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1.  INTRODUCTION

Due to long-term efforts to study global humpback
whale Megaptera novaeangliae populations (e.g.
Smith et al. 1999, Calambokidis et al. 2001, Allen et
al. 2020), this species has been a conservation suc-
cess story, with 9 of 14 distinct population segments
delisted from the US Endangered Species Act in 2016
(NOAA 2016), including the Hawaiian population.
However, these populations are still highly suscepti-

ble to anthropogenic impacts such as fishing gear
(Mazzuca et al. 1998, Johnson et al. 2005) and navy
sonar (Sivle et al. 2016) as well as climate fluctuations
(Cartwright et al. 2019, Kügler et al. 2020). When
these events coincide, results can be catastrophic,
such as in the case of the North Pacific marine heat-
wave driving humpback whales closer to shore
where they entangled in fishing gear in record num-
bers (Santora et al. 2020). Therefore, continued work
is needed to fill in the gaps in our knowledge of
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results provide insight into the inter-island movements and behavior of humpback whales while
on the Hawaiian breeding grounds as well as where and how their behavior transitioned into
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humpback whale behavior, particularly during the
dynamic period when whales transition from breed-
ing to migratory behavior, as new insights are chang-
ing our understanding of humpback whale behavior
during this period (e.g. Derville et al. 2020).

The behavior of eastern North Pacific humpback
whales on their Hawaiian breeding grounds has
been well documented, particularly in the waters off
Maui, where the highest abundance of whales occurs
(Baker & Herman 1981). However, whether they
transition into their migration from a specific area on
their breeding grounds and how their behavior
might change during that transition is less well
understood. As in other global humpback whale pop-
ulations, these whales migrate long distances be -
tween winter breeding grounds at lower latitudes
(Darling & McSweeney 1985, Baker et al. 1986, Craig
& Herman 1997, Calambokidis et al. 2001) and sum-
mer feeding grounds at higher latitudes (Calam-
bokidis et al. 2001, Stevick et al. 2003, Rasmussen et
al. 2007, Burns et al. 2014). Females without calves or
juveniles are the first to arrive and first to leave, fol-
lowed by males and then females with calves (Daw-
bin 1966, Craig et al. 2003). Individual whales may
only stay on their breeding grounds for a few weeks
(e.g. Herman et al. 2011), with females with calves
staying the longest (up to 5 wk; Mobley & Herman
1985, Craig & Herman 1997). Palacios et al. (2019)
found a minimum residence time (from tagging to
departure) of individuals in the main Hawaiian
Islands of 14.8 d, similar to the 12.9 d found by Mate
et al. (2019), 13.6 d found by Lagerquist et al. (2008),
and 11 d for males found by Herman et al. (2011).
Humpback whales are present in the waters off all
the main Hawaiian Islands; sightings and acoustic
detections have also occurred in the northwestern
Hawaiian Islands, suggesting that region may also
be a part of the wintering grounds (Johnston et al.
2007, Lammers et al. 2011).

While the same humpback whales return to the
Hawaiian Islands year after year, their movements
between islands within and across years have not
been well established. Some movement of individu-
als has been observed between the main Hawaiian
Islands within a breeding season (Craig & Herman
1997, Cerchio 1998, Cerchio et al. 1998, Mate et al.
1998, Calambokidis et al. 2001), although Calambo -
kidis et al. (2001) hypothesized that humpback whales
were more likely to be observed off different islands
in different years rather than within a season. How-
ever, some site fidelity to specific island regions across
years has also been observed (Cerchio et al. 1998).
Further, Craig & Herman (2000) found more females

with calves off Maui than Hawai’i Island, indicating
reproductive status may also play a role as to where
whales may occur. While Cerchio et al. (1998) found
animals to move in either direction within the main
islands with equal probability, Baker & Herman (1981)
suggested whales might be taking advantage of a
clockwise gyre current north of O’ahu and Kaua’i,
moving northwesterly through the islands to save
energy. A general northwestern movement has also
been observed in more recent tagging work (Mate et
al. 2019, Palacios et al. 2019), although one male did
travel east. Furthermore, 2 whales tagged in Alaskan
waters both entered the Hawaiian breeding grounds
at the island of Hawai’i, the most southeasterly is -
land of the archipelago, and then moved northwest
through the islands (Palacios et al. 2019), also sup-
porting a northwesterly trend.

Similarly, although humpback whale behavior on
breeding and foraging grounds has been well docu-
mented, their migratory movements are less estab-
lished. Several studies have tracked migrating
humpback whales along migratory routes between
their feeding and breeding grounds through tele -
metry tags and have found animal movement when
leaving the breeding grounds to be highly directed
(Abileah et al. 1996, Mate et al. 1998, Norris et al.
1999, Lagerquist et al. 2008, Gales et al. 2009, Horton
et al. 2011, 2017, Kennedy et al. 2014). However, there
may be some transition in behavior before humpback
whales begin their migration. For example, studies
off New Caledonia have found several humpback
whales spending time at shallow seamounts near the
breeding ground before beginning directed travel
(Garrigue et al. 2010, Derville et al. 2020), and
another found humpback whales from the Revil-
lagigedo Archipelago breeding ground visited other
wintering areas in Mexico before heading northwest
(Lagerquist et al. 2008). Similarly, Kennedy et al.
(2014) found some humpback whales visited sea -
mounts along their migration route in the Atlantic.

