, 2013). Additional preliminary analysis with the multimark package using RJMCMC for model selection

supported an intercept-only model for φ, so we were unable to resolve sex or age class differences.

The proximity of the point estimate of λ (annual rate of change plus one) to one, for a time series beginning in

2006, is concordant with the leveled-off population growth rate for the broader population of Z. cavirostris in the

CCE reported by Moore and Barlow (2017) for the late 1990s to 2014, after a decline in the early 1990s. Passive

acoustic estimates of instantaneous numbers of Z. cavirostris in SOAR from the hydrophone array also did not show

any trend over 5 years (DiMarzio, Jones, Moretti, Yhomas, & Oedekoven, 2018), but this metric of use intensity of

SOAR may not necessarily covary with the overall abundance of animals using the range, as estimated by our mark-

recapture analysis. For example, use intensity could exhibit hyperstability (sensu Hilborn & Walters, 1992), remaining

constant while the overall abundance decreases, due to the high value of the foraging habitat. The high estimated

survival rate noted above is paired with an estimated percentage of calves in the population of 4.7% or 6%

depending on approach (with the weight of potential bias towards underestimation, as described in Results), within

the range expected for long-lived cetaceans. More information on stage- and sex-specific survival rates and repro-

ductive rates are needed to reliably infer a population trajectory based on vital rates. The direct estimate of λ from

existing photo-ID data in SOAR has a 90% credible interval spanning fast decline (0.944) to rapid increase (1.041).

Characterizing the limitations of inference is essential to drawing robust conclusions about population status

and trends (Taylor & Gerrodette, 1993). Based on simulation of current and potential future sampling design, we can
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be fairly certain that Z. cavirostris using SOAR are not experiencing a decline in abundance on the order of 13% per

year (75% decrease over the time series; Figure 7 and Table 3). But several additional years of effort would be

required to reliably detect a 6.7% annual rate of decline, and approximately 10 more years—corresponding to a 50%

cumulative abundance decrease—would be required to reliably detect a 3.6% annual rate of decline (Figure 8). Taylor

et al. (2007) predicted a Type II error rate of 90% for detecting a 50% decrease in a beaked whale stock from

15 years of standard visual surveys, so the innovative mark-recapture program for Z. cavirostris at SOAR has

achieved remarkable probability of detecting declines. Nonetheless, greater strength of inference is needed to detect

a potential decline before the population has been diminished to such a severe extent.

Inference from photo-ID data may be improved through a number of strategies. Most obviously, capture proba-

bility and thus precision can be increased by increasing annual effort, as evidenced by the conclusively positive rela-

tionship between effort and capture probability found in this analysis. Further analytical innovation may also afford

greater estimation precision. Extending latent capture history models that integrate capture histories from left and

right sides to Pradel-lambda and Jolly-Seber frameworks would effectively increase capture probability and thereby

estimation precision, as well as integrate estimation of two or more key parameters from all available photo-ID data

within a single model. Combining photo-ID data with other data types by fitting integrated models may also prove to

be a valuable approach. For example, capture probability estimation in a Pradel-lambda model may be refined by con-

straining it with passive acoustics data on year-to-year or seasonal changes in density of Z. cavirostris in SOAR.

Collection and integration of different data types may provide far more insight than just increased precision.

Even with a more precise estimate of λ, we would not be able to rule out the possibility that SOAR might be acting

as a sink (or a source) for the larger population (e.g., Whitehead & Gero, 2015). Z. cavirostris in SOAR respond to

MFAS with changes in foraging behavior (Falcone et al., 2017). Physiological modeling indicates that sublethal effects

of MFAS on beaked whales are most likely to be reflected in reduced fetus and calf survival (New, Moretti, Hooker,

Costa, & Simmons, 2013). Habituated animals might have reduced or unsuccessful reproduction or recruitment to

the reproductive class due to diminished foraging efficiency, or require an increased threshold of prey density to sup-

port successful reproduction, corresponding to a diminished carrying capacity. And although strandings have not

been observed in association with sonar events off California (Falcone et al., 2017; Filadelfo et al., 2009a,b), direct

mortality due to exposure to sonar cannot be ruled out at SOAR, particularly considering the offshore location

(Faerber & Baird, 2010). As a result of any of these mechanisms, animals using SOAR might be experiencing gradual

replacement from the broader population rather than maintenance through local production, or failing to fulfill a pre-

vious role as a source.

Complementary data are critical to characterizing population processes and assessing whether MFAS use is

affecting the vital rates of individuals that use SOAR. Key parameters for which more information is needed include

age of maturation, pregnancy rates, calf production, and calf survival. Collecting similar data at a comparable site in

the CCE that is minimally exposed to MFAS would provide a valuable comparison (National Academy of Sciences,

Engineering, and Medicine, 2017), similar to the role of Abaco in evaluating the impacts of MFAS on M. densirostris

at AUTEC (Claridge, 2013). Alternatively, collecting joint data for individuals on pregnancy and stress hormones from

biopsy, calf accompaniment rates from sightings, and telemetry or, perhaps more tractably, stable isotope profiles

(Fleming, Kellar, Allen, & Kurle, 2018) could provide insight into how individual heterogeneity in habitat use—and

thus exposure—relates to reproductive success (Gimenez et al., 2018; Pirotta et al., 2018). Improved data on vital

rates would support matrix population modeling to elucidate whether local productivity would be sufficient to match

observed λ or would require immigration (e.g., Whitehead & Gero, 2015). It may also be possible to increase capture

probabilities sufficiently to gain more insight into immigration and emigration through mark-recapture analysis, but

this may be a reach for these elusive animals. Meanwhile, continued monitoring of sex ratio in Z. cavirostris at SOAR

is valuable not only to inform matrix modeling, but potentially as an independent indicator: changes in sex ratio may

be apparent before a clear picture emerges of a downward population trajectory (Pace et al., 2017).

In making the best of available data and methods to obtain population parameter estimates for Z. cavirostris

using SOAR, we faced a common potential source of bias in population growth rate estimation from photo-ID data.
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Higher standards for inclusion of an individual in a catalog than for inclusion of a resight are common. Based on our

findings, when population growth rate is of interest, particularly if preliminary estimates are close to 1, it is advisable

to explore the extent of potential bias for the relevant parameter space through simulation, and identify and include

precaptures in the catalog where warranted and feasible (e.g., small catalog or automated matching). In data-limited

situations, such as that reported on here, additional records may add valuable sample size as well. Precaptures should

be excluded from data for abundance estimation.

The results of mark-recapture analysis of 11 years of photo-ID data for Z. cavirostris in a sonar-rich Navy training

range indicate long-term site fidelity and high apparent annual survival, but did not provide conclusive evidence

regarding trend in abundance. With continued monitoring, the enhanced capture probability from the collaboration

between acoustic and field teams—and the site fidelity of Z. cavirostris to SOAR—provide an opportunity to link

documented short-term behavioral responses of Z. cavirostris to MFAS in SOAR to cumulative effects on vital rates

and to trends in abundance, and to validate predictions of population-level impacts from Population Consequences

of Disturbance models (Fleishman, Costa, Kraus, Moretti, New, & Wells, 2016; National Research Council, 2005;

New et al., 2013; Pirotta et al., 2018). Achieving this goal depends on continuing this rare, long photo-ID time series

while collecting complementary data on vital rates of individuals using SOAR, both high research priorities for

research on impacts of MFAS on beaked whales (de Quirós et al., 2019), as well as further development of analytical

methods.
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