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1.  INTRODUCTION 

Conservation measures for widely ranging marine 
fauna often focus on protecting critical life stages or 
activities such as breeding, foraging, or migrating 
(Corrigan et al. 2014, Lascelles et al. 2014, Calambo -
kidis et al. 2015). The effectiveness of these conser-
vation measures is dependent on understanding the 
distribution of a species during these activities, thus 
al lowing for targeted intervention at appropriate 
spatial and temporal scales (Norse 2010, Davies et al. 

2012, Guisan et al. 2013). Implementing conservation 
measures for a species can be complicated by the 
presence of other protected species in the same 
region with non-congruent distributions. Implemen-
tation of conservation measures for one species can 
shift deleterious effects from one species to another 
(Salas & Gaertner 2004, Barrows et al. 2005, Abbott & 
Haynie 2012). For example, by imposing fishing clo-
sures in one area to avoid bycatch of a protected spe-
cies, that fishing effort may shift to where another 
protected species resides. 
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Chesapeake Bay (hereafter ‘the Bay’) is a large, 
salt-wedge estuary on the mid-Atlantic coast of the 
USA that is home to economically and strategically 
important commercial and naval ports, commercial 
fisheries (Zohar et al. 2008, Richards & Rago 1999, 
Rick et al. 2016), substantial recreational boating and 
fishing fleets, and protected marine species (Barco et 
al. 2018a, Kahn et al. 2019, Aschettino et al. 2020). 
Overlapping use of the Bay by commercial and naval 
vessel traffic, fishing gear, private vessels of all sizes, 
and protected species is complex and not fully under-
stood in cases where information on the habitat and 
distribution of protected species is limited. More 
knowledge of the in-water distribution of protected 
species in the Bay is required to manage this com-
plex situation effectively. 

The Bay is a seasonally important foraging ground 
for loggerhead Caretta caretta and Kemp’s ridley 
Lepi do chelys kempii turtles, as was previously docu-
mented from the mid-1980s to the early 2000s (Lut-
cavage & Musick 1985, Keinath et al. 1987, Seney & 
Musick 2005, Mansfield 2006, Seney & Musick 2007, 
Mansfield et al. 2009). Loggerheads found in the Bay 
are part of the Northwest Atlantic Distinct Population 
Segment and are listed as threatened under the US 
Endangered Species Act (National Marine Fisheries 
Service 2011). Kemp’s ridleys are a single population 
and are listed as endangered under the US Endan-
gered Species Act. Both of these protected species 
face numerous threats in the Bay, including, but not 
limited to, vessel strikes from commercial, naval, and 
recreational vessels; dredging activities for shipping 
channels and beach re-nourishment; commercial and 
recreational fishery bycatch; climate change; and 
naval training and testing activities (Barco et al. 
2015), but the extent of their distribution is not fully 
understood. 

More recent satellite-telemetry studies found that 
both species spend most of their time engaged in 
area-restricted search behavior, generally interpreted 
to be foraging (Barco et al. 2017, 2018b), a critical life 
function. Home range analyses (Barco et al. 2018b) 
identified presumed foraging habitat for Kemp’s rid-
ley turtles in the southwestern corner of the Bay, the 
James and York Rivers, and several other nearshore 
locations, although there was extensive variation in 
home range size and location among individuals (Di-
Matteo et al. 2021). In contrast, presumed loggerhead 
turtle foraging habitat was found primarily in the 
center of the Bay, into the waters of southern Mary-
land, with some additional habitat closer to shore 
(Barco et al. 2017). Like Kemp’s ridleys, there was ex-
tensive variation in the size and location of individual 

loggerhead home ranges. These animals are predom-
inantly juveniles, but adults have been documented 
as well. 

A sensitivity analysis using a Kemp’s ridley satel-
lite telemetry dataset and tag simulation found that 
too few tags had been deployed to identify all suit-
able habitat likely to be present in the Bay (DiMatteo 
et al. 2021). Habitat modeling was identified by that 
study as an approach to identify additional potential 
habitat for both Kemp’s ridleys and loggerheads in 
the Bay. 

Habitat models for marine species, in this case habi-
tat suitability models using presence/absence data, 
can: (1) describe complex relationships among species 
and environmental covariates, (2) be extra polated in 
space and time (with caution), and (3) provide insights 
into species’ distributions (Robinson et al. 2017). 
Many frameworks for habitat suitability models exist, 
including, but not limited to, generalized additive 
models (Hastie & Tibshirani 1987, Guisan et al. 2002), 
maximum entropy (Elith et al. 2011), and boosted re-
gression trees (BRTs, Elith et al. 2008). Here we used 
the machine-learning technique of BRTs to create 
habitat suitability models for both species. 

BRTs allow for the fitting of complex environmen-
tal relationships, explicitly explore covariate inter -
actions, can include factors as covariates, and are 
robust to outliers in the dataset as well as missing 
covariate values (Elith et al. 2008). BRTs are a combi-
nation of regression trees, a type of decision tree 
model, and the boosting technique, which produces 
many simple tree models and then combines them to 
maximize predictive utility (Elith et al. 2008). These 
features make BRTs a good option for this tagging 
dataset and location, as sea turtles may be respond-
ing to complex environmental cues that create ephe -
meral conditions which aggregate prey or create 
conditions advantageous to their physiology (Scho -
field et al. 2009, Howell et al. 2015). The Bay is a 
complex estuarine environment with high variability 
in environmental conditions (Preston 2004, Werdell 
et al. 2009), increasing the potential for animals to 
react to complex environmental cues. 