Some telemetry studies have also documented div-
ing behavior, although many of these have been
focused on foraging behavior (e.g. Goldbogen et al.
2008, Friedlaender et al. 2009,  Calambokidis et al.
2019). Derville et al. (2020) found shallow (<80 m),
long-duration dives to be square-shaped, while deep
dives were U-shaped and occurred in series. Baird
et al. (2000) found dives deeper than 100 m to occur
at least once an hour, and more often in deeper
water, while whales diving between 10 and 30 m
spent some time motionless and therefore may have
been singing. Movement behavior on breeding
grounds and over seamounts is most often classified
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as area-restricted search (ARS), with slower swim-
ming speeds and localized movements (Garrigue et
al. 2010, Ken nedy et al. 2014, Trudelle et al. 2016,
Henderson et al. 2019). Once whales move offshore
into deeper water, swim speeds increase and move-
ment be comes more directed, classified as transit or
travel (Kennedy et al. 2014, Trudelle et al. 2016, Pala-
cios et al. 2019). Palacios et al. (2019) defined a 50 km
buffer around the main Hawaiian Islands and found
that once humpback whales moved offshore of that
buffer they were generally engaged in directed
travel, committed to their migration to the feeding
grounds.

The recent development of an online repository and
automated fluke photograph matching algorithm
(Happy Whale, www.happywhale.com; Cheeseman et
al. 2021) has enabled humpback whale researchers
to upload and compare fluke photographs. This infor-
mation can supplement telemetry data when investi-
gating where humpback whales migrate within and
across years. This analysis can include both the broad
scales of the feeding and breeding grounds to which
the whales travel as well as the finer spatial scale of
where the animals may visit within those grounds.

While humpback whales have been well studied in
the Maui Nui region of Hawai’i (the 4-island region
of Maui, Kaho’olawe, Lana’i, and Moloka’i), only a few
studies have been conducted on humpback whales
off Kaua’i and Ni’ihau. The availability of Mote re -
ceivers on 3 Hawaiian Islands and the use of FastLoc
GPS tags enable the detection of finer-scale location
data within the main islands than has been previ-
ously obtained with Argos satellite tracking technol-
ogy. This has facilitated the examination of move-
ment and dive behavior of satellite-tagged hump back
whales encountered off Kaua’i. In addition, this study
investigated what movement and dive behavior can
tell us about habitat use and the inter-island move-
ments of whales as well as their behavior as they
move beyond the breeding grounds. These results
provide valuable information on humpback whale
behavior as they transition to migration, with insights
that could not be observed through traditional visual
observation-based studies.

2.  MATERIALS AND METHODS

Vessel-based photo-identification and satellite tag-
ging of humpback whales Megaptera novaeangliae
were conducted on 17−24 March 2017, 4−12 February
2018, and 21−26 March 2019 in the waters off Kaua’i
and Ni’ihau (see Fig. 1). Nonsystematic surveys were

conducted in a 6.7 m rigid-hulled inflatable boat.
Data on the location and time of each sighting, whale
behavior, individual reproductive roles, presumed
sex based on behavior, and group size were collected
along with environmental data (e.g. Beaufort sea
state, wind speed and direction, swell size, cloud
cover). Individual reproductive roles included single-
tons (that may or may not also be singing), members
of a dyad, or members of a competitive pod, includ-
ing the female or nuclear animal, the primary escort,
and secondary escorts (e.g. Tyack & Whitehead 1983).
In addition, identification photos of the left- and right-
side dorsal fin and tail fluke were taken when possi-
ble. Photos were taken using one of 3 types of digital
SLR cameras (Canon 50D, 7D, or 7D Mark II) with a
100−400 mm zoom lens. Additional details on field
methods, focal follows, and tagging approaches can
be found in Henderson et al. (2019). Fluke photo-
graphs were uploaded to the online repository at
HappyWhale (Cheeseman et al. 2021).

Satellite-monitored, location−dive tags (Wildlife
Computers; SPLASH10-292 and SPLASH10 F-333) in
the ‘low-impact minimally percutaneous external-
electronics tag’ (LIMPET) configuration were used
for tagging. The 2017 tags were Argos satellite-only
(SPLASH10-292), while the tags used in 2018 and
2019 were enhanced with Fastloc-GPS (SPLASH10-
F-333) to improve location accuracy and frequency,
particularly when the whales were within line-of-
sight of one of 3 Wildlife Computers Mote receivers
(e.g. Jeanniard-du-Dot et al. 2017) installed on
Kaua’i, Ni’ihau, and O’ahu. Tags were attached
externally to the skin (see Andrews et al. 2019) on or
near the whale’s dorsal fin with two 6.8 cm sterilized
surgical-grade titanium sub-dermal darts with 6
backward-facing petals, deployed with a DanInject
JM25 pneumatic projector (DanInject). Tags were
programmed to transmit 18 to 21 h d−1 (based on
satellite availability in the area each year) with up to
750 transmissions d−1. The tag’s series function was
used to record data on depth using a sampling inter-
val of 75 s. This sampling interval creates unintended
variability in actual maximum depth and duration.
Dive thresholds were set to deeper than 5 m and
longer than 30 s. Data gaps in both location and dive
data were expected due to multiple factors affecting
message transmittal and reception.

2.1.  Satellite tag data analysis

Track positions were estimated using the Argos
Data Collection and Location System with a Kalman
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filtering algorithm and were further screened using
the Douglas-Argos Filter version 8.50 (Douglas et al.
2012) available in Movebank (https://www.movebank.
org). Additional manual filtering was conducted to
remove erroneous locations appearing on land. GPS
locations were removed if they had residual deviance
greater than 35 or greater than 10 min time errors.
Both Argos and GPS positions were used when
available. GPS location errors were assumed to be
500 m if 4 satellites reported and 50 m if 5 or more
satellites reported (e.g. Hazel 2009, Dujon et al.
2014), while Argos location errors could be greater
than 10 km (Costa et al. 2010). Therefore, during a
final manual inspection of the data, some Argos posi-
tions were discarded if they were an unrealistic dis-
tance (i.e. re quiring >15 km h−1 travel speed; based
on maximum travel speeds observed by Noad & Cato
2007) from an adjacent GPS location occurring
within 5 min.

