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1.  INTRODUCTION 

Spatially explicit estimates of abundance and distri-
bution are crucial to implement and assess effective 

conservation measures (Hooker et al. 2011). In the 
USA, estimates of the number of individuals poten-
tially impacted by federal actions are required under 
federal laws and can only be derived from spatially 
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densities were predicted off the coasts of Georgia and Florida. Leatherbacks were also predicted 
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explicit abundance estimates (United States Depart-
ment of the Navy 2018). Developing spatially explicit 
abundance models for broadly ranging marine taxa 
can be challenging given the extensive range of sea-
sonal and interannual migrations, the variability 
inherent in those migrations (Ceriani et al. 2014), and 
difficulties in detecting animals from observation 
platforms due to factors such as turbidity or long dive 
times. Sea turtles are no exception, as they only come 
to the surface intermittently. On the east coast of the 
USA, sea turtles are wide ranging due to seasonal 
water temperature changes, resulting in annual migra-
tions between foraging areas (Eckert et al. 2006, Grif-
fin et al. 2013, Barco et al. 2018a). 

Density surface models (Miller et al. 2013) derived 
from line-transect survey data can be designed to 
estimate the abundance and distribution of broadly 
ranging marine megafauna (Forney et al. 2012, Rob-
erts et al. 2015, DiMatteo et al. 2022a). Subsequently, 
density surface models can be employed to quantify 
the potential impacts of activities such as military 
training, energy exploration and development, fish-
eries bycatch, vessel collision, and dredging (United 
States Department of the Navy 2018, Bureau of 
Ocean Energy Management 2021). While local or 
subregional density surface models of marine mega-
fauna are somewhat common (Barco et al. 2018b, For-
tuna et al. 2018, Zoidis et al. 2021), basin-scale and 
regional density surface models are less common 
given the intensive surveying required over large 
spatial scales (Hammond et al. 2013, Becker et al. 
2020, Benson et al. 2020, DiMatteo et al. 2022a, Rob-
erts et al. 2023), but are needed for assessing human 
activities at those same scales. 

Satellite tracking of target species can provide an 
important complement to broad-scale density sur-
face models by validating seasonal changes in pre-
dicted distribution. Parameters important to density 
surface models not readily collected from line-tran-
sect survey platforms, such as availability bias, can 
be collected by satellite telemetry studies. However, 
while satellite tracking can augment capture-mark-
recapture population models (Siegwalt et al. 2020, 
Stokes et al.  2023) and can inform animal distribu-
tions either directly (Jeffers & Godley 2016, Winton 
et al. 2018) or via habitat modeling (Patel et al. 
2021, Roberts et al. 2021), even advanced species 
distribution modeling techniques (Liang et al. 2023) 
fall short of estimating absolute abundance, neces-
sitating other techniques. 

When considering spatially explicit abundance 
estimates, stratified estimates of animal abundance 
based on line-transect surveys (Buckland et al. 2001) 

may suffice for smaller areas. However, density sur-
face models, which can predict distribution by relat-
ing density to the underlying environment, as well as 
abundance estimates (Miller et al. 2013), are needed 
for larger areas such as assessments that cover the 
east coast of the USA. 

Four protected species of sea turtles (NOAA 1998, 
2014a, Conant et al. 2009, National Marine Fisheries 
Service 2015) can be regularly found in the waters 
off the east coast of the USA: the loggerhead turtle 
Caretta caretta, green turtle Chelonia mydas, Kemp’s 
ridley turtle Lepidochelys kempii, and leatherback 
turtle Dermochelys coriacea. Loggerhead turtles are 
the most common species in the study area. Some of 
the largest nesting rookeries in the world for logger-
head turtles are found in Florida (Ceriani et al. 2019). 
Green turtle nesting is an order of magnitude less 
than loggerhead turtles in the study area but is 
increasing (Brost et al. 2015, Florida Fish and Wild-
life Commission Research Institute 2023). Kemp’s 
ridley turtles are primarily distributed in the Gulf of 
Mexico, but some individuals migrate to the east 
coast of the USA to forage (Mansfield et al. 2002), 
and isolated nests have been documented. Leather-
backs nest throughout the wider Caribbean region, 
including Florida, and use the study area extensively 
to migrate to northern foraging areas (James et al. 
2007). 

In the last 2 decades, extensive line-transect sur-
veys have been conducted by multiple organizations 
(see Table 1) on the east coast of the USA with the 
goal of assessing marine megafauna populations 
at  sea, including sea turtles. The decades of line-
transect surveys available in the study area provide 
an opportunity to generate multi-year averages of 
abundance and distribution for sea turtles, as has 
been done for several marine mammal taxa (Roberts 
et al. 2015) using a distance sampling framework 
(Hedley & Buckland 2004, Miller et al. 2013). Dis-
tance sampling (Buckland et al. 2001), the first stage 
of density surface modeling, accounts for decreasing 
sightablity of animals from the survey trackline by fit-
ting detection functions. 

Detection functions assume the probability of de -
tecting an animal on the survey track is 1 (i.e. at a 
perpendicular distance of 0, or g(0)). This is rarely 
the case in practice, especially for diving animals 
like sea turtles, and is affected by 2 factors: (1) 
availability bias, which is failing to detect available 
animals directly on the survey trackline because of 
survey design or because they are hidden or sub-
merged; and (2) perception bias, where observers 
fail to detect or cannot identify animals present at 
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or near the surface due to survey conditions, such 
as sea state or human error (Pollock et al. 2006). To 
counteract this, animals can be tagged with time-
depth re corders that can be used to estimate cor-
rection factors for availability bias by describing 
the proportion of time individuals are available at 
the surface to be de tected. Double observer teams 
on surveying platforms can be used to estimate per-
ception bias (Burt et al. 2014), and modeling ap -
proaches are available to at tempt to classify uniden-
tified sightings to relevant taxa. 