We also explored the possibility that these 2 sea 
turtle species were partitioning their habitat (e.g. 
using different resources) by comparing the outputs 
of the 2 habitat suitability models. Habitat partition-
ing may complicate conservation efforts if animals 
are found in different areas of the Bay. Habitat parti-
tioning allows species to avoid or reduce competition 
by occupying different ecological niches (Whittaker 
1967, May & MacArthur 1972). While both logger-
head and Kemp’s ridley turtles feed on benthic inver-
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tebrates (Byles 1988, Keinath et al. 1987, Mansfield 
2006), as a population, Kemp’s ridley turtles from the 
region have shown a preference for blue crabs Calli -
nectes sapidus, which are found predominantly in 
shallow areas of the Bay (van Engel 1958, Millikin & 
Williams 1984, Seney & Musick 2005, 2007, Barco et 
al. 2015). Horseshoe crabs Limulus polyphemus and 
whelks (Busycon spp.) are the predominant compo-
nents of the diet of loggerheads in the Bay and can 
be found in deeper waters (Seney & Musick 2007, 
Barco et al. 2015). 

The habitat suitability models presented below can 
provide managers with information to conserve these 
species in a complex estuarine environment with 
multiple stakeholders and uses. The extent of over-
lap between the habitat suitability of the species will 

yield insights into whether habitat partitioning is 
occurring, which will impact the complexity of con-
servation measures needed to protect both species. 
Additionally, the habitat models can be used as an 
input for designating critical foraging habitat for 
these species, which is not currently designated. 

2.  MATERIALS AND METHODS 

2.1.  Turtle-tagging and satellite-telemetry data 

Data were analyzed from Argos satellite tags de -
ployed on 24 Kemp’s ridley and 10 loggerhead turtles 
(Table 1). Details on capture and tagging methods 
can be found in Barco et al. (2015, 2017, 2018b). In 
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PTT              Deployment              Species                     Size         Mass                            Source                                   Argos  
                      start (24 h                                                  (cm)          (kg)                                                                          locations  
                    post-release)                                                                                                                                                in Bay (n) 
 
132367              7/9/2014            Kemp’s ridley               36.0            7.0            Stranded − cold stun                                79 
138114          10/20/2014            Kemp’s ridley               42.4          12.8            Stranded − cold stun                                48 
138117              9/2/2014            Kemp’s ridley               35.4            6.5            Recreational bycatch − hooked               92 
148886            5/29/2015            Kemp’s ridley               51.0          18.0            Wild capture                                             26 
148887            5/15/2015            Kemp’s ridley               59.0          41.0            Wild capture                                           156 
148889            5/16/2015            Kemp’s ridley               45.0          16.4            Stranded − cold stun                              209 
150767            6/24/2015            Kemp’s ridley               35.4            6.2            Recreational bycatch − hooked               25 
159707            5/19/2017            Kemp’s ridley               39.3            8.1            Recreational bycatch − hooked             228 
159708              7/2/2016            Kemp’s ridley               45.2          11.9            Recreational bycatch − hooked             124 
159709            7/26/2016            Kemp’s ridley               49.4          16.3            Recreational bycatch − hooked             111 
169763              6/8/2017            Kemp’s ridley               29.2            3.2            Recreational bycatch − hooked               74 
169764            6/17/2017            Kemp’s ridley               32.1            4.4            Recreational bycatch − hooked             145 
169765            5/19/2017            Kemp’s ridley               40.0            8.1            Recreational bycatch − hooked             246 
169767              5/5/2017            Kemp’s ridley               44.1          11.9            Recreational bycatch − hooked             169 
169768            5/19/2017            Kemp’s ridley               45.7          12.0            Recreational bycatch − hooked             155 
169769            5/24/2018            Kemp’s ridley               38.9            7.8            Recreational bycatch − hooked               39 
169770            7/10/2017            Kemp’s ridley               28.9            3.4            Recreational bycatch − hooked               39 
169771            5/31/2017            Kemp’s ridley               30.1            3.2            Recreational bycatch − hooked               78 
175216            5/16/2018            Kemp’s ridley               48.9          16.0            Recreational bycatch − hooked             141 
175218            5/16/2018            Kemp’s ridley               42.6          10.6            Recreational bycatch − hooked             119 
175219            5/24/2018            Kemp’s ridley               35.9            6.1            Recreational bycatch − hooked             191 
175220            6/20/2018            Kemp’s ridley               36.8            6.1            Recreational bycatch − hooked               56 
175221            5/24/2018            Kemp’s ridley               46.4          13.0            Recreational bycatch − hooked             250 
175222              6/4/2018            Kemp’s ridley               37.1            7.0            Recreational bycatch − hooked               90 
108053            8/27/2013            Loggerhead                 66.5          44.5            Recreational bycatch − hooked             119 
120347            6/12/2014            Loggerhead                 73.6          75.5            Stranded − cold stun                              198 
120348            3/16/2015            Loggerhead                 70.1          58.4            Stranded − cold stun                              465 
132363            9/28/2013            Loggerhead                 70.4          52.0            Recreational bycatch − hooked             125 
138112            6/13/2014            Loggerhead                 60.4          33.0            Stranded − cold stun                              480 
148883              7/1/2015            Loggerhead                 72.5           ND            Wild capture                                           238 
148884              7/1/2015            Loggerhead                 65.1           ND            Wild capture                                           101 
148885              8/5/2015            Loggerhead                 89.8           ND            Wild capture                                           120 
175708            6/29/2018            Loggerhead                 69.3          45.4            Recreational bycatch − hooked             129 
175711            6/20/2018            Loggerhead                 31.5            3.2            Recreational bycatch − hooked             116

Table 1. Summary of tag deployments retained in the analysis for both loggerhead and Kemp’s ridley turtles in Chesapeake 
Bay. Size was measured as straight carapace length, notch to tip. PTT: platform terminal transmitter; ND: no data available.  

Dates are given as mo/d/yr
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brief, tagged animals were a mix of wild-caught and 
rehabilitated animals. All animals, regardless of ori-
gin, underwent a health assessment prior to tagging 
and release. Animals were tagged in accordance 
with United States Fish and Wildlife Service require-
ments for minimizing drag and proportion of tag 
weight to animal weight (Eckert et al. 1999, Jones 
et al. 2011, USFWS 2016), with a variety of Argos 
satellite-linked platform terminal transmitters. Multi-
ple tag models were used based on budgeting con-
straints in different years of the program and the 
need to have a variety of Argos tag sizes to attach to 
animals with different carapace lengths and weights. 