The filtered locations were fitted with a corre-
lated random walk to produce interpolated tracks at
1 position h−1 using the package ‘crawl’ (Johnson
2013, Johnson & London 2018) in R v.4.1.0 (R Core
Team 2019). Tracks were also interpolated in 10 min
in crements in order to estimate the water depth
along the track based on the ETOPO1 1-arc global
relief data (https:// www. ngdc. noaa. gov/ mgg/ global),
gridded using the R package ‘sp’ (Pebesma &
Bivand 2005, Bivand et al. 2013), and mapped along
the track using the R package ‘adehabitatLT’
(Calenge 2006). The track movement behavior was
determined using a discrete-time hidden Markov
model (HMM) based on a Gamma distribution of
the mean and standard deviation of step length
(Euclidean distance between successive locations,
in m) and the concentration (i.e. an indication of
how concentrated the angle values are around the
mean) of the wrapped Cauchy distribution of the
turning angle (the change in bearing between loca-
tions) between interpolated hourly locations using
the package ‘momentuHMM’ (McClintock & Mich-
elot 2018). The HMM included 3 behavioral states:
ARS (which typically indicates milling or foraging
but may also be indicative of social behavior); an
intermediate or transition behavior; and directed
travel or transit (Henderson et al. 2019). The Viterbi
algorithm was used to compute the most likely
sequence of those 3 underlying states for each track
(Zucchini et al. 2016, McClintock & Michelot 2018).
In addition, other covariates in the state transition
probabilities were tested for inclusion in the HMM:
the cosinor function (used to incorporate cyclical
behavior) of the hour of the day, water depth, and a

binary factor indicating whether animals were out-
side the 50 km buffer established by Palacios et al.
(2019). Furthermore, each variable was tested in a
design matrix that indicated how each parameter
influenced the state-dependent distribution of steps
(McClintock & Michelot 2018). The final model cho-
sen had the lowest Akaike information criterion
(AIC) score. It should be noted that the in creased
resolution of GPS locations in 2018 and 2019 when
the animals were in proximity to the Mote receivers
could lead to improved classification of the ARS
state in those areas and could create a nearshore
bias in ARS classification.

Dive behavior was analyzed using the R package
‘diveMove’ (Luque 2007, Luque & Fried 2011), which
determines the number of dives and dive depths
(median, mean, and maximum), and categorizes the
start of the descent, end of the descent/ start of bot-
tom time, end of bottom time/start of ascent, and total
dive duration. From those data, the times and dis-
tances of descent and ascent periods can be
extracted and descent and ascent rates can be calcu-
lated. Note that since dive time series data are only
recorded every 75 s, these values are not exact and
only represent the phase of the dive at each 75 s
interval. Dives were also sorted by shape into square-,
V-, or U-shaped dives based on the definitions given
by Wildlife Computers (Square-shaped dives had
bottom times of greater than 50% total dive time, V-
shaped dives had bottom times less than 20% of
total dive time, and U-shaped dives had bottom times
between 20 and 50% of total dive time; e.g. Derville
et al. 2020) and by depth category, with shallow
dives <50 m and deep dives >100 m.

Generalized estimating equations (GEEs) were fit
to the dive data using the R package ‘geepack’ (Højs-
gaard et al. 2006, 2022), with a Gamma distribution
with a log link and an AR1 correlation structure.
Residuals were checked for normality using a den-
sity plot. GEEs were used to account for the spatio-
temporal correlation among the dive variables as
well as inter-individual and inter-annual variability.
Maximum dive depth was chosen as the response
variable, while dive duration, descent rate, ascent
rate, water depth, and start hour were included as
continuous explanatory variables and dive shape
(U, V, or square), diel period (daytime vs. nighttime),
and whether the animal was further than 50 km off-
shore included as categorical explanatory variables;
animal ID was used as the blocking unit. A sequen-
tial ANOVA was run on the GEE model output to
facilitate model selection by determining which vari-
ables were statistically significant.
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3.  RESULTS

In total, 23 d of effort were conducted across 3 yr.
During that time, 209 groups of humpback whales
Megaptera novaeangliae were encountered, with
average group sizes of 2.3, 1.8, and 2.0 in 2017, 2018,
and 2019, respectively, highlighting the prevalence
of dyads off Kaua’i. A total of 259 unique dorsal fins
were photographed, along with 188 unique flukes
(with some overlap between those 2 categories).
Within each field season, 2 to 12 whales were re -
sighted, but no animals were resighted across years;
88 individuals were matched in HappyWhale to pre-
vious fluke photographs. The majority of these ani-
mals were found to forage in the Alaskan feeding
grounds, with fluke matches from the Aleutian Is -
lands, Gulf of Alaska, SE Alaska, and British Colum-
bia (Fig. 1). However, 12 flukes were matched to
Russian feeding grounds (11 from the Kamchatka
peninsula and one from the Bering Sea), and 3 flukes
were matched to Baja Sur Mexico. Eight of the Russ-
ian matches occurred in 2017, along with the
matches to Mexico, while the remaining 4 matches to
Russian occurred in 2018. There were no matches
made to the Russian or Mexican feeding grounds in
2019. Within the Hawaiian Islands, most matches
from other islands occurred across different years
(e.g. sighted at another island, most frequently Maui,
one year and sighted at Kaua’i in a different year).
However, 5 animals were photographed within the
same year. Four of these animals were photographed
first at Kaua’i, then at either O’ahu (5 d later) or Maui
(6 d and 33 d later), while one animal was pho-
tographed at Maui then at Kaua’i 21 d later.

A total of 19 whales were satellite
tagged, the majority of which were
suspected to be males based on their
behavior in competitive pods or con-
firmed as males due to the absence of
a hemispheric lobe from underwater
video taken with a GoPro camera on a
pole. The tagged female (presumed
female based on her position as
nuclear animal and behavior in a
competitive pod; e.g. Tyack & White-
head 1983, Pallsbøll et al. 1992) was
confirmed to be a female from a
genetic sample obtained by Whale
Trust (Jones 2010, Henderson et al.
2021). Sixteen of the tagged animals
were estimated to be adults based on
their size; the other 3 appeared to be
sub-adults. Nine animals were en -

countered in competitive pods, 5 were in pre sumed
male−female dyads (e.g. Corkeron & Brown 1995)
while 4 dyads were likely sub-adult or adult males
based on behavior, and one was encountered alone.
The tags lasted from 1.6 to 12.5 d, with individual
tags lasting the longest in 2017 and the shortest in
2019. One tag only transmitted 3 times and was not
in cluded in subsequent analyses. Individual tag infor-
mation is included in Table 1. Three of the tagged
animals from 2017, 2 from 2018, and 4 from 2019 had
resight information based on fluke matches in Happy -
Whale. Two of the 2017 whales (tag IDs 158569 and
164792) were observed on the Russian feeding
grounds, with resights going back as far as 2010 and
2013, respectively. The third whale from 2017 was
observed off Maui in 2004. One tagged whale (173784)
with resight information from 2018 was ob served on
feeding grounds in the Gulf of Alaska 3 times start-
ing in 2002. The other whale from 2018 (173786) was
first sighted off Maui in 2008. The female (173791)
from the competitive pod tagged in 2019 had been
sighted in the Gulf of Alaska as early as 2005 and
was also observed off Maui in that year. She was
photographed off O’ahu 5 d after being tagged, along
with the primary escort from that group, which is
consistent with their tag track (Henderson et al.
2021). Two of the secondary escorts from the same
competitive pod also had resight data; one (179029)
was observed off Maui in 1998 and on SE Alaskan
feeding grounds in 2019, while the other secondary
escort (179030) had been seen off Maui multiple
years since 2013 (the latest being 2020).

Three tagged whales traveled east to O’ahu (Fig.
2). Of these, 2 were a confirmed male and female
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Fig. 1. North Pacific Ocean, with an inset map of the main Hawaiian Islands
outlined with the 50 km buffer (the blue line around the Hawaiian Islands; this
is a distance at which humpback whales are most likely to be on their migra-
tion to or from the feeding grounds). The feeding grounds of the North Pacific

humpback whale population are labeled
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(the female was confirmed with genetics, the male
was confirmed by an underwater video) from 2019
that were tagged together in a competitive group
and remained together for at least 4 d (Henderson
et al. 2021). The third was a male from 2018 that
had been a primary escort in another competitive
pod. The tag duration of 2 additonal whales was

too short to capture their movements beyond
Kaua’i, al though one male (a secondary escort,
173730) did circumnavigate the entire island
before his tag stopped transmitting. The remainder
of the whales traveled west to Ni’ihau. Among
these, one began migrating northward from Ni’i-
hau, and the rest with tags still transmitting con-

202

Tag ID Time      Last            No. of days         Age                     Group                 Role           Travel             Photo-ID
        deployed transmission         trans-             class                information           (sex if       direction      match location
                  Date Time       Date      Time       mitted                                                                  known)                          and earliest obs.

158569   3/19/17 10:45    3/21/17   16:00          2.3               Adult                      DY                     DY         West (NI)       Russia 2010a

                                                                                                                                                                                                                                                                                   Maui 2017b

158570   3/20/17 09:29    3/26/17   10:32          6.0           Sub-adult                   DY                     DY         West (NI)
                                                                                                           sub-adult males

158571   3/22/17 09:02    3/30/17   11:36          8.1           Sub-adult         Single animal      Singleton    West (NI)

164790   3/22/17 15:47    3/25/17   14:35          3.0               Adult                      CG                     SE          West (NI)
                                                                                                              of 5 animals           (male)

164791   3/21/17 11:26     4/2/17    21:41         12.5          Sub-adult                   DY                     DY         West (NI)        Maui 2004c

                                                                                                           sub-adult males

164792   3/22/17 16:41    3/24/17   23:11          2.3               Adult                      CG                     SE          West (NI)       Russia 2010a

                                                                                                              of 5 animals           (male)

164793   3/24/17 08:27    3/25/17   22:50          1.6               Adult           DY adult males,       DY/SE      West (NI)
                                                                                                                joined CG            (male)

173784    2/7/18 08:28    2/15/18   23:23          8.6           Sub-adult                   DY                    DY         West (NI)         GoA 2002d

                                                                             sub-adult males

173785    2/6/18 14:03     2/8/18    09:30          1.8               Adult                      DY                     DY         West (NI)                  

173786   2/10/18 12:15    2/18/18   11:07          8.0               Adult                      DY                     DY         West (NI)        Maui 2008c

173787   2/11/18 11:49    2/13/18   22:14          2.5               Adult                      DY                     DY         West (NI)

173788   2/12/18 11:37    2/18/18   06:25          5.8               Adult                      CG                     PE         East (OH)
                                                                                                              of 5 animals           (male)

173789   2/12/18 12:12    2/18/18   11:09          6.0               Adult                      CG                     SE          West (NI)
                                                                                                              of 9 animals           (male)

173790   3/21/19 09:49    3/24/19   23:21          4.4               Adult                      CG                     PE          West (NI)
                                                                                                              of 6 animals           (male)

173791   3/25/19 10:13    3/29/19   10:02          4.0               Adult                      CG                     FE         East (OH)    SE Alaska 2005e

                                                                                                              of 7 animals         (female)                              Maui 2005c

                                                                                                                                                                                                                                                                                  O’ahu 2019f

179027   3/24/19 09:52    3/26/19   02:40          1.7               Adult                      DY                     DY           na (KA)

179028   3/25/19 10:31     4/1/19    20:48          7.4               Adult                      CG                     PE         East (OH)       O’ahu 2019f

                                                                                                              of 7 animals           (male)                                         

179029   3/25/19 11:57     4/1/19    11:07          7.0               Adult                      CG                     SE          West (NI)        Maui 1998g

                                                                                                              of 7 animals           (male)                           SE Alaska 2019h

179030   3/25/19 11:26    3/28/19   15:58          4.2               Adult                      CG                     SE           na (KA)          Maui 2013g

