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Summary 

This report summarizes data collected during small-vessel surveys for cetaceans in the Southern 

California Bight (SCB), with a focus on the Southern California Offshore Range Complex (SCORE), 

from June 2010 through January 2014.  Detailed annual progress reports were prepared following each 

survey year through 2013 and are available online through the Naval Postgraduate School.  Therefore, 

this final report will primarily serve to summarize the complete set of data collected from 2010-2014.  We 

present results of analyses that include data across all grant years, and in some cases incorporate data 

from earlier years, for two focal species: Cuvier's beaked whales (Ziphius cavirostris, Zc) and fin whales 

(Balaenoptera physalus, Bp).   

 

Introduction 

The SCB is renowned for both the density and diversity of marine life it supports.  More than 20 species 

of cetacean occur in the region.  Some are present year-round, while others are seasonal migrants, passing 

through or present in larger numbers at certain times of year.  While numerous studies have focused on 

species that are common along the populous coastal areas, there have been few dedicated studies of 

cetaceans in the outer waters of the Bight that lie to the south and west of the Channel Islands. 

Until recently, this has been particularly true for the waters around San Clemente Island (SCI), the 

southernmost island off the California coast and also one of the furthest from the mainland.  SCI is the 

center of the Southern California Offshore Range (SCORE), a complex of land, sea, and aerial training 

areas managed by the US Navy and heavily used by several branches of the military.  Due to both its 

distance from shore and its often restricted status, few dedicated vessel-based visual surveys for cetaceans 

have been conducted there.  While the Navy is authorized to use mid-frequency active sonar (MFAS) 

anywhere within the larger Southern California Range Complex (SOCAL), it is used most often in the 

San Nicolas Basin, which lies west of SCI.  This basin contains the Southern California Anti-submarine 

Warfare Range (SOAR), a broad, multi-sensor hydrophone array where exercises including the use of 

MFAS occur regularly (Figure 1).  Given the sensitivity of some cetacean species to MFAS elsewhere 

(e.g., see Cox et al. 2006 and D’Amico et al. 2009), a detailed study of cetacean populations and habitat 

use in this area was warranted.   

Thus, this study was initiated in 2010 after several successful pilot surveys in the preceding years 

identified SOAR as potentially important habitat for two poorly studied species in the region: Cuvier's 

beaked whales (Ziphius cavirostris, Zc) and fin whales (Balaenoptera physalus, Bp).  Through an ongoing 
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partnership with the Naval Undersea Warfare Center's (NUWC) Marine Mammal Monitoring on Ranges 

(M3R) program (Moretti et al. 2006), we have been able to collect some of the first detailed information 

on the demographic status and distribution of these and other species around SCORE using photo-

identification and satellite telemetry.   

Photo-identification studies have proven invaluable in defining the population size and structure and 

movement patterns of a variety of cetacean species in Southern California, most notably blue and 

humpback whales (Calambokidis & Barlow 2004) and coastal bottlenose dolphins (Defran & Weller 

1999).  The use of photo-ID of Zc and Bp in the region has been limited prior to this study, due primarily 

to their offshore distribution and low and/or unpredictable sighting rates.  Adult Zc are generally well-

marked, and thus well-suited to photo-identification techniques provided an adequate sample of images 

can be obtained over time (Falcone et al. 2009), as is now the case with the advent of M3R at SOAR.  

Individual fin whales in this region, in contrast, are much more subtly marked.  However, with good 

quality photographs it has been demonstrated that there is sufficient variation in the shape of the dorsal fin 

and marks on the fin and body to reliably identify most individuals over periods of at least several years, 

and for the more distinctive individuals, much longer (Falcone et al. 2011).  Work at SCORE has 

supported the first regular collection of photographs from offshore aggregations of fin whales, which have 

been noted to occur more frequently in the outer waters of the SCB particularly in warmer months, when 

most previous cetacean surveys were conducted (Forney & Barlow 1998, Douglas et al. 2014).  However, 

recent years have seen increasing numbers of fin whales in coastal mainland waters during winter months, 

and thus the sample of fin whale photographs for use in this study has been greatly augmented through 

the inclusion of opportunistic collections of photographs from other surveys by Cascadia Research 

Collective (CRC) and other local research organizations and naturalists.   