Some existing deployments were not included in 
the analysis: animals whose deployments were en -
tirely outside the Bay; animals that spent fewer than 
5 d in the Bay; animals deployed prior to 2014, which 
was the earliest year for which the selected environ-
mental covariates were available; and 1 Kemp’s rid-
ley turtle whose entire deployment was in a small 
inlet not covered by the environmental covariates. 
Information on excluded animals was not included in 
Table 1. 

Argos satellite deployments for the remaining tur-
tles were run through the Douglas filter (Douglas et 
al. 2012) to remove unrealistic locations by using set-
tings recommended for hardshell turtles by the Turtle 
Expert Working Group (2009). Argos location errors 
can be up to 5 km, depending on the quality of the 
satellite fix, and Argos locations are not true animal 
locations. The Turtle Expert Working Group Douglas 
filter settings included parameters for the maximum 
redundant distance filter and the distance angle rate 
hybrid filter algorithms, which were used to account 
for unrealistic animal speeds and turning angles. Ad-
ditional filtering included removing locations on land 
and removing locations 24 h post-deployment to ac-
count for behavioral changes associated with animal 
handling and tagging. 

2.2.  State−space modeling 

Locations retained after filtering were processed 
using a hierarchical state−space model (hSSM), seg-
regated by species, to create estimated locations at 
regular time intervals from the irregular locations re-
ported by the Argos tags using the R package ‘bsam’ 
in R version 4.0.2 (Jonsen et al. 2005, Jonsen 2016, 
R Core Team 2019). These estimated locations re-
duced spatial autocorrelation from reported locations 
caused by animal behavior and satellite coverage. An 
hSSM was selected because movement parameters 

are estimated jointly for all individuals, along with in-
dividual effect parameters, allowing shorter deploy-
ments to benefit from the information in longer de-
ployments. This assumes that animals’ behavior is 
broadly similar, which we feel is reasonable given 
that animals were the same species, similar age class 
based on carapace length (juvenile), engaged in simi-
lar behavior (foraging), and were in the same region. 

We did not include a behavioral component in the 
hSSM to distinguish between traveling and area-re-
stricted search (ARS) behavior. Previous state−space 
modeling found that both species spent the majority 
of their time in the Bay engaged in ARS movements, 
assumed to be foraging (Barco et al. 2017, 2018b). 
This is consistent with the known ecology of the spe-
cies in this area (Lutcavage & Musick 1985, Keinath 
et al. 1987, Seney & Musick 2005, Mansfield 2006, 
Mansfield et al. 2009). Given that relatively few loca-
tions from previous studies in the Bay represented 
traveling behavior, we assume areas identified by the 
habitat model primarily represent foraging habitat. 

A 6 h time step was chosen as the interval between 
locations in the hSSM, as this was the finest-scale 
time step that could be fit to the Kemp’s ridley data. 
The loggerheads had more locations reported per day 
than the Kemp’s ridleys, which allowed for hSSMs as 
fine-scaled as 3 h in exploratory models, but we opted 
to keep the intervals equal so that each deployment 
would have the same number of locations reported 
per day, regardless of species. hSSM diagnostics were 
examined to ensure that Monte Carlo Markov chains 
were mixing, that parameters estimates were con-
verging, and that autocorrelation be tween chains was 
acceptably low. After state−space modeling, estimated 
locations from the hSSM were reviewed visually to 
ensure that the resulting deployments were reason-
able. Points on land were removed using the global 
self-consistent, hierarchical, high-resolution geogra-
phy database full-resolution shoreline (Wessel & 
Smith 1996). Fig. 1 displays the locations retained for 
the analysis and the study area. 

2.3.  Environmental covariates and absence data 

Candidate covariates for the habitat models 
included a mix of static and dynamic physical covari-
ates, habitat maps, and temporal factors (Table 2). 
Biological covariates such as chlorophyll a were not 
available at appropriate geographic and temporal 
scales and were not considered. Biological covariates 
were only available as remotely sensed or ocean 
model products and were at too coarse a spatial reso-
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lution, generally 5 km2 or greater, to reflect fine-scale 
habitat use in the topographically complex Bay. 

Because the Bay is a highly dynamic environment, 
covariates were chosen to make predictions on the 
finest temporal and spatial resolution possible, to 
reflect potential fine-scale features. The Chesapeake 

Bay Operational Forecast System (CBOFS) provides 
daily readings of temperature (°C) and salinity (parts 
per thousand, ppt) from sampling stations within the 
Bay and some of the major adjoining river systems. 
Both temperature and salinity are potentially impor-
tant environmental conditions for turtles and their 
prey. 

Temperature and salinity rasters were derived 
from CBOFS in situ sensors (n = 157) by taking the 
noon reading from each sensor and using the diffu-
sion interpolation tool in ArcGIS 10.7 (Esri 2019) to 
interpolate values to match the extent of high-resolu-
tion bathymetry data for the region. The resulting 
daily rasters had a resolution of 500 m. 

CBOFS data were not available prior to July 2014, 
so all ARGOS locations prior to 2014 were removed 
from the analysis. Rasters were processed for the 
months of May−November (with the exception of May 
and June 2014), the months when telemetered turtles 
deployed for this study were present in the Bay. 

Two temporal covariates, day of year and year, 
were derived from the times of estimated locations, 
and were included to account for intra- and inter-
annual variability in habitat not accounted for by 
other covariates. Latitude was also included as a can-
didate covariate to account for north−south variabil-
ity in habitat not captured by other covariates. 