                                                                                                                                                                     of 7 animals           (male)                               Maui 2020g

aRussian Cetacean Habitat Project; bUltimate Whale Watch; cM. Jones, Whale Trust (Jones 2010); dRainbow Tours; 
eO. von Ziegesar, Winged Whale Research; fAtlantis Cruises; gJ. Currie, Pacific Whale Foundation; hD. Rogers, Alaska 
Sea Adventures

Table 1. PTT ID and tagging, group, and individual information for all 19 tagged humpback whales. Travel direction and next
island visited (NI: Ni’ihau; OH: O’ahu; KA: Kaua’i) are also included, along with any photo-ID match locations from Happy-
Whale and the earliest year they were observed at that location. Date given as mo/d/yr; Time is Hawai'i standard time (HST);
GoA: Gulf of Alaska. DY: dyad; CG: competitive group; SE: singleton/singer, secondary escort; PE: primary escort; FE: 

female/nuclear animal; na: not applicable
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tinued traveling northwest from Ni’ihau moving
between islands, surfacing reefs, and sea mounts
of the northwestern archipelago (Fig. 2). Only 5
whales moved outside of the 50 km buffer into off-
shore waters; their minimum residency time after
tagging within the buffer was 1.21 to 8.42 d.

3.1.  Movement behavior

The results of the HMMs for the 3 behavioral
states based on step length and turning angle are
as follows. The best fit HMM of the movement

behavior that minimized the AIC score (Table S1
in the Supplement at www.int-res.com/ articles/
suppl/ m685 p197 _ supp. pdf) included habitat type
(inshore vs. offshore) and time of day; both vari-
ables were also included in the design matrix of
the state transition probabilities for step length
(Fig. S1). As would be expected, mean step length
and speeds were lowest for ARS and highest for
directed travel (Table 2). Similarly, mean turning
angles were largest for ARS and smallest (closest
to zero) for directed travel. The step length for all
3 behavioral states was longer when the animals
were offshore than when inshore, although the
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Fig. 2. All 19 satellite-tracked humpback whales, with an inset map of the 2 tracks that extend beyond the main Hawaiian
Islands. Points are the raw, filtered Argos and GPS locations, connected by straight lines. Nihoa is a small island surrounded 

by reef; Middle Bank is a seamount

State                    Count        Step length (m)       Speed (km h−1)   Turning angle    % Time nearshore     % Time offshore

ARS                        624            689.6 ± 360.7              0.7 ± 0.4              −0.075 ± 1                      29.5                            25.0
Intermediate         918            2095.0 ± 891.7              2.1 ± 0.9           −0.017 ± 0.8                   48.3                            19.3
Directed travel      643          5754.2 ± 2166.8            5.8 ± 2.2           0.008 ± 0.6                   22.1                            55.7

Table 2. Counts (number of locations in interpolated tracks) of each behavioral state of humpback whales from all combined
tag data, along with mean (±SD) values for step length, speed, and turning angle, and the percent of time within and outside 

the 50 km buffer spent in each state. ARS: area-restricted search

https://www.int-res.com/articles/suppl/m685p197_supp.pdf
https://www.int-res.com/articles/suppl/m685p197_supp.pdf
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difference was small in the intermediate behavior
(Fig. S2). ARS and the intermediate behavior were
the most common inshore behaviors, while directed
travel was the dominant behavior offshore of 50 km.
The intermediate be havior was the most common
overall (Table 2). There was a low likelihood of
transitioning from directed travel into ARS or vice
versa; most transitions occurred via the inter -
mediate state. The whales would transition from
intermediate behavior into directed travel when
moving between islands into deeper water, and
from directed travel to intermediate when ap -
proaching shallower water near an island or sea -
mount (Fig. S3). Movement behavior and travel
routes were similar across all 3 years in humpback
whales traveling northwest beyond Ni’ihau along
seamounts (Fig. 3) as well as whales traveling east
to O’ahu (Fig. 4).

3.2.  Dive behavior

Dive data were similar across all 3 years, with mean
dive durations of 8.7 min (range: 1.0−46.3 min), mean
dive depths of 37.1 m (6.8−412.0 m), mean descent
and ascent rates of 0.3 and 0.2 m s−1, respectively
(0.03−2.3 and 0.03−2.9 m s−1), and mean bathymetric
depths of 640.8 m (3.7−5152.0 m). Of the 7 animals
tagged in 2017, 4 moved beyond the 50 km buffer
into offshore waters, compared to only one animal
each in 2018 and 2019. Animals crossing from Kaua’i
to Ni’ihau or O’ahu were considered inshore since
they were within the 50 km buffer. However, animals
that crossed between islands did perform deeper
dives as well, with the known female diving to a
maximum of 412 m.

Most humpback whale dives were shallower than
50 m (82.2% of 5314 recorded dives), while only a
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Fig. 3. Interpolated tracks (1 h) of humpback whales, fitted with the crawl model and movement behavior determined by
hidden Markov models, demonstrating similarities in movement behavior and travel routes across individuals and years.
Tracks for whales 158570 and 158571 are from 2017, 173784 is from 2018, and 173790 is from 2019. ARS: area-restricted 

search; Int: intermediate
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small percentage of dives were greater than 100 m
(5.9%). However, dives deeper than 100 m occurred
more frequently at night during directed travel in
deeper water and occurred more frequently in off-
shore waters than shallow dives (Table 3). In con-
trast, square-shaped dives had the highest propor-

tion during ARS and the lowest during
travel, and a higher proportion of shal-
low dives occurred in ARS. These
findings align with an examination of
the dive series data from humpback
whales transiting between islands or
seamounts offshore of the 50 km buf -
fer (and including whales crossing be -
tween Kaua’i and O’ahu; Fig. 5a),
which conducted repeated series of
long, deep dives (>100 m) only at
night. In contrast, for whales remain-
ing nearshore to Kaua’i or Ni’ihau or
transiting between the 2 islands via
the Kaulakahi Channel where the
water depth remains relatively shallow
(~1000 m), deep dives occurred day or
night but not in repeated series as
observed in deeper waters (Fig. 5b).