The objectives of this research were to (1) classify un -
identified sea turtle survey sightings using a machine-
learning framework; (2) apply species-specific correc-
tions for availability and perception bias; (3) use a 
generalized additive model (GAM) framework to gen-
erate a density surface model for each species; and (4) 
provide modeled predictions of density and associated 
uncertainty to inform conservation management of 
sea turtles on the eastern seaboard of the USA. 

2.  MATERIALS AND METHODS 

2.1.  Study area and available data 

The study area (Fig. 1) covers the US 
east coast from Maine to the southern 
tip of Florida, seaward to the approx-
imate border of the US Exclusive Eco-
nomic Zone. This area is approximately 
3300 km long and 370 km wide, with 
depths ranging from 0 to 5000 m. Line-
transect survey data provided by 7 
organizations (Table 1) from 2003 to 
2019 were integrated into subsequent 
analyses and underwent extensive qual-
ity checks described in Sparks & Di -
Matteo (2023). The surveys covered 
ap proximately 1.2 million km of effort, 
split between 39 831 km of shipboard 
surveys and 1 151 880 km of aerial 
 surveys (Fig. 1, Table 1, see Figs. S5–
S7, S11–S13, S17–S19, & S23–S25 in 
the Supplement at www.int-res.com/
articles/suppl/n053p227_supp.pdf for 
monthly ef fort).  

Available sightings of sea turtles in 
the survey data (n = 25 202) were cate-
gorized as loggerhead Caretta caretta, 
green Chelonia mydas, Kemp’s ridley 
Lepidochelys kempii, hawksbill Eretmo-
chelys imbricata, leatherback Dermo-

chelys coriacea, or unidentified turtle (Table 2). Log-
gerhead, green, and Kemp’s ridley sea turtles have 
hard shells made of keratin and are referred to collec-
tively throughout this study as ‘hardshell’ turtles. 

Methods such as reviewing survey photographs, 
double observers, or circle-back techniques were 
used in some surveys, but not others, to confirm spe-
cies assignments depending on survey protocols. 
Unidentified turtles accounted for 29.7% of sightings 
and were assumed to be hardshell turtle species, 
given the distinctive appearance and coloration of 
leatherback turtles, which have soft shells (Prit-
chard & Mortimer 1999). We used on-effort sightings 
with all requisite information in a distance sampling 
framework (Buckland et al. 2001) for detection func-
tion modeling. Both on- and off-effort sightings were 
utilized in the classification of unidentified sight-
ings. In this study, we defined seasons as winter 
(December–February), spring (March–May), summer 
(June–August), and fall (September–November). 

45
°

40
°

35
°

30
°

25
°

-65°-65°-65°-70°-70°-70°-75°-75°-75°-80°-80°-80°-85°-85°-85°

Florida

Georgia

North Carolina

South Carolina

Virginia

Maryland
Delaware

New Jersey
New York

Massachusetts

Maine

Gulf of MaineGulf of MaineGulf of Maine

Cape CodCape CodCape Cod

Long Island SoundLong Island SoundLong Island Sound

Chesapeake BayChesapeake BayChesapeake Bay

Outer BanksOuter BanksOuter Banks linear km per 400 km2

1 - 222

223 - 690

691 - 1493

1494 - 2781

2782 - 4705

4706 - 7422

7423 - 13332

500 km

Fig. 1. Study area over which density surface model predictions were made 
(red polygon) and the amount of available line-transect survey data aggregated  

into 400 km2 grid cells 
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2.2.  Environmental covariates 

Environmental covariates (n = 27) with known or 
plausible connections to sea turtle habitat or physio-
logical requirements were included as possible 
explanatory covariates for the species classification 
and density surface models (Table 3). Contempora-
neous covariates rather than climatological covariates 
were selected on the premise that turtles respond 
more to ephemeral habitat features than long-term 

averages of environmental conditions (Howell et al. 
2015, Mannocci et al. 2017). Covariates were also 
classified into one of 9 ‘families’, such as depth or pro-
ductivity, to assist with model selection (Table 3). We 
standardized covariates into a 10 × 10 km grid using a 
bilinear resampling method which was subsequently 
used for density model predictions. 

2.3.  Classification of unidentified sightings 

We considered several options to apportion un -
identified turtle sightings to species-specific models, 
which are detailed in Text S1 in the Supplement. We 
selected to classify the unidentified sightings using 
confirmed sightings in a machine-learning frame-
work. This assumes the available environmental co -
variates can discriminate between species, for which 
there is some evidence (DiMatteo et al. 2022b), and 
that confirmed sightings were accurate. 