Static maps of benthic habitat (National Marine 
Fisheries Service 2020) and submerged aquatic veg-
etation (Lefcheck et al. 2018) were also assessed as 
potential predictors based on the assumption that 
they may reflect important habitat for prey species. 
Ultimately, these habitat maps were dropped from 
consideration as there were many missing values 
compared to the extent of other available covariates 
and the submerged aquatic vegetation data also had 
missing years (the benthic habitat map did not vary 
temporally). Even though BRTs are generally robust 
to missing covariate values, here the missing data 
were extensive both spatially and temporally. 
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Fig. 1. Loggerhead (blue circles) and Kemp’s ridley (orange 
circles) locations used as presence points in the boosted re-
gression tree (BRT) models, as well as the high-resolution 
shoreline used to limit locations to being in-water. Rivers 
referenced in this study are labeled. NC: North Carolina;  

VA: Virginia; MD: Maryland

Covariate                           Type                  Resolution                                           Source 
 
Bathymetry                     Physical     1/3 arc second (500 m)     NOAA/NOS Chesapeake Bay Bathymetric Digital Elevation 

Model (mean lower low water; NCEI 2017) 
Surface temperature      Physical              Daily, 500 m             Chesapeake Bay Operational Forecast System 
Salinity                            Physical              Daily, 500 m             Chesapeake Bay Operational Forecast System 
Year                                Temporal                    NA                     Calculated from timestamp of locations 
Day of year                    Temporal                    NA                     Calculated from timestamp of location 
Latitude                            Spatial                    Meter                   Taken from modeled animal locations

Table 2. Summary of available covariates for boosted regression tree models. NA: not applicable
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2.4.  BRTs 

Interpolated animal locations from the hSSMs for 
loggerheads (n = 2247) and Kemp’s ridleys (n = 2738) 
were used as presence data for their respective BRT 
models. The BRTs also require absence data to fit the 
model. Because satellite-tag-derived locations were 
used for presence data, confirmed absences did not 
exist for this study. Pseudo-absences were used in -
stead and were generated in 1 of 2 ways: 

(1) Random absences equal to the number of pres-
ence samples were created by selecting a random 
location on a random day from within the study area 
and time period. Using the same number of presence 
and pseudo-absence locations can have the best pre-
dictive performance in machine-learning techniques 
such as BRTs (Barbet-Massin et al. 2012). Random 
locations were drawn from the centroids of raster 
cells of the bathymetry covariate. Using randomly 
generated pseudo-absences assumes that animals 
are not distributed randomly in the study area and 
that the selected covariates will be able to distinguish 
between the random absences and the true habitat of 
the target species (Hirzel et al. 2002). The same 
method was used to generate 2 sets of random 
absences, one for Kemp’s ridley and one for logger-
head datasets 

(2) Target-group absences, where confirmed pres-
ences of a related but distinct species are used as ab-
sences (Phillips et al. 2009). Target-group absences 
can outperform randomly generated pseudo-absences 
in some cases (Cerasoli et al. 2017). Loggerhead turtle 
locations were used for absences in the Kemp’s ridley 
model, and vice versa. Target-group absences were 
unweighted, as the number of locations of Kemp’s rid-
ley and loggerhead turtles were similar. The target-
group absence method assumed that the 2 species 
were utilizing distinct habitats within the study area. 
This may be the case in the Bay (Barco et al. 2018b). 

The modeling process was started by fitting ex-
ploratory models with random absences that included 
all possible covariates and examining covariate inter-
actions and contributions to the model. For covariate 
pairs that were highly correlated, the covariate with a 
lower contribution to the model was removed to sim-
plify the models. In this exploratory phase, tree com-
plexity, learning rate, and bag fraction, the primary 
parameters for adjusting how BRTs are fit, were ad-
justed manually to improve model performance. 

Model performance was assessed by examining 
 re sidual deviance, coefficient of variation (CV), and 
the area under the receiver operating characteristic 
curve (AUC). Respectively, these assess the explana-

tory power of the model, the associated uncertainty, 
and true positive rate compared to the false positive 
rate at various thresholds. 

Sample predictions for random days, the finest tem-
poral scale of the available covariates, were made 
throughout the exploratory modeling phase to assess 
whether predictions contained obviously spurious ar-
tifacts. If a covariate was causing clearly unrealistic 
predictions, it was dropped from subsequent models. 

After the exploratory phase, the retained covari-
ates were used to create 4 final models for each com-
bination of species and absence generation method
— Kemp’s ridley with random absences, Kemp’s rid-
ley with target-group absences, loggerhead with 
random absences, and loggerhead with target-group 
absences — in a more systematic fashion. Final mod-
els were selected from a set of candidate models 
where tree complexity, learning rate, and bag frac-
tion were systematically changed be tween com-
monly used values for each (Elith et al. 2008): 1, 2, 
and 3 for tree complexity; 0.1, 0.05, 0.01, 0.005, 0.001, 
and 0.0005 for learning rate; and bag fraction values 
of 0.1−0.9 in increments of 0.1. This resulted in a total 
of 162 candidate models for each final model, based 
on all possible combinations of parameter values. 

The final models were selected from the candidate 
models by comparing residual deviance, CV, and the 
AUC among candidate models. If one candidate 
model did not score the best on all 3 metrics, profes-
sional judgment was used to assess the relative qual-
ity of top-scoring models and make the final selection. 
The selected final models of the 2 absence-generation 
methods were compared and the better of the 2 was 
carried forward. This selection was made by examin-
ing both model diagnostics and a qualitative assess-
ment of the resulting predictions. 

2.5.  Habitat prediction and analysis 

The study area (e.g. the area covered by predictions) 
was the Bay, including Virginia and Maryland waters, 
and connected riverine systems as defined by the ex-
tent of the available bathymetry, salinity, and temper-
ature covariates. This included areas farther north 
and farther upriver than individuals of either species 
occurred based on the available satellite tele metry lo-
cations. These areas were included to see if suitable 
foraging habitat existed that telemetered turtles had 
not utilized, or if environmental conditions were dif-
ferent from areas frequented by turtles in our dataset. 

Habitat suitability values from the BRT models 
range from 0 (poor habitat) to 1 (excellent habitat). 
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These habitat suitability scores were subsequently 
classified into habitat versus non-habitat by selecting 
a cutoff value that maximizes the ratio of true posi-
tives to true negatives predicted by the model 
(Bradley 1997). 

To assess habitat quality over the entire period of 
the study, which covered 5 seasons from 2014 to 
2018, averaging habitat suitability scores over many 
days did not seem reasonable. This would have the 
effect of ‘washing out’ suitable habitat as conditions 
changed day to day. 

Instead, the number of ‘habitat days’ present at 
locations in the Bay were assessed at various tempo-
ral scales. Habitat days were defined as the number 
of days suitable habitat was found in each predicted 
location within the Bay. For each final model, habitat 
suitability was predicted for each day within the 
study period. Daily habitat suitability surfaces were 
reclassified into habitat and non-habitat using a cut-
off value. 

The cutoff value was determined by randomly 
splitting the modeling data sets (presences and ran-
dom absences) into training (70%) and testing (30%) 
datasets. The model was then fit with the training 
data and used to predict the testing data, which 
allowed the cutoff value (Bradley 1997) to be deter-
mined. This process was repeated 10 times. The cut-
off value from the 10 replicates was averaged and 
subsequently used to reclassify the daily prediction 
rasters. This process was performed independently 
for each of the 4 final models. 

This process yielded a set of rasters representing 
daily foraging habitat within the Bay, classified as 
1 = habitat, or 0 = non-habitat. These rasters were 
summed by month and across all days in the study to 
assess the number of days suitable foraging habitat 
could be found in a location. Higher numbers of 
‘habitat days’ were an indicator of higher-quality for-
aging habitat, with suitable conditions found there 
more often than elsewhere. 

The results of summing the rasters across all days 
of the study were reclassified into ‘important habitat’ 
for the selected final model of each species. Impor-
tant habitat was defined as the quartile of locations 
(raster cells) with the highest numbers of habitat 
days. This provided a map of the most suitable habi-
tat areas within the Bay, for each species, over the 
entire study period. These maps were then used to 
assess habitat partitioning between the 2 species. 

Habitat partitioning was examined using 3 different 
metrics: Schoener’s D (Schoener 1968), Hellinger’s-
based I (Van der Vaart 1998, Warren et al. 2008), and 
Syrjala’s test (Syrjala 1996). Schoener’s D calculates 

the range of a species based on probability distribu-
tions of abundance over a set of locations and calcu-
lates niche overlap based upon species abundance in 
those locations. Hellinger’s I is based on probability 
distributions without the assumptions of Schoener’s D 
(Warren et al. 2008, Hosseinian Yousefkhani et al. 
2016). Syrjala’s test assesses whether 2 distributions 
are equivalent, invariant of abundance. 

We assumed habitat days corresponded propor-
tionally to species occupancy and converted the over-
all habitat-day rasters to proportional occupancy by 
summing all cells (total habitat days across all cells) 
and then dividing the values of individual cells by 
that total sum. It is unlikely that habitat days corre-
spond exactly to occupancy, but we could not test this 
assumption without extensively surveying the Bay. 

3.  RESULTS 

3.1.  State−space modeling 

hSSMs for both species performed acceptably, con-
verging with 80 000 posterior samples for the Kemp’s 
ridley model and 50 000 samples for the loggerhead 
model. Both models used 10 000 samples as an adap-
tation phase, and a span parameter of 0.2. hSSM diag-
nostics for both models indicated that Monte Carlo 
Markov chains were mixing, that parameter estimates 
converged based on the Gelman-Ruben shrink factor 
(Gelman & Rubin 1992, Brooks & Gelman 1998), and 
that autocorrelation between chains was acceptably 
low. After additional manual filtering, 2738 Kemp’s 
rid ley and 2247 loggerhead turtle locations remained 
as presence locations for the BRT models. 

Modeled locations closely followed Argos deploy-
ments, with outlier locations and points on land re -
moved. Locations for both species generally matched 
previous descriptions of the species’ distributions, 
though Kemp’s ridley turtles were found farther 
upstream in several rivers than previously reported. 
The northward distribution of the locations extended 
past the Patuxent River for loggerhead turtles and to 
the Nanticoke River for Kemp’s ridley turtles. This 
matched the previous northward extent of marine 
turtles recorded by aerial surveys in the Bay (Barco 
et al. 2018a). 

3.2.  BRT models 

Exploratory BRT models indicated that day of year 
was highly correlated with temperature and that lat-
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itude was highly correlated with salinity. Addition-
ally, models that included latitude only predicted 
suitable habitat at latitudes where animals were 
located. Because of these factors, the day of year and 
latitude covariates were dropped from consideration 
in the final models. While BRTs can include corre-
lated covariates, we preferred to limit the complexity 
of the models and to preferentially include covariates 
directly related to habitat conditions where possible. 

Changes in predictions that included year as a 
covariate were more closely related to the number 
of animal locations in that year than underlying 
changes in environmental conditions. Because there 
were not similar numbers of animals tracked or loca-
tions in each year, or a way to reasonably standardize 
effort between years, year was removed as a candi-
date covariate. 

This left temperature, salinity, and bathymetry as 
available covariates. The best model for all 4 combi-
nations of species and pseudo-absence generation 
method included all 3 remaining covariates. Table 3 
shows the values for BRT and model assessment 
parameters for each selected model. The selected 
final models all had at least 1000 trees, as recom-
mended by Elith et al. (2008). 

For Kemp’s ridleys, the model with randomly gen-
erated pseudo-absences was selected as the best 
final model. Even though the target-group absence 
model performed better when examining the model 
assessment values, on qualitative review of the pre-
dictions, the target-group absence model predicted 
most of the suitable habitat north of the Choptank 
River in Maryland, much farther north than Kemp’s 
ridley turtles have been detected previously. Little 
suitable habitat was predicted in the southern Bay. 
This did not accurately reflect either the known ecol-
ogy of the species, the distribution based on strand-
ing data, or detections from the acoustic array pres-
ent in the Bay (Barco et al. 2018b). 

Based on the functional plots of covariates, Kemp’s 
ridley turtles showed a preference for depths shal-
lower than 15 m, temperatures ranging from 17 to 
28°C, and salinities of 15−28 ppt (Fig. 2a). For refer-
ence, the average depth of the Bay is 6.4 m. Each of 
the 3 covariates had relatively equal importance in 
the model: bathymetry = 37.3%, temperature = 
31.7%, and salinity = 31%. 

For loggerheads, the model with target-group 
pseudo-absences was selected as the final model. 
The target-group model performed better than the 
random model when comparing model assessment 
values (Table 3). In the qualitative assessment, both 
models predicted similar extents of suitable habitat, 
but the target-group model predictions were more 
compact and consistent across time periods. 

Based on the functional plots of covariates, logger-
heads appeared to avoid depths less than 10 m and 
salinities less than 20 ppt. Loggerheads appeared to 
prefer temperatures warmer than 25°C, and salinities 
greater than 15 ppt (Fig. 2b). This contrasts with 
Kemp’s ridley turtles, which occurred in shallower 
waters with a more defined temperature range. For 
loggerheads, bathymetry was the most important 
covariate (43.6%), followed by salinity (29.5%) and 
temperature (26.9%). 

3.3.  Predictions and habitat partitioning 

For the Kemp’s ridley model, a cutoff value of 0.48 
was used to partition daily habitat suitability predic-
tions into habitat versus non-habitat. Values ≤0.48 
were classified as non-habitat, and values >0.48 
were classified as habitat, which maximized the ratio 
of true positive to true negative predictions in tests 
where Kemp’s ridley locations and randomly gener-
ated absences were randomly split into training and 
testing data sets. 
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Species                Pseudo-absence                     BRT parameters                                       Model assessment values 
                                 generation              Tree         Learning        Bag              Residual         CV           AUC     Best number  
                                   method            complexity         rate          fraction           deviance                                           of trees 
 
Kemp’s ridley            Random                    3                 0.05              0.8                   0.46             0.62*        0.94*            1250 
                               Target group               3                 0.05              0.4                   0.13             0.30          0.98*            2750 
Loggerhead               Random                    3                 0.05              0.4                   0.36             0.64*        0.93*            2900 
                               Target group               3                 0.05              0.2                   0.14             0.30          0.98*            3100

Table 3. Best models for each combination of species and absence generation method, including boosted regression tree (BRT) 
parameters, residual deviance, coefficient of variation (CV), and the area under the receiver operating characteristic curve  

(AUC). Values with an asterisk indicate that they were the best from within each set of models
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Aggregating the daily habitat predictions by 
month, we saw the most suitable habitat for Kemp’s 
ridleys, both total number of days and total area, in 
June and October and the least in November (Fig. 3). 
Suitable habitat occurred first in the southern Bay, 
early in the season, extending northward into Mary-
land as the summer progressed, and retreating into 
the southern Bay in November. These latitudinal 
shifts in prediction were driven largely by tempera-
ture, which peaks in mid- to late summer. The dip in 

predicted habitat suitability in July and August was 
likely caused by the model predicting Kemp’s ridley 
turtles do not prefer habitat warmer than 28°C. 

Aggregating all daily habitat predictions into a 
single surface, the areas with the highest suitability 
had over 700 suitable habitat days over the study 
period (5 yr), or >120 d yr−1. The areas with the 
highest number of habitat days were in nearshore 
Virginia waters characterized by shallow depths, 
moderately high temperature, and higher salinity 
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than the northern reaches of the Bay. Some 
suitable habitat was identified in Maryland waters, 
but it was, in general, predicted to be less suitable 
than the lower and middle portions of the Bay in 
Virginia. Almost no important habitat (top quartile 
of habitat days by grid cell), was identified in 
Maryland waters. The total predicted important 
habitat covered 2808 km2 (see Fig. 5a) and was pri-
marily located in nearshore areas of the southern 
Bay and the James and York Rivers. 

For the loggerhead model, a cutoff value of 0.46 was 
used to partition daily habitat suitability predictions 
into habitat versus non-habitat. Aggregating the daily 

habitat predictions by month, we saw the most 
suitable habitat, both total number of days and total 
area, in August and the least in June (Fig. 4). In gen-
eral, suitable habitat was in the southern Bay in spring 
and early summer, extending northward into Mary-
land as the summer progressed, and retreating into 
deeper areas in November. In July−September, habitat 
was predicted farther north than loggerheads are gen-
erally seen. This is likely driven by the importance of 
depth to the model and the occurrence of loggerhead 
turtles in more saline conditions compared to Kemp’s 
ridleys (Fig. 2). In the southern Bay, shipping channels, 
which are dredged regularly, were clearly highlighted 

100

Fig. 3. Number of suitable habitat days by month for Kemp’s ridley turtles using the random pseudo-absence model
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as habitat in all months ex cept July and August (Fig. 4). 
The shipping channels are not explicitly marked in 
Fig. 4 but can be seen as bright red and orange linear 
features in the southern Bay in most months. 

Aggregating all loggerhead daily habitat predic-
tions into a single surface, the areas with the highest 
suitability had over 1008 suitable habitat days over 
the study period, or >200 d yr−1. The areas with the 
highest number of habitat days were in the southern, 
central Bay with the deepest depths, moderately 
high temperature, and relatively higher salinity. 
Some suitable habitat was identified in Maryland 
waters, but those areas were predicted to be less suit-

able than lower portions of the Bay. The small 
amount of important habitat found in Maryland 
waters was limited to deep areas in the central Bay 
and the central reaches of a few larger rivers. The 
total predicted important habitat covered 2775 km2 
(Fig. 5b) and was predominantly in the southern, 
central Bay in contrast to 2802 km2 in nearshore 
southern areas for Kemp’s ridley’s (Fig. 5a). 

Comparing the selected Kemp’s ridley and logger-
head turtle models, the Schoener’s D-score was 0.52 
and Hellinger’s distance (I) was 0.82. These scores 
indicate there is some evidence that these 2 species 
are inhabiting different areas. 
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Fig. 4. Number of suitable habitat days by month for loggerhead turtles using the target-group pseudo-absence model
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Syrjala’s test p-values were <0.0001 for both the 
Cramer-von Mises and Kolmogorov-Smirnov tests 
(1000 permutations). Rejection of the null hypothesis 
indicates that the spatial distribution of the 2 species 
is significantly different. On the assumption that our 
habitat model accurately represents the species’ spa-
tial distribution in the region, this is strong evidence 
that the species are partitioning habitat and using 
different resources. Overlaying animal locations on 
top of predicted habitat (not shown) indicates the 
assumption that our models reflect species’ distribu-
tions appears to be reasonable. 

4.  DISCUSSION 

This study provides the first habitat suitability 
models for Kemp’s ridley and loggerhead turtles in 
the Chesapeake Bay. These models are an important 
resource for managers, as previous tracking and 
home range studies indicated that it was not feasible 
to track enough of these animals to identify all poten-
tial foraging habitat in the Bay (DiMatteo et al. 2021). 
Kemp’s ridley habitat was identified in rivers, river 

mouths, and shallow areas of the Bay, whereas log-
gerhead habitat was predicted in deeper areas of the 
central and southern Bay, showing evidence of habi-
tat partitioning between these 2 species. 

Examining reasons for why the Kemp’s ridley tar-
get-group absence model predictions performed 
poorly, we saw that, like the loggerhead target-
group absence model, bathymetry was by far the 
most important variable (51.4%). This meant that 
shallow areas in the north of the Bay were classified 
as suitable habitat even though animals were not 
sighted there. This could have been ameliorated by 
limiting predictions to the southern Bay, but one of 
the intents of this study was to identify possible habi-
tat areas where animals were not tracked. 

It could be argued that the areas identified by the 
target-group absence model in the north of the Bay 
meet this objective. However, the identified habitat 
was extensive and was the artifact of a single covariate 
relationship, rather than what we would consider to be 
a realistic depiction of unutilized habitat. This is sup-
ported by an examination of Kemp’s ridley stranding 
data for the Bay from 2008−2012 where only 5 of 224 
Kemp’s ridley strandings were north of the Potomac 
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Fig. 5. Important habitat (orange) for (a) the Kemp’s ridley random pseudo-absence model and (b) the loggerhead target- 
group absence model. Blue areas were modeled areas that were not classified as important
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River, which divides the Maryland and Virginia por-
tions of the Bay, and no Kemp’s ridley turtles stranded 
north of latitude 38.8° N (Barco et al. 2015). 

The functional relationships of the Kemp’s ridley 
randomly generated absence model were more de -
fined, and the 3 variables had similar influence. This 
may more accurately reflect the preferences of 
Kemp’s ridley turtles, as the randomly generated 
absences sampled a broader range of the environ-
mental covariates than the target-group absences. 
Preferred habitat values from the randomly gener-
ated absence model were consistent with previous 
studies of Kemp’s ridleys within the Bay (Lutcavage 
& Musick 1985, Keinath et al. 1987, Seney & Musick 
2005, 2007, Mansfield 2006, Mansfield et al. 2009). 

The randomly generated absence model still pre-
dicted some suitable habitat north of areas where 
Kemp’s ridleys have been generally sighted. It may 
be that traveling to northern areas of the Bay is not 
energetically cost effective for animals during the 
foraging season or that other factors exist that make 
these areas less suitable which were not elucidated 
by the covariates used in our model. 

Model performance may be limited by the scale 
and availability of covariates (Scales et al. 2017, Cox 
et al. 2018). Solar insolation, bottom temperature, 
density of submerged aquatic vegetation, and other 
covariates related to sea turtle physiology could 
refine our predictions (Abecassis et al. 2013) but are 
not currently available in the Bay at appropriate tem-
poral or geographic resolutions. Likewise, prey avail-
ability in the form of crustacean and mollusk distri-
bution and abundance, which is likely a driving 
factor of sea turtle distribution in the Bay, is difficult 
to quantify on small temporal and spatial scales (King 
et al. 2005). These data would be difficult to acquire 
because of both the logistics involved with surveying 
and the highly dynamic nature of prey availability. 

There are important insights that can be drawn 
from the covariates that were available. The functional 
relationships from the Kemp’s ridley randomly gener-
ated absence model predict that Kemp’s ridleys avoid 
very warm surface temperatures (>27°C). This may 
be true, as juvenile Kemp’s ridleys are small, may not 
be able to thermoregulate as well as larger turtles 
(Still et al. 2005), and may not have cold-water refugia 
in the shallower depths that they appear to prefer. 
Bottom temperatures would be a better re flection of 
the actual temperatures to which turtles were exposed 
while foraging, but high-resolution bottom tempera-
ture data were not available for the spatial and tem-
poral scale of this study. This predicted relationship, 
whether true or not, is likely the driving factor for 

lower suitably being predicted for Kemp’s ridley tur-
tles in the months of August and September, which 
are the warmest months in the Bay. 

Of concern for loggerhead turtles are the shipping 
channels being highlighted as suitable/important 
habitat, based on the predicted avoidance of shallower 
waters. These channels are dredged regularly, and 
loggerheads are the primary species identified to be 
affected by dredging operations in the Bay (Mansfield 
& Musick 2003, NMFS 2018). If loggerhead turtles do 
use these areas regularly, they are at in creased risk 
from dredging operations and ship strike from the 
shipping and naval vessel traffic using these deep-
water channels. The importance of depth to the log-
gerhead turtle habitat model could be the reason that 
these areas are highlighted (e.g. an artifact of the 
model) but the relationship merits further investiga-
tion given the potential conservation implications. 

Loggerhead turtles may be recorded as the pri-
mary species impacted by dredges because they are 
larger and more likely to be reported. Kemp’s ridley 
turtles using river habitat may also be susceptible to 
dredging in rivers. The US Department of Defense 
regularly dredges the York River to ensure access to 
the naval facilities there. In the future, collecting dive 
data for both species to characterize 3-dimenstional 
habitat use within the Bay could yield better insights 
into depth selection and whether animals are utiliz-
ing the entire water column. Currently no published 
dive data for these species exist within the Bay. 

Comparing the selected Kemp’s ridley and logger-
head models, we saw evidence that these species may 
be partitioning their habitat, given the assumption 
that our habitat suitability models are equivalent to 
occupancy (which would have to be derived from ex-
tensive surveys). We posit that partitioning is driven 
by the distribution of the preferred prey of each spe-
cies, i.e. blue crabs for Kemp’s ridley turtles, compared 
with horseshoe crabs and other benthic invertebrates 
for loggerhead turtles (Barco et al. 2015). In the Bay, 
blue crabs are found primarily in shallow, vegetated 
areas. A study of the habitat of these 2 species in the 
Gulf of Mexico also showed evidence of habitat dif-
ferentiation (Fujisaki et al. 2020). 

This habitat partitioning complicates conservation 
efforts, as area closures or restrictions targeting one 
species may shift risks to the other. We recommend 
that any mitigation or conservation measures for tur-
tles be applied to the entire southern Bay and south-
ern rivers, as these will be the most effective for pro-
tection efforts of both species. Restrictions in the 
southern Bay may shift impacts to the northern areas 
of the Bay, where turtles do not appear to be as abun-
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dant and where less suitable habitat exists, though 
this could impact non-turtle species, which are dis-
cussed below. The timing of any restrictions target-
ing mitigation of impacts to turtles should cover the 
core months of the foraging season for the 2 most 
common species of marine turtles (June−September). 

Given the economic importance of the region, it is 
unlikely that conservation efforts that include out-
right closures will be reasonable. The shipping chan-
nels that naval and commercial traffic depend on 
have minimum depth requirements and are unlikely 
to be moved and changed. Additionally, commer-
cially and recreationally valuable species such as 
blue crabs may only be available in certain habitats, 
resisting efforts to shift impacts elsewhere. 

Other protected marine species utilize the Bay, in-
cluding 2 additional species of marine turtles, and 
several species of marine mammals and fish. Green  
turtles Chelonia mydas and leatherback turtles Der-
mochelys coriacea are less common in the Bay than 
Kemp’s ridleys and loggerheads based on historic 
surveys (Keinath et al. 1987) and recent stranding 
data (Barco et al. 2015, Swingle et al. 2018). Little 
tracking has been performed on green turtles in the 
region and none on leatherbacks, making assessing 
these species in the context of loggerhead and 
Kemp’s ridley habitat use impossible at the current 
time. If adequate tracking of green and leatherback 
turtles occurs, overlap of these species with Kemp’s 
ridley and loggerhead turtles can be explored, al-
though the diets and likely ecological niches of green 
and leatherback turtles are significantly different 
from Kemp’s ridley and loggerhead turtles (reviewed 
in Bjorndal 1997, Jones & Seminoff 2013) and may 
preclude significant niche overlap. 

Atlantic sturgeon Acipenser oxyrinchus utilize mul-
tiple river systems adjacent to the Bay for spawning 
and pass into and out of the mouth of the Bay while 
migrating (Welsh et al. 2002, Hager et al. 2014). 
Humpback whales Megaptera novaeangliae, gray 
seals Halichoerus grypus, and harbor seals Phoca vit-
ulina use the mouth of the Bay and nearshore waters 
outside the Bay seasonally (Aschettino et al. 2020, 
Ampela et al. 2021). Bottlenose dolphins Tursiops 
truncatus can be found in the Bay year-round, their 
range extending farther north than that of loggerhead 
turtles (Barco et al. 1999, Richlen et al. 2018). 

Given these additional conservation targets in the 
Bay, comprehensive and dynamic marine spatial 
planning is required to adequately balance the com-
plex spatial and temporal overlaps of protected 
 species, threats, and economic and recreation re -
sources. Dynamic ocean management can lessen the 

time and space needed for closures (Maxwell et al. 
2015) and can incorporate the needs of many differ-
ent stakeholders and priorities. This is particularly 
important given the economic importance of fisheries 
and vessel traffic in the Bay, where dynamic man-
agement can accomplish the management goals of 
minimizing time and space closures while adapting 
to complex bio logical and ecological processes (Dunn 
et al. 2016). Cooperation will be required from mul -
tiple state agencies, the federal government, con -
servation organizations, and commercial and recre-
ational interests. An adaptive management frame-
work is in place for the Bay (Chesapeake Bay Pro -
gram 2020), bringing together many of these parties 
across all states that border the Bay. Incorporating 
and informing more dynamic management processes 
into this framework can improve the overall manage-
ment of the Bay. These habitat models can inform 
marine spatial planning and adaptive/dynamic man-
agement processes. 

Lastly, critical habitat has been designated for the 
North Atlantic loggerhead turtle distinct population 
segment (NMFS 2014). However, no foraging areas 
were designated as part of this determination, due to 
lack of prey availability data fine scaled enough to 
identify areas as foraging habitat (without identify-
ing the entire Bay). Critical habitat has not been des-
ignated for Kemp’s ridley turtles. The models pre-
sented here could be used to inform critical habitat 
designations for these species which take account of 
the critical life function of foraging. 
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