These general trends were further
borne out in the GEE of dive depth.
Predictor variables that were in cluded
in the final model were dive duration,
descent and ascent rates, bathymetric
depth, and whether it was day or night
(Table 4, Fig. 6). Dive durations were
longer with deeper dives, while de-
scent and ascent rates increased with
deeper dives, although there appears to
be a secondary grouping of shallower
dives to <125 m that had rapid descent
and ascent rates (Fig. 6). Maximum
dive depths were correlated with ba-
thymetric depth, so that deeper dives
were conducted in deeper waters and
shallower dives in nearshore waters,
with dives often extending close to
the bottom. In addition, deeper dives
tended to oc cur at night, but as de-
scribed above, this only occurred in
offshore waters during directed travel.

4.  DISCUSSION

We tagged 19 humpback whales
Megaptera novaeangliae off Kaua’i

between 2017 and 2019; their dive and movement
behaviors provide in sight into how humpback
whales behave when traveling between islands on
the Hawaiian breeding grounds as well as how their
behavior changes as they transition into migration.
ARS and intermediate behaviors dominated while
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Fig. 4. Interpolated tracks (1 h) of humpback whales fitted with the crawl
model and movement behavior determined by hidden Markov models, de -
monstrating the similarities in both movement behavior and route utilized
by the 3 humpback whales that traveled east to O’ahu. Track for whale
173788 was from 2018, while 173791 and 179028 were both from 2019 and
 appear to have remained together for 4 d as they traveled to O’ahu 

(Henderson et al. 2021)
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the animals were in shore, with predominantly shal-
low square-shaped dives and no diel patterns to the
dives. However, once the animals moved offshore,
either beyond the 50 km buffer that seems to be linked
to migration (Palacios et al. 2019) or in the channel
between Kaua’i and O’ahu, they switched to directed
travel behavior and began conducting a series of deep
dives (>100 m) at night. In addition, the whales tran-
sited along strikingly similar routes when traveling
both east and west; when traveling west they exten-
sively utilized islands, surfacing reefs, and seamounts
along the northwestern Hawaiian archipelago.

Upon leaving the waters of Kaua’i, 3 whales tran-
sited eastwards to O’ahu while 14 traveled westward
to Ni’ihau; 8 of the latter whales continued beyond
Ni’ihau to the islands and seamounts of the north-
western archipelago. This predominantly northwest-
ern movement mirrors what has been found for other
satellite-tagged humpback whales in the Hawaiian
Islands, with animals arriving at Hawai’i Island from
their feeding grounds and most animals moving gen-
erally northwest through the main Hawaiian Islands,
with some individuals traveling east (Mate et al.
2019, Palacios et al. 2019). In this study, the only
tagged animals that traveled east were 2 primary
escorts and a female, two of which traveled together
for at least 4 d (Henderson et al. 2021). Two addi-
tional untagged animals were resighted off Maui
after our encounters off Kaua’i (i.e. traveling east)
based on fluke photographs in HappyWhale. In con-
trast, all tagged whales that were encountered as
secondary escorts, in dyads, or as singletons traveled
west. One animal was photo-identified off Maui 21 d
prior to being tagged off Kaua’i (i.e. traveling west)
in the Kaulakahi Channel and was observed in a
dyad in Kaua’i. In this study, animals encountered
further offshore or traveling west were more likely to
continue moving westwards towards Ni’ihau and
beyond. While more data are needed to confirm this
hypothesis, it may be that animals in Kaua’i are more

likely to be near the end of their residence time on
the breeding grounds and are close to beginning
their migration.

It is also possible that whales preferentially travel
east or west depending on their feeding ground des-
tination, such that whales heading to the western
Aleutian Islands or Russia would depart from the
westernmost islands of Hawai’i while whales head-
ing to British Columbia or the Gulf of Alaska would
move east to depart from Hawai’i Island. However,
Palacios et al. (2019) and Mate et al. (2019) found
whales migrating towards all feeding grounds re -
gardless of which island they departed from, and
flukes from whales encountered in this study were
matched at all feeding grounds from Russia to Wash-
ington state. While the 2 tagged animals that had
been observed on Russian feeding grounds departed
from Ni’ihau, the tagged whales that were observed
on the Gulf of Alaska and Southeast Alaska feeding
grounds departed from both Ni’ihau and O’ahu.
Therefore, there does not appear to be a relationship
between the island that whales migrate from and
their feeding ground destination. This may further
support a general northwesterly movement through
the islands during the breeding season, with whales
departing from their westernmost point to their feed-
ing grounds rather than departing from a specific
island for a specific feeding ground.

Residence times between tagging and migration
were far shorter in this study (mean: 5.42 d) than in
other studies in the Hawaiian Islands (1.2−8.4 vs.
11−14.8 d in Lagerquist et al. 2008, Herman et al.
2011, Mate et al. 2019, Palacios et al. 2019), although
tag retention time was also much shorter in this study
compared to other studies. Additionally, fewer com-
petitive groups were observed off Kaua’i than are
known to occur in the Maui Nui region (e.g. Baker &
Herman 1984, Helweg & Herman 1994); instead,
dyads were the most commonly encountered group
in this study, and mothers with calves were rarely
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Dive Depth Totals Offshore Inshore Nighttime Daytime ARS Int. Travel Mean dive Mean water
shape category 50 km 50 km (%) (%) (%) (%) (%) depth (m) depth (m)

Square Shallow 1165 13.4 86.6 46.2 53.8 29.2 44.7 26.1 24.9 579.8
U Shallow 1997 9.9 90.1 49.3 50.2 23.8 46.7 29.4 21.0 552.8
V Shallow 1205 9.7 90.3 56.8 43.2 16.8 41.2 42.0 16.7 562.6
Square Deep 144 18.1 81.9 66.7 33.3 8.3 31.9 59.7 185.7 1507.7
U Deep 139 24.5 75.5 52.5 47.5 12.2 15.8 71.9 191.9 1774.4
V Deep 34 32.4 67.6 55.9 44.1 8.8 17.6 73.5 185.9 1824.4

Table 3. Humpback whale dive data statistics by dive shape and depth category (Shallow: <50 m; Deep: >100 m). The number
of dives that occurred inshore or offshore, during the day or night, or by behavioral state are given as percentages of the total 

number of dives in that shape and depth category. ARS: area-restricted search; Int.: intermediate
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encountered. However, the hypothesis that hump-
back whales off Kaua’i may be closer to the onset of
their migration than whales at other islands is based
on a small sample size, so more tagging and fluke

matching be tween islands across the breeding sea-
son is needed to provide additional support.

Most studies modeling baleen whale movement
behavior have focused on the 2 ends of the behav-
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Fig. 5. Dive time series (black lines) from tagged humpback whales across 3 years; grey bars: nighttime hours; horizontal or
diagonal lines connecting dives: periods of missing data. (A) Individuals that moved outside the 50 km buffer and likely began
their migration (top 3; purple lines: offshore period) or crossed from Kaua’i to O’ahu within the buffer (bottom 3); all of these
animals conducted a series of long, deep dives exclusively at night when in deep water. (B) Individuals that remained in the 

50 km buffer near Kaua’i and Ni’ihau. Dates are given as mo-d-yr
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ioral spectrum, ARS and travel, and have chosen not
to classify the intermediate behavior (e.g. Bailey et
al. 2009, Kennedy et al. 2014, Palacios et al. 2019).
However, there may be information encoded in that
intermediate behavior that warrants examination.
In this study, humpback whales rarely transitioned
directly between ARS and directed travel, and al most
always moved into the intermediate state first. This
was the dominant state in nearshore waters (48.3%),
with both moderate swim speeds and turning angles,
and may represent a transitional behavior as whales
move between deep and shallow waters. Directed
travel was also observed in nearshore waters, but
was the dominant offshore behavior (55.7%), while
the intermediate behavior became less prevalent and
was only observed offshore when whales were ap -
proaching or departing from islands or seamounts.

Movement behavior on breeding grounds has
often been categorized as ARS, with slower swim-

ming speeds and non-directed movement. In this
study, while the whales were in inshore waters and
actively engaging in breeding behavior such as
competitive pods and presumed male−female
dyads, ARS and the intermediate behavior state
were dominant, with mean travel speeds of 0.7 and
2.1 km h−1, respectively. Kennedy et al. (2014)
found mean swimming speeds on the Atlantic
breeding ground to be 1.7 km h−1, similar to the
1.31 km h−1 found during ARS by Palacios et al.
(2019) in Hawai’i, 1.2 km h−1 speed on Mexican
breeding grounds by Lagerquist et al. (2008), and
0.85−0.9 m s−1 (3.1 km h−1) during localized move-
ments in the coastal waters of Madagascar by
Trudelle et al. (2016). Interestingly, Tru delle et al.
(2016) found more ARS-type movements by males
in coastal waters than by females, although females
performed ARS in shallower, nearshore waters
more than males. Swim speeds in the present study
in creased to an average of 5.8 km h−1 during
directed travel. Trudelle et al. (2016) also found
that directed travel increased as whales moved into
deep waters, occurring in 79% of oceanic move-
ments, with swim speeds increasing to 1.15 m s−1

(4.2 km h−1). Similarly, Palacios et al. (2019) found
swim speeds increased to 4.4 km h−1 and transit
became the dominant behavior as humpback whales
passed the 50 km buffer, and migrating whales in
the Atlantic increased swim speeds to 4.3 km h−1

(Kennedy et al. 2014).
However, prior to shifting into directed travel and

presumably their migration, several studies have
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                         Estimate         SE            Wald        Pr(>|W|)

Intercept              1.88            0.04        2006.22       <0.001
Dive duration      0.07          0.004      335.53       <0.001
Descent rate        1.26            0.09        202.96       <0.001
Ascent rate          0.84            0.06        172.16       <0.001
Water depth  0.00006 0.00001  21.92       <0.001
Daytime               0.17            0.04        19.73       <0.001

Table 4. Dive behavior generalized estimating equation
model coefficients along with their estimates, test statistics, 

and p-values

0

10

20

30

40

0 100 200 300 400

Di
ve

 d
ur

at
io

n

0

1

2

3

4

0 100 200 300 400

De
sc

en
t r

at
e

0

1

0 100 200 300 400

Da
yt

im
e

0
1000
2000
3000
4000
5000

0 100 200 300 400

W
at

er
 d

ep
th

0

2

4

6

0 100 200 300 400
Dive depthi

As
ce

nt
 ra

te

Fig. 6. Values of the predictor vari-
ables in the generalized estimating
equation of humpback whale dive
depth with a smoothed linear fit. Day-
time = 0 indicates night hours (approx-
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indicates day hours (approximately
06:00−18:00 h). Dive and water depths
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found that humpback whales first spend time over
seamounts that are close to their breeding grounds
with a return to ARS behavior, as was observed in
this study. In New Caledonia, whales tagged on the
inshore breeding grounds traveled to or between off-
shore seamounts and spent at least 1 to 14 d in the
area (Garrigue et al. 2010). Whales moved extensively
between different seamounts and shallow areas
within this system before beginning their migration
(Derville et al. 2020). Similar transits to seamounts
before commencing migration have been observed
in Madagascar (Trudelle et al. 2016) and Mexico
(Lagerquist et al. 2008). This localized movement at
seamounts could represent a continuation of breed-
ing behavior but has also been hypothesized to in -
dicate opportunistic foraging (Derville et al. 2020).
Trudelle et al. (2016) found higher levels of chloro-
phyll a at the seamount visited by their tagged
humpback whales than were measured in the sur-
rounding waters, indicating a potential hotspot of
productivity. Another study found evidence of feed-
ing while on or near breeding grounds off Mexico
(Gendron & Urban 1993), and whales have also been
observed stopping over seamounts or in shallow
water regions along other migratory routes (Mate et
al. 1998, Stockin & Burgess 2005, Félix & Guzmán
2014), suggesting that this could be opportunistic
foraging. In the present study, humpback whales
traveling west visited islands, seamounts, and sur -
facing reefs and spent time in ARS behavior conduct-
ing shallow dives. More work should be done com-
paring the dive movement and behavior of both
breeding and foraging humpback whales to what is
recorded at seamounts to investigate this further. In
particular, the use of fine-motion and acoustic re -
cording tags such as DTAGs (Johnson & Tyack 2003)
would be ideal, where lunges or other indications of
foraging behavior could be captured along with for-
aging vocalizations.