Conditional random forests have been shown to be 
effective in classifying ambiguous sightings of mobile 
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Species                                 Count                           Percentage 
 
Loggerhead                         15458                                  61.3 
Green                                       598                                      2.4 
Leatherback                         1375                                    5.5 
Kemp’s ridley                        297                                      1.2 
Unidentified                         7474                                   29.6 
Total                                       25202                                   100

Table 2. Summary of available survey sightings by species

Name                                                                                        Units                  Type                     Family         Temporal/spatial resolution 
 
Depth                                                                                           m                     Static                     Depth                      NA / 15 arcsec 
Distance to 1000 m isobath                                                   m                     Static                     Depth                      NA / 15 arcsec 
Distance to 500 m isobath                                                     m                     Static                     Depth                      NA / 15 arcsec 
Distance to shelf break                                                           m                     Static                     Depth                      NA / 30 arcsec 
Distance to shore                                                                     m                     Static                     Depth                       NA / 5 arcsec 
Distance to canyons                                                                m                     Static                   Features                    NA / 30 arcsec 
Distance to seamount                                                             m                     Static                   Features                    NA / 30 arcsec 
Bottom slope                                                                       Degrees               Static                      Slope                      NA / 15 arcsec 
Geostrophic zonal                                                                m s–1               Dynamic            Geostrophic            Weekly / ¼ degree 
 velocity from thermal wind                                                                                                                                                          
Geostrophic meridional                                                     m s–1               Dynamic            Geostrophic            Weekly / ¼ degree 
 velocity from thermal wind                                                                                                                                                          
Mixed layer depth                                                                   m                  Dynamic       Productive depth           8 d / ¼ degree 
Euphotic zone depth                                                               m                  Dynamic       Productive depth        Daily / 1/12 degree 
Sea surface height                                                                   m                  Dynamic      Sea surface height     Weekly / ¼ degree 
Chlorophyll a                                                                       mg m–3            Dynamic            Productivity              Daily / ¼ degree 
Vertically integrated chlorophyll a                               mg m–3            Dynamic            Productivity              Daily / ¼ degree 
Epipelagic micronekton                                                     g m–2              Dynamic            Productivity             Daily / 1/12 degree 
Net primary                                                                     mg m–2 d–1         Dynamic            Productivity             Daily / 1/12 degree 
Zooplankton biomass                                                         g m–2              Dynamic            Productivity             Daily / 1/12 degree 
Chlorophyll a                                                                       mg m–3            Dynamic            Productivity                     8 d / 9 km 
Vertically integrated net primary productivity        mg m–3 d–1         Dynamic            Productivity              Daily / ¼ degree 
Net primary productivity                                                  mg m–3 d–1         Dynamic            Productivity              Daily / ¼ degree 
Vertical generalized                                                      mg m–3 d–1         Dynamic            Productivity              8 d / 1080 × 2160 
 productivity model                                                                                                                                                         global grid cells 
Bottom salinity                                                                       ppm               Dynamic                 Salinity                Weekly / ¼ degree 
Surface salinity                                                                      ppm               Dynamic                 Salinity                Weekly / ¼ degree 
Bottom temperature                                                               °C                 Dynamic            Temperature                8 d / ¼ degree 
Sea surface temperature (night)                                         °C                 Dynamic            Temperature                    8 d / 9 km 
Sea surface temperature (average)                                    °C                 Dynamic            Temperature                8 d / ¼ degree

Table 3. Candidate environmental covariates for density surface models. NA: not applicable
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marine taxa (Roberts et al. 2018). The ‘partykit’ pack-
age version 1.2 (Hothorn & Zeileis 2015) in R version 
4.0.2 (R Core Team 2022) was used to implement the 
conditional random forest model (Hothorn et al. 2006). 

The environmental covariates (see Section 2.2) 
were candidate variables for classifying unidentified 
sightings, as were day of year, month, and latitude. 
The underlying environmental covariates were sam-
pled at each confirmed sighting location. We fit 
candidate models by varying the method of splitting 
data into training and testing data sets, number of 
trees, depth of trees, bag fractions, and number of 
covariates to include in the model semi-systemati-
cally, with the goal of improving model accuracy. 
We selected the sampling strategy and model with 
the highest overall accuracy and retrained on the 
full data set of confirmed sightings. A single iter-
ation of the selected model was implemented to 
classify unidentified sightings as loggerhead, green, 
or Kemp’s ridley turtles. 

2.4.  Detection function modeling 

We fit separate detection functions for each species 
by platform and survey program once the recom-
mended 60 sighting threshold for fitting robust detec-
tion functions was met (Buckland et al. 2001). Survey 
programs were defined as a set of surveys provided by 
a single organization using the same survey proto-
cols. Pooling sightings to fit a detection function (e.g. 
combining sightings from different survey programs) 
was instituted when a survey program did not have 60 
sightings of a given species. Pooling between survey 
programs first occurred between similar platforms 
(such as survey height or flat versus bubble windows). 
If the 60 sighting threshold was still not met, pooling 
between species was considered. If a hardshell spe-
cies was pooled, only sightings of other hardshell tur-
tles were used, given the distinct appearance of leath-
erback turtles. 

All surveys had survey condition covariates, such 
as Beaufort sea state, that allowed for multi-covariate 
distance sampling (Marques & Buckland 2004). Com-

binations of up to 3 survey condition covariates were 
attempted when fitting detection functions for both 
half-normal and hazard rate functions, which are the 2 
most common types of detection functions (Buckland 
et al. 2001). Other tested covariates included year, 
month, group size, and whether the sighting was con-
firmed to species or was classified from an unidenti-
fied sighting. 

We selected detection function models based on 
Akaike’s information criterion (AIC). If models had 
similar AIC values (within 2), we selected the 
model based on goodness of fit (Cramer-von Mises 
and Kolmogorov-Smirnoff) and qualitative assess-
ments of detection function plots. Additional details 
of our process for fitting detection functions and 
associated plots can be found in Sparks & DiMatteo 
(2023). 

2.5.  Corrections for g(0) 

Availability bias estimates varied in temporal and 
spatial resolution. For loggerhead and leatherback 
turtles, availability bias estimates were based on time-
depth recorders deployed in or near the study area. 
For Kemp’s ridley and green turtles, availability bias 
estimates from a neighboring region were utilized 
because of a lack of adequate time-depth recorder 
data in the study area. These availability bias esti-
mates are expressed as the proportion of time individ-
uals are visible to observers (Table 4). Details of how 
the availability bias estimates were derived can be 
found in Text S1. 

Perception bias estimates came from unpublished 
Atlantic marine assessment program for protected 
species (AMAPPS) and Gulf of Mexico marine assess-
ment program for protected species (GOMMAPPS) 
data derived in situ from 2-observer team aerial sur-
veys using mark-recapture distance sampling (Burt et 
al. 2014). We used perception bias estimates of 0.66 
for loggerhead turtles, 0.52 for leatherback turtles, 
0.32 for green turtles, and 0.56 for Kemp’s ridley tur-
tles, representing the proportion of sightings missed 
by observers. 
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Species                    Spatial resolution               Temporal resolution            Availability bias estimate                         Source 
 
Loggerhead                       20 km                                      Monthly                                      0.07–0.84                             Hatch et al. (2022) 
Green                                     NA                                             NA                                                 0.19                                 Roberts et al. (2022) 
Leatherback                         NA                                        Monthly                                      0.07–0.52                              Rider et al. (2022) 
Kemp’s ridley                      NA                                             NA                                                 0.17                                 Roberts et al. (2022)

Table 4. Summary of availability bias estimates and sources by species. NA: not applicable
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2.6.  Spatial models 

We employed a GAM framework for all density sur-
face models, fit with the R package ‘mgcv’ version 1.8 
(Wood 2011). The response variable was density on 
survey segments, predicted with a Horvitz-Thomp-
son estimator using the appropriate detection func-
tion, and adjusted for g(0). Each GAM was fit using a 
Tweedie distribution, a maximum of 10 knots, and 
thin plate regression splines with shrinkage. For each 
species, models were fit to all segments from survey 
programs with sightings. The number of covariates to 
be included in each model and the number of models 
to fit and assess were limited in several ways a priori, 
which are detailed in Text S1. GAMs were assessed to 
ensure the included covariates were significant to a 
minimum p-value of 0.05, and GAM selection was 
made via restricted maximum likelihood. 

We made predictions on the finest temporal scale of 
the selected covariates in each model (daily, weekly, 
etc.) and averaged them into monthly climatologies of 
density over the time span of the models. The green 
turtle model was limited to the last 10 yr of data to 
account for large increases in the nesting population 
in the study area during the last decade. 

Estimates of the coefficient of variation (CV) for 
each model were generated from the GAM para -
meter uncertainty, both as surfaces covering the 
study area and as point estimates for the entire model 
made from the average of the grid cells from all pre-

dictions with non-zero density. Confidence inter-
vals (CIs) were calculated for monthly and annual 
abundance estimates. 

3.  RESULTS 

3.1.  Classification of unidentified sightings 

After removing leatherback turtle sightings, 16 353 
confirmed sightings of hardshell species remained. 
The sightings were 94.5% loggerhead, 3.7% green, 
and 1.8% Kemp’s ridley sea turtles. 

The selected classification model had 1000 trees, 
gave equal weights to each species, and used the top 
10 covariates from test models. The selected covari-
ates, in order of decreasing importance, were epipela-
gic micronekton, sea surface temperature (8 d aver-
age), distance to shore, day of year, sea surface 
height, distance to seamount, surface salinity, verti-
cally integrated net primary productivity, vertically 
integrated chlorophyll a, and latitude. The model’s 
overall accuracy was 95.5%. Accuracy by species was 
99.2% for loggerhead turtles, 40.5% for green turtles, 
and 18.2% for Kemp’s ridley turtles. Applying the 
classification model to the unidentified sightings 
resulted in 7164 loggerhead turtles, 273 green turtles, 
and 37 Kemp’s ridley turtle classified observations 
(Fig. 2). Readers interested in more visual detail of 
the classification model results are referred to Sparks 
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A
500 km

B C

Fig. 2. Sightings identified to species overlaid with sightings classified by the conditional random forest model. Thin grey lines: 
survey effort tracks. (A) Confirmed (dark blue) and classified (light blue) loggerhead turtle sightings; (B) confirmed (dark green) 
and classified (light green) green turtle sightings; (C) confirmed (brown) and classified (yellow) Kemp’s ridley turtle sightings
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& DiMatteo (2023), which has full-page figures and 
seasonal breakdowns of these results. 

3.2.  Detection functions and density surface models 

We fit a total of 31 detection functions: 14 for log-
gerheads, 6 for Kemp’s ridleys, 2 for greens, 8 for 
leatherbacks, and one where Kemp’s ridley and green 
turtle sightings were pooled for the same survey pro-
gram. All detection functions performed adequately 
based on a review of the detection function plots, 
quantile–quantile plots, and model statistics. A 
summary of selected detection functions, included 
covariates, and truncation distances is provided in 
Table S1. 

The environmental relationships reported for den-
sity surface models are specific to the species and re-
gion in question and may not be applicable elsewhere. 
Stated covariate preferences (e.g. high temperatures, 
deep waters, etc.) are subjective and relative to the 
sampled environment in the study area. Readers can 
refer to Figs. S1–S4 to view fitted co variate relation-
ships, including rug plots of sampled values. 

The selected loggerhead turtle density surface 
model included the depth, sea surface temperature 
(8 d average), sea surface height, bottom salinity, ver-
tically integrated net primary productivity, euphotic 
zone depth, and latitude covariates. Deviance ex -
plained was 42.2%. Based on the selected model, log-
gerheads exhibited preferences for moderate to high 
bottom salinities, shallower depths, moderate euphotic 
zone depth, warm surface temperatures, and lower 
latitudes. A strong negative relationship was seen 
with depths associated with areas off the continental 
shelf and areas of low productivity. Most of the covar-
iate space across the study area was well sampled by 
the observations except for deep waters off the conti-
nental shelf and high values of productivity. See the 
rug plots in Fig. S1. 

The green turtle density surface model included 
the depth, sea surface temperature (8 d average), sur-
face salinity, zooplankton biomass, euphotic zone 
depth, and latitude covariates. Deviance explained 
was 48.6%. Based on the selected model, green turtles 
exhibited preferences for shallow waters, deep pro-
ductive depths, lower latitudes, moderate salinity, 
and warmer surface temperatures. A strong negative 
relationship was seen with depths associated with 
areas off the continental shelf, shallow euphotic zone 
depth, and areas of low productivity. Most of the 
covariates were well sampled, except for deep waters 
off the continental shelf (Fig. S2). 

The Kemp’s ridley turtle density surface model in -
cluded the distance to shore, sea surface temperature 
(8 d average), surface salinity, zooplankton biomass, 
and latitude covariates. Deviance explained was 42.7%. 
Based on the selected model, Kemp’s ridley turtles 
exhibited preferences for productive waters on the 
continental shelf and closer to shore, lower latitudes, 
moderate salinities, and warmer surface tempera-
tures. A strong negative relationship was seen with 
areas of low productivity and cooler temperatures. 
Most of the covariates were well sampled, except for 
extreme low values of distance to shore (Fig. S3). 

The leatherback turtle density surface model in -
cluded distance to the 500 m isobath, sea surface 
height, surface salinity, euphotic zone depth, zoo-
plankton biomass, sea surface temperature (nightly), 
and latitude covariates. Deviance explained was 32%, 
the lowest of all models. Distance to the 500 m iso-
bath was selected rather than depth, reflecting the 
species’ more offshore distribution compared to hard-
shell turtles. 

Based on the selected model, leatherback turtles ex-
hibited preferences for less productive waters on the 
continental shelf and slope, higher latitudes relative to 
hardshell species, moderate salinities, and warmer 
temperatures. Most of the covariates were well sam-
pled, except for low values of distance to the 500 m 
isobath and high values of productivity (Fig. S4). 

3.3.  Predicted density and uncertainty 

Terms such as low, medium, or high density or 
uncertainty are relative to the predicted values across 
the model under discussion and were as sessed qual-
itatively based on our interpretation of maps of the 
monthly predictions. Referenced geographic loca-
tions are shown in Fig. 1. Uncertainty was generally 
higher offshore, where there was little survey effort, 
and where there were fewer sightings and was lower 
where there were many sightings. For hardshell spe-
cies, this resulted in low uncertainty on the continen-
tal shelf south of Cape Cod and high uncertainty off-
shore and in the Gulf of Maine. For leatherback 
turtles, uncertainty was lowest in the Gulf Stream. 

3.3.1.  Loggerhead turtle predictions 

Mean annual abundance for the loggerhead turtle 
density surface model was 193 423 (90% CI = 159 158–
227 668). Mean monthly predicted abundance ranged 
from a high of 245 609 in February to a low of 135 066 
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in September and was generally higher in cool 
months (December–May) and lower in warm months 
(June–November). 

Density was high off Florida year-round, with thou-
sands of sightings in the area (Figs. S5–S7). An area 
south of the Outer Banks (Fig. 3A,B) was identified as a 
relatively higher-density region in cool months. Log-
gerhead turtles are predicted to move north of the 
Outer Banks in higher densities starting in May, with 

the furthest northward prediction of moderate den-
sity occurring in fall. Low but consistent density is 
predicted in all months north of Long Island and into 
the Gulf of Maine, which is supported by sightings 
data (Figs. S5–S7) and the literature (Brazner & Mc -
Millan 2008). Uncertainty was highest in waters off the 
shelf, which were poorly sampled. Mean CV was 1.5 in 
areas of non-zero density (Figs. S8–S10). High values 
of CV are almost exclusively in areas where there are 
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0.0001 - 0.51
0

0.52 - 1.5
1.6 - 3
3.1 - 5.5
5.6 - 8.8
8.9 - 12
13 - 16

loggerhead
turtles per km2

500 km

Fig. 3. Long-term predictions of loggerhead turtle density and distribution for select months: (A) January (abundance: 
232 237; CI = 190 506–275 039), (B) April (abundance: 216 809; CI = 177 731–252 530), (C) July (abundance: 181 618; CI = 
148 775–210 889), and (D) October (abundance: 141 748; CI = 115 173–167 429). The legend scale is applicable to this  

species only
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few sightings and close to zero predicted density. CI is 
recommended rather than CV for a better under-
standing of the range of predictions for this species. 

3.3.2.  Green turtle predictions 

Mean annual abundance for the green turtle den-
sity surface model was 63 674 (90% CI = 23 381–
117 610). Mean monthly predicted abundance ranged 
from a high of 96 935 in July to a low of 49 720 in Janu-
ary and was generally higher in summer months 
(June–August) and lower in other months. These pat-
terns were driven by a strong predicted preference for 
warm, shallow, productive waters and an avoidance of 
cooler, deeper waters. 

Predicted density was high off Georgia and Florida 
year-round, particularly the Florida Keys. Green 
turtles were predicted to be in the mid-Atlantic from 
May until October, generally from Chesapeake Bay 
north to Long Island (Fig. 4). There were no sightings 
of green turtles north of Cape Cod, con sistent with 
strandings data (Mass Audubon 2022, Figs. S11–
S13). Green turtles were predicted to move south 
again starting in October, when northern waters 
begin to cool. Mean CV was 0.54 in areas of  non-
zero density (Figs. S14–S16). 

The model predicted the presence of green turtles 
farther north than was supported by the available 
sightings or a review of satellite tracking data (Halpin 
et al. 2009). The following latitudinal cutoffs are rec-
ommended for use in management applications based 
on sightings and tracking data: winter, Cape Hatteras 
(Outer Banks); spring, the Delaware–Maryland bor-
der; summer and fall, Narragansett Bay. The cutoffs 
are applied in Fig. 4. 

3.3.3.  Kemp’s ridley turtle predictions 

Mean annual abundance for the Kemp’s ridley turtle 
density surface model was 10 762 (90% CI = 2620–
19 443). Mean monthly predicted abundance ranged 
from a high of 13 220 in October to a low of 8341 in Au-
gust and was generally higher in spring and fall but 
only varied by a few thousand from month to month. 

Predicted density was high off southern Georgia 
and northern Florida year-round, apparently driven 
by a cluster of sightings in the region (Fig. 5). Kemp’s 
ridley turtles were predicted to be in the mid-Atlantic 
from May until November, generally from Chesa-
peake Bay north to Delaware Bay, and as far north as 
Long Island Sound in summer months (Figs. S17–S19). 

Kemp’s ridley turtles were predicted to move south 
again starting in November, slightly later than green 
turtles. Mean CV was very high (3.8). These extremely 
high values of CV are almost exclusively in areas where 
there are no sightings and close to zero predicted den-
sity (Figs. S20–S22). CIs are re commended for better 
understanding the range of predictions, as there is 
little variation in predicted abundance in the areas of 
high CV. 

Similar to green turtles, the following latitudinal cut-
offs are recommended based on sightings and strand-
ings data: winter, Pamlico Sound (Outer Banks); spring, 
the Delaware–Maryland border; summer and fall, 
slightly north of Cape Cod, based on the furthest north 
stranding data (Mass Audubon 2022). These cut offs are 
used in Fig. 5. 

3.3.4.  Leatherback turtle predictions 

Mean abundance for the leatherback turtle density 
surface model was 21 984 (90% CI = 10 049–33 600). 
Monthly predicted abundance ranged from a high of 
54 329 in September to a low of 4655 in February and 
was generally higher in warm months (June–November) 
and lower in cool months (December–May; Figs. S23–
S25). Leatherback turtles have the largest change be-
tween high and low abundance predictions of any spe-
cies in this study, with monthly estimates spanning a 
full order of magnitude. 

Leatherback turtles were predicted to be off the coast 
of Georgia and Florida year-round. (Fig. 6). Leather-
back turtles were predicted throughout the entire 
study area, including offshore areas, except for a few 
isolated areas in June and July. Leatherbacks were 
predicted to be in the mid-Atlantic from June until 
November, generally from the Outer Banks north to 
Cape Cod, as well as offshore in the Gulf Stream in 
high numbers driven by the relationship with sea sur-
face height. Mean CV was 0.70 (Figs. S26–S28). 

4.  DISCUSSION 

This paper presents the first density surface models 
produced in over a decade for 4 species of sea turtles 
that span the entire east coast of the USA (United 
States Department of the Navy 2007) and the first to 
incorporate unidentified hardshell turtle sightings 
into species-specific models. For green turtles, this is 
the first time such a model has been published for the 
study area. Distribution of loggerhead turtles, the 
most abundant species in the study area, has been 
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modeled more recently, though these efforts mod-
eled relative abundance based on satellite-tracked 
animals (Winton et al. 2018) or were density surface 
models at smaller spatial scales (Barco et al. 2018b). 
As such, this study is a needed update to our under-
standing of the distribution and abundance of sea tur-
tles on the east coast of the USA, where in formation 
was previously limited, outdated, or based on other 
data types. This paper supersedes the technical 

report (Sparks & DiMatteo 2023), with up dated dis-
cussion and input from collaborators and coauthors. 

The fact that most identified sightings in the survey 
record were loggerhead turtles may be driving the 
high accuracy of the machine-learning model for this 
species, or perhaps green and Kemp’s ridley turtles’ 
niches are too similar to discriminate with the avail-
able environmental covariates. DiMatteo et al. (2022b) 
found that loggerhead and Kemp’s ridley turtles in 
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Fig. 4. Long-term predictions of green turtle density and distribution for select months: (A) January (abundance: 49 720; CI = 
17 487–101 683), (B) April (abundance: 58 828; CI = 19 178–119 505), (C) July (abundance: 96 935; CI = 41 582–157 730), and 
(D) October (abundance: 55 656; CI = 21 359–97 393). The legend scale is applicable to this species only. Density was forced 
to zero north of the following latitudinal cutoffs: Cape Hatteras (Outer Banks) (A), the Delaware–Maryland border (B), and  

Narragansett Bay (C,D)
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the Chesapeake Bay may occupy different ecological 
niches, with Kemp’s ridley turtles apparently prefer-
ring shallower, more brackish habitats compared to 
loggerhead turtles. However, these differences may 
not be significant at the scale of the entire eastern 
USA, or environmental relationships for the 2 species 
in Chesapeake Bay may differ from the continental 
shelf and other nearshore areas. The low classification 
accuracy of the machine-learning model for Kemp’s 

ridley and green turtles may contribute to underesti-
mation for those species (and overestimation for log-
gerheads), as it is probable that some sightings that 
are actually these species are being erroneously clas-
sified as loggerheads. Several surveyors asserted that 
these species may in fact have a higher likelihood of 
being recorded as unidentified sightings compared to 
loggerheads, given their smaller size and coloration. 
Loggerhead turtles are generally orange- or reddish-
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Fig. 5. Long-term predictions of Kemp’s ridley turtle density and distribution for select months: (A) January (abundance: 9526; 
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brown, which stands out from seawater in many con-
ditions, whereas green turtles are brown, buff, or green, 
and Kemp’s ridleys are gray or olive-green (Pritchard 
& Mortimer 1999). 

We tried to fit other classification models weighted 
towards green and Kemp’s ridley turtles in an attempt 
to increase the accuracy for those 2 species. While 
accuracy for those 2 species was improved, it came at 
the expense of accuracy for loggerhead turtles, which 
resulted in hundreds of misclassifications in the test-
ing data set. This tradeoff did not seem worthwhile, 

and the unequal weight models were dropped from 
consideration but remain an active research concern. 

No surveys included in the study were designed 
to detect only turtles. All were multi-taxa surveys, 
which is common, usually targeting marine mam-
mals in ad dition to turtles and occasionally sea 
birds. For both the Tetra Tech–New York State 
Department of Environmental Conservation (TT–
NYSDEC) and North Atlantic right whale sighting 
(NARWSS) surveys, smaller marine mammals and 
sea turtles were logged when sighted per survey 
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protocol, but the focus of the surveys was large 
whales, particularly North Atlantic right whales 
Eubalaena glacialis. Fitting detection functions by 
survey program should ameliorate differences in 
survey design and protocol. Indeed, we saw lower 
effective strip half widths for higher-altitude sur-
veys compared to lower-altitude surveys (Sparks & 
DiMatteo 2023). However, higher-altitude aerial 
surveys, such as those designed with large whales in 
mind, may have a harder time detecting sea turtles, 
which are much smaller. 

Based on discussions with survey providers, turtles 
smaller than 40 cm are likely being missed by sur-
veys (regardless of altitude) to an unknown degree 
and represent a sizable proportion of the population 
of all sea turtle species. Observer trials of different-
sized cutouts of various species of sea turtles of dif-
ferent size classes would be one method to estimate 
the proportion of smaller sea turtle size classes that 
are missed; however, to our knowledge, such experi-
ments have not been undertaken in the study area. 
As  such, these and other sea turtle density models 
underestimate density to an unknown, but currently 
unavoidable, extent. Future demographic modeling 
work similar to Putman et al. (2020) may provide an 
avenue to incorporate these small individuals into 
at-sea abundance estimates. 

The selected density surface models exhibited 
plausible environmental relationships for all sea tur-
tle species. For example, based on green turtles’ pre-
ferred foraging on seagrass and macroalgae beds 
(Herren et al. 2018, Welsh & Mansfield 2022), selec-
tion for shallow, productive areas with high light 
penetration is plausible. The apparent preference of 
Kemp’s ridleys for areas closer to shore than other sea 
turtle species could reflect the habitat of their pre-
ferred prey species on the east coast, the blue crab 
Callinectes sapidus (Burke et al. 1994, Seney & 
Musick 2005). The apparent preference of leather-
backs for unproductive waters potentially reflects a 
lag between primary productivity and the leatherback 
turtles’ preferred gelatinous prey in the northeast 
Atlantic Ocean (Houghton et al. 2006, Witt et al. 2007). 

Lower density predictions for the loggerhead model 
in June–November may be driven by lower produc-
tivity throughout most of the study area in those 
months, as a strong preference for productive areas 
was predicted by the model. Recall that when relating 
density to environmental covariates, density will vary 
as a function of those covariates. This seems more 
likely than large numbers of loggerhead turtles mov-
ing into and out of the study area seasonally. Though 
seasonal inshore versus offshore movements of log-

gerheads have been documented in the study area 
(McClellan & Read 2007), we posit the predicted envi-
ronmental relationship to be the larger influence. 
High predicted loggerhead density off Florida re -
flects that region’s importance as a nesting, post-
nesting, overwintering, and transition area for both 
adults and juveniles (Ceriani et al. 2019). 

The offshore patterns of predictions for leatherback 
turtles may reflect the east coast’s importance as a 
migratory habitat, as turtles from the wider Caribbean 
region migrate to the Gulf of Mexico and North 
Atlantic Ocean basin seasonally to forage (Eckert 
2006, Eckert et al. 2006, Sasso et al. 2021). Some for-
aging does occur in the study area (Dodge et al. 2014, 
2018), which may be leatherback turtles stopping to 
feed on their long journey north or may reflect high-
quality seasonal foraging habitat. Consistent sea-
sonal foraging for male, female, juvenile, and adult 
leatherbacks has been documented in Canadian 
waters (James et al. 2005), and the waters of the study 
area are a primary route to reach those areas. The low 
predicted density in cool months may reflect leather-
back turtles moving out of the study area after the 
summer breeding season to forage in North Atlantic 
waters (Eckert 2006, Eckert et al. 2006). 

Predicted patterns of loggerhead and leatherback 
density reasonably match the underlying sightings 
and concur well with other, independent data sets 
such as satellite telemetry. Winton et al. (2018) pre-
sented a geostatistical mixed model of relative log-
gerhead turtle density based on 271 satellite-tagged 
individuals deployed in the region and predicted 
north–south movements similar to the loggerhead 
density surface model presented here. The Winton et 
al. (2018) paper did predict higher relative densities 
off the continental shelf in cool months compared to 
the density surface model, but the core distributions 
appear similar (Fig. 3). The drivers of the differences 
between the Winton et al. (2018) model and ours are 
unclear and could be sampling bias either from 
tracked individuals (in the case of the tracking study) 
or survey coverage (in the cause of ours), or may just 
reflect the different methodological frameworks of 
the 2 approaches. 

Loggerheads are also regularly captured in fish-
eries off the coast of Nova Scotia (Brazner & McMil-
lan 2008), supporting the presence of that species in 
the Gulf of Maine. The area south of Cape Hatteras 
has been designated as critical habitat for overwinter-
ing loggerhead turtles based on satellite telemetry 
data (NOAA 2014b) and was also identified by the 
density surface model as an area of relatively high 
density in those months. 
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Tracking data indicates the presence of leatherback 
turtles in the study area year-round (James et al. 2007, 
Dodge et al. 2014), including migrating through the 
study area in late summer and early fall. Migratory 
pathways span from close to the coastline to far off-
shore, beyond the boundaries of the study area (Eck-
ert 2006, Eckert et al. 2006), offering support for the 
prediction of a substantial leatherback presence off of 
the continental shelf. Previous distribution modeling 
efforts for leatherback turtles in the area were lim-
ited to the continental shelf (Shoop & Kenney 1992, 
United States Department of the Navy 2007) and are 
much older, making comparisons uninformative. 

Fewer supporting data sets exist for green and 
Kemp’s ridley turtles in the region. The satellite tracks 
that do exist, as well as acoustic tagging data from the 
Chesapeake Bay, established timing of migration 
similar to that predicted by the spatial density models 
(Barco et al. 2018b). The models predicted green and 
Kemp’s ridley turtles further north than is known 
from sightings and tracking data (e.g. in the Gulf of 
Maine). These predictions were at very low densities, 
generally less than 0.005 animals km–2, and are likely 
artefacts of covariate relationships. As such, we rec-
ommend forcing the models to zero density per the 
cutoffs described in the results when using the models 
for management applications. 

No previous distribution models for green sea tur-
tles exist in the study area. The only previous distri-
bution model for Kemp’s ridley sea turtles is more 
than 10 yr old, only covers the continental shelf, and 
does not account for unidentified turtles, making 
comparisons challenging (United States Department 
of the Navy 2007). 

CI ranges were substantial for green, Kemp’s ridley, 
and leatherback turtles, all species with fewer sight-
ings relative to loggerhead turtles. This uncertainty 
may indicate there are not enough sightings for these 
species to fit tight environmental relationships, or 
that the selected covariates had limited explanatory 
power for the species in question. Future models with 
more surveys included or with new generations of 
covariates that better describe the distribution of sea 
turtles may tighten uncertainty estimates. 

Several sources of uncertainty and variability are 
not accounted for in the CV and CI estimates, which 
include environmental variability relative to GAM 
parameter uncertainty, detection function uncer-
tainty, variability and uncertainty in the dive data and 
models used for availability bias estimates, measure-
ment error in environmental covariates, and misiden-
tification or misclassification of sightings, many of 
which are not regularly accounted for in density sur-

face models but are important to understand. New 
methods of propagating some of those sources of 
uncertainty into GAM parameter CV estimates exist, 
particularly density function uncertainty, and are 
described in Bravington et al. (2021) and Miller et al. 
(2022) but were outside the scope of the project. The 
CV and CI estimates presented should be considered 
minimum estimates until future work can incorporate 
other sources of uncertainty. 

Continual surveying is needed to ensure density 
surface models can be updated at appropriate inter-
vals and limit the impact of using past data to predict 
future impacts. Suggested priorities for future work to 
improve the density surface models include incorpo-
rating more sources of uncertainty into the CV and 
CI  estimates, creating spatial models of availability 
bias for the non-loggerhead turtle models, revisit-
ing strategies to deal with unidentified sightings or 
up dating the machine-learning model, platform-
specific perception bias estimates and exploring rea-
sons for differences in these estimates between spe-
cies, and incorporating new survey types such as 
high-resolution imagery. 

The density surface models discussed here are 
appropriate for use in spatially and temporally broad-
scale planning and conservation initiatives, such as 
military training and readiness, offshore energy devel-
opment, marine spatial planning on the scale of the 
eastern seaboard or subregions, critical habitat desig-
nations, fisheries mitigation, and other applications. 
The models should not be used for fine-scale plan-
ning (e.g. how many individuals are in a single grid 
cell) or where it is crucial to have population informa-
tion from after 2019, as 2019 is the latest year of sur-
vey data incorporated, and the broad-scale nature of 
the models means that single grid cells may not repli-
cate local conditions. 

The density surface models provide an important 
complement to species distribution models derived 
from other data types such as satellite telemetry data 
and fisheries observation data. Estimates of in-water 
abundance data for these species are important to 
managers to complement abundance estimates de -
rived from nesting data, and these models fill a critical 
knowledge gap in the region, which previously lacked 
up-to-date in-water abundance estimates for most 
species and areas. 
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