While photographic methods can provide some insights into extra-regional movements, either through 

comparisons to catalogs from other areas or in some cases from the occurrence of geographically variable 

marks or parasites (Falcone et al. 2011), these results are inherently effort-biased and coarse.  For this 

reason, satellite telemetry is an ideal complement to photo-identification.  Tags deployed in this study 

provided unbiased movements records for tagged individuals over periods of weeks and months.  This 

type of data can better characterize habitat use and residency patterns in areas of interest, such as around 

SCORE, much more robustly than visual surveys are able.  Telemetry data also avoid the behavioral and 

geographic limits of passive acoustic data (where presence can only be determined within the 

instrumented range when animals are vocally active).  Finally, the movements of tagged individuals can 

help to inform assumptions related to population range that underlie the statistical methods used to 

estimate population parameters from photo-identification data.   
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Figure 1.  Map of the study area.  The boundary of the Southern California Range Complex (SOCAL) is 
outlined in yellow, and the boundary of the Southern California Anti-submarine Warfare Range 
(SOAR) is outlined in white. 

 

Methods 

Field Data Collection 

Surveys were conducted using a 6m rigid-hulled inflatable boat (RHIB) powered by two 75 hp outboard 

motors and equipped with a raised bow pulpit to facilitate tag deployments.  The vessel was launched 

from a shore base each morning and surveyed throughout daylight hours as conditions permitted.  Effort 

was apportioned in two ways: dedicated surveys in conjunction with visual verification tests of the M3R 

system at SOAR, and opportunistic surveys elsewhere in SOCAL during periods of favorable weather 

when range access was restricted or in response to reports of species of interest (e.g., coastal aggregations 

of Bp).  Several survey periods ranging from 4-14 days were scheduled annually with the goal of 

expanding seasonal data coverage and targeting periods of unrestricted range access as much as possible.  

The vessel was staffed with two observers, both experienced in all aspects of data collection for this 

project including vessel operation in close proximity to species of interest, photography, remote biopsy 

sampling, and satellite tag deployment.   
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Surveys at SCORE were based at Wilson Cove on the northeast side of SCI.  The RHIB was deployed at 

either Dana Point or Oceanside Harbor at the start of a survey period and remained moored or hauled-out 

overnight in Wilson Cove throughout the scheduled survey period, or until poor weather or conflicting 

range operations prevented further surveys at SCORE.  During typical operations, the RHIB would transit 

around the north end of the island each morning to the eastern boundary of SOAR.  Staff from NUWC 

would monitor the hydrophones from the Range Operations Center on North Island in San Diego, and 

direct the RHIB via radio or satellite phone into areas where marine mammal vocalizations of interest 

were detected.  While the RHIB could be directed toward any vocalizations for visual verification, it was 

preferentially directed to those likely to be beaked whales when conditions were suitable for working with 

these species (typically winds at Beaufort 3 or less).  When conditions or scheduling precluded work with 

beaked whales, fin whales or other unusual acoustic detections requiring visual verification were targeted.   

Each time a group of cetaceans was encountered, the species, time, latitude, longitude, group size and 

composition, and overall behavioral state were recorded.  For encounters with beaked whales, detailed 

records of surfacing times and positions were also collected for as long as contact with the group was 

maintained.  Photographs were taken for species verification where questionable, and for individual 

identification for species where this methodology was being employed either by this study or by those of 

collaborators.  These species included beaked, fin, blue, humpback, and killer whales, and bottlenose and 

Risso’s dolphins.  Remote tissue biopsies were collected from species of interest both in this study 

(beaked and fin whales) and also for collaborators at the Southwest Fisheries Science Center (SWFSC) 

for ongoing assessments of offshore populations in the Bight (including Pacific white-sided, northern 

right whale, Risso’s, and bottlenose dolphins, and killer whales).  Finally, satellite tags were deployed 

predominantly on beaked whales, fin whales, Risso’s dolphins, and killer whales.  The tags deployed 

were of the Low Impact Minimally Percutaneous External-electronics Transmitter (LIMPET) design 

(Andrews et al. 2008, Schorr et al. 2009, 2014) in either the location-only SPOT5 or the SPLASH10 

(initially called the MK10-A) configuration, which provided not only location, but also depth, data 

(Wildlife Computers, Inc., Redmond, WA).   