Derville et al. (2020) reported humpback whales
performing a series of deep, U-shaped dives in the
offshore waters of New Caledonia during the day,
similar to the nighttime dive series found in the pres-
ent study. The authors hypothesized that the dives
may also represent opportunistic foraging behavior
on the deep scattering layer, comparing the U-
shaped dives to foraging dives observed in hump-
backs and other baleen whales (e.g. Croll et al. 2001,
Goldbogen et al. 2008). While the dive series in the
present study only took place at night rather than
during the day, and in offshore, likely oligotrophic
waters, the humpback whales in Hawai’i could still
be diving to the rising scattering layer as has been

observed in pelagic odontocetes (e.g. Abecassis et al.
2018, Copeland et al. 2019). However, defecation is
rarely seen in Hawaiian waters, which would be
expected if opportunistic foraging occurred. These
deep dives could also be used for navigation, bring-
ing animals closer to magnetic gradients (e.g. Klim-
ley et al. 2002, Horton et al. 2017), which could facil-
itate navigation when crossing deep water between
islands or migrating.

Individual humpback whales have previously
demonstrated high fidelity to long-distance migra-
tion routes across years (Horton et al. 2011, 2017,
Kennedy et al. 2014). Route fidelity has been found
for migrating whales with a spatial accuracy of less
than 150 km even across multiple years (Horton et al.
2017, 2020). These movements have also been linked
to geophysical forces, suggesting that these forces
(magnetism, gravity) may be used in navigation along
with lunar illumination. However, even within the
breeding grounds in this study, the observed move-
ment behavior and travel patterns were similar across
animals and years. Different whales transiting west
from Ni’ihau followed similar paths in all 3 years,
moving to Ka’ula Island and Middle Bank, similarly
changing movement behavior from travel to inter -
mediate behavior and then to ARS when over sea -
mounts. The 3 animals transiting east to O’ahu also
followed almost identical paths upon leaving Kaua’i
and transitioned into intermediate behavior in almost
the same location upon reaching O’ahu. These pat-
terns are similar even compared to humpback whale
movements in other studies. For example, the transit
paths between O’ahu and Kaua’i and between Ni’
ihau, Ka’ula Island, and Middle Bank in this study
overlap with the paths used by tagged whales in
Mate et al. (1998, 2019), and Palacios et al. (2019).
While other studies have examined movements
between islands or seamounts on other breeding
grounds as previously discussed (e.g. Kennedy et al.
2014, Derville et al. 2020), no other studies have
looked at the fidelity of these movements across ani-
mals or years. The proximity of the tracks to a shal-
low ridge between Kaua’i and O’ahu (Fig. 5), along
with the occurrence of the deep nighttime dives
when the animals were in that location, supports the
idea that the deep nighttime dives may facilitate nav-
igation. In the same way, the repeated use of the
same path along seamounts could indicate that the
seamounts and other seafloor features may aid in
navigation, and may also be areas of increased geo-
magnetism that further facilitate orientation along
migration routes (e.g. Horton et al. 2017). However,
these same findings could also support the hypothesis
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of foraging, since the bathymetric features also serve
to affect nutrient flow and aggregate prey. Further
work focused on the fidelity of routes both within and
beyond breeding grounds may provide additional in -
sight into the mechanisms and drivers of movement
and dive patterns by migrating humpback whales.

This study has provided new information on the
inter-island movements of humpback whales on the
Hawaiian breeding ground, including route fidelity
when traveling both eastward and westward from
Kaua’i. Most animals traveled west to the island of
Ni’ihau and the seamounts of the northwestern
archipelago, and then beyond to waters past the
50 km buffer that seems to be linked to the onset of
migration. This finding may indicate that many of the
whales encountered off Kaua’i are nearing the end of
their time on the breeding grounds and are close to
the onset of migration; however, some animals did
travel east and continued apparent breeding behav-
ior. Therefore, more work on inter-island movements
and the onset timing of migration is needed to deter-
mine what (if any) relationship exists between loca-
tion on the breeding ground and the onset of migra-
tion. When in nearshore waters, humpback whales
preferentially engaged in ARS and intermediate be -
havior, with shallow, square-shaped dives. When in
offshore waters or transiting between islands and
seamounts, movement behavior switched to directed
travel, with a return to intermediate or ARS behavior
when approaching shallow water. Dive behavior in
nearshore waters was highly variable, but when
moving offshore, humpback whales engaged in re -
peated series of deep dives at night. These dives may
be used for navigation or may indicate opportunistic
foraging on the scattering layer. Higher resolution
tags could be used to investigate these dives further
in addition to the activity that takes place over
seamounts, as these findings could shift the ex isting
paradigm of humpback whale behavior on the
breeding grounds.

Improved knowledge of the linkages between
breeding and feeding grounds along with augmented
information on migratory behavior could help sup-
port conservation efforts for animals facing a number
of stressors across regions. Climate change could
impact opportunistic foraging along the migration
route, which could further negatively affect whales
already stressed by increased water temperatures
and reduced prey on traditional feeding grounds.
Similarly, whales that have been injured or entan-
gled in fishing gear on feeding grounds may be more
susceptible to stressors on breeding grounds, such as
mid-frequency active sonar in Hawai’i. Understand-

ing the likelihood of these kinds of multiple stressors
based on breeding and feeding ground locations or
migratory routes is vital to the continued protection
of this species.
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