Data Processing-- Photo Identification 

At the completion of each survey, sighting data were compiled in a MS Access database.  Photographs 

were reviewed, and those from Zc and Bp were processed to select the best identification photos of each 

individual within each group sighted as part of this grant.  (Photographs of most other species were 

passed along to collaborators for further processing.)  Annual sets of identification records were then sent 

to species-specific MS Access digital cataloging systems, where they were reconciled internally and 
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compared to the existing catalog of individuals from previous years and other regions.  Following each 

round of annual reconciliation, newly identified individuals were added to the photographic catalog, and 

all identification records were compiled into a multi-year, species-specific identification database that 

stored complete sighting histories and individual summary records of known whales for use in mark-

recapture and other photo-ID analyses.   

Starting in 2013, a new system was developed to improve matching efficiency for both Bp and Zc.  

Initially, these catalogs were organized, and catalog searches were structured, by subjective categorization 

of individuals based on the dorsal fin shape.  These subjective categories were replaced with a 

standardized set of measurements, which were used to describe the shape of the fin as a set of proportions.  

After selection for matching within the digital catalog management system, the most complete and 

perpendicular image of the dorsal fin of each newly photographed individual was measured using the 

program ImageJ (Rasband 1997).  A set of custom macros was developed to expedite this process so that 

these measurements could be collected consistently and accurately in approximately 2 minutes per image 

(Appendix I).  These measurements were then uploaded into the digital catalog matching system, and 

used to rank returned whales in the catalog (both the current annual collection and the historical catalog) 

based on the similarity of their measurements to the whale being compared.   

Following all photo reconciliation and catalog ID assignments, images of Zc were scored for a variety of 

factors related to their appearance.  The complete set of photographs of each identified whale was 

systematically reviewed on a per-sighting basis to objectively describe its physical characteristics.  The 

features scored for Zc included the presence or absence of erupted teeth, overall pigmentation pattern, 

apparent body size relative to other group members, extent of linear scarring, extent of ovoid scarring, 

and diatom coverage.  These scores were then used iteratively and in combination with behavioral 

observations and genetic data (where available) to assign whales in the catalog to putative age and sex 

classes.  A subset of confirmed adult females was first selected by association with a dependent calf, and 

then the scores of these whales were used to inform the range of pigmentation, scarring, and size 

associated with the adult female class.  A subset of confirmed adult males was selected by the presence of 

erupted teeth in the lower jaw, and the composite scores for these individuals were used to inform the 

range of values seen in adult males.  These criteria were used to sex large whales not associated with 

calves, but for which the presence or absence of teeth could not be confirmed.  Remaining non-calves that 

fell below the pigmentation, scarring, and size criteria for adult males and females, were classified as sub-

adults of unknown sex (unless they had been sexed genetically).  Calves were determined by small size 

and persistent, close association with a presumed adult female over the course of a sighting.   
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Data Analysis-- Photo Identification 

Mark-recapture calculations were conducted using the package RMark in the R computational 

environment, and also manually using the Chapman variant of the Lincoln-Peterson estimator for small 

sample sizes:  

ܰ	 ൎ 		
ሺܭ ൅ 1ሻሺ݊ ൅ 1ሻ

ሺ݇ ൅ 1ሻ
െ 1, 

where     N = Number of animals in the population  

K = Number of animals identified in the first sample  

n = Number of animals identified in the second sample  

k = Number of animals identified in both samples.   

For Zc, all mark-recapture analyses used only medium to high quality photographs of the right side of 

adults.  Images collected from small vessel surveys in 2006-2009 were added to those collected under this 

grant to improve sample size.  These photographs were reconciled into annual captures for each 

individual to yield the largest, least biased sample possible, and sets of adjacent years were combined into 

pairs for use in the Chapman estimator to improve recapture data.  Because previous data suggest the San 

Nicolas Basin (Figure 1) likely represents an area of high site fidelity (Falcone et al. 2009, Schorr et al. 

2014), a closed mark recapture model was used to calculate an abundance estimate from data collected 

during surveys on SOAR only, where sampling was most consistent.  For estimates calculated in RMark, 

the AIC value was used to assess model fit for different parameterizations of the same model type.   

Age and sex class ratios were calculated for the entire Zc catalog, as well as for the set of unique 

individuals identified on each survey day, since the likelihood of missed matches is lower within each day 

than between days.  The number of days sighted during the study was calculated for each whale in the 

catalog, and summarized for adults of each sex to assess differences in capture rates.  Sighting histories of 

adult females sighted with at least one calf since 2006 were compiled and reviewed to summarize 

available data on weaning age and calving intervals.   

While the identification data sample for Bp was larger than for Zc, recapture rates were relatively low and 

variable enough to limit the types of models that could be used to estimate abundance at this time, 

although not as severely limited as with Zc.  Further, the geographic stratification of sampling effort 

(year-round opportunistic data were available inshore starting in 2009, while offshore sampling remained 
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intermittent throughout that time) and inshore-offshore seasonal movement patterns (Douglas et al. 2014, 

and tag data presented here) make accurate mark-recapture estimation for Bp in this region more complex 

than for Zc, particularly with existing sample sizes.  We calculated abundance estimates using the 

complete annual photographic datasets (dedicated and opportunistic sources) from 2009-2012, first 

combined for inshore and offshore data, and then for the inshore sample only.  (Offshore only samples 

would contain too few recaptures for models to run successfully.)  Data were analyzed using simple 

closed models, first manually calculated and then parameterized in RMark as described for Zc, and also 

using the POPAN open population model in RMark.  POPAN was used to estimate the abundance of an 

open super-population, along with apparent survival rates (which would include effects of both mortality 

and permanent emigration), probability of entry into the population at a given time (including effects of 

both birth and immigration), and the capture probability.  As with Zc, AIC values were used to assess fit 

among similar model types, where appropriate.   

Data Processing and Analysis-- Satellite Telemetry 

A.  Movement Data 

Telemetry data collected in previous years of this project (2008-2009) were included in movement 

analyses reported here.  We used the Douglas Argos Filter to remove implausible Argos location 

estimates (Douglas et al. 2012).  User-defined filter parameters for each species are outlined in Table 1.  

The program Mysticetus (Version 1.9.0.197, Entiat River Technologies, Preston, WA) was used to 

determine the depth, distance to shore (closest land), and presence within designated Navy ranges and 

distinct geographic regions for all filtered locations.  The best daily locations, as determined by the 

Douglas Argos Filter, were used to generate distance to deployment figures and to calculate daily rates of 

horizontal movement for locations received between 12 and 36 hours apart.  These rates were used to 

assess seasonal rates of sustained movement.   

To assess seasonal trends in distribution for Bp in the SCB, we selected a subset of locations between 

32.2oN and 34.6oN latitude, which encompasses most designated training areas within SOCAL.  For each 

location, we assigned it to the season during which it was collected (summer, fall, winter, spring), and 

calculated the distance to the mainland coast.  Seasonal distribution maps were generated from the 

resulting dataset, and a Bonferroni Multiple Comparison test was run to assess seasonal differences in the 

distance to the mainland coast.   
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Table 1.  User-defined settings in the Douglas Filter (Douglas et al. 2012), by species. 

Species 
Min-
rate 

Max-
redun Rate-coef KeepLC 

Zc 10 3 25 2 

Bp 20 3 25 2 
 

B.  Dive Data--  Cuvier’s Beaked Whale 

Behavior Log data from Zc were collected and processed as described in Schorr et al. (2014).  Briefly, 

dives were defined as any submergence that exceeded 50 m depth and lasted longer than 30 s, and each 

dive record provided the start time, end time, maximum depth reached, and dive shape.  A K-means 

cluster analysis was then used to partition all dives into ‘deep’ (presumably foraging) or ‘shallow’ 

(presumably non-foraging) dive classes, based on their depth and duration.  Surfacings represented the 

time between qualifying dives (i.e., when the whale did not descend below 50 m for more than 30 s), and 

included the start/end times only.  The Inter-Deep Dive Interval (IDDI) was calculated as the time 

between the end of one deep dive and the start of the next (Tyack et al. 2006).   

To summarize Zc behavior in the absence of MFAS exposure, we identified periods where no sonar was 

reported for a series of consecutive days when tags were active near SOAR.  In collaboration with the 

NUWC M3R group (Moretti, Watwood, McCarthy) and the Navy, we obtained sonar use records from 

the Sonar Positional ReporTing System (SPORTS) database for periods when tags were active.  

Descriptive statistics were calculated as in Schorr et al. (2014) for active tags during extended sonar-free 

periods, and the results compared between the two datasets.   

C.  Dive Data -- Fin Whale 

Descriptive statistics were calculated for nine fin whales tagged with behavior logging tags.  The start and 

end of each dive were defined as the time when the animal first descended or ascended through 5 m depth 

during any submergence deeper than 20 m and lasting longer than 30 seconds.  The percentage of time 

spent above 20 m was calculated by summing all time at the ‘surface’ between qualifying dives and 

dividing it by the total duration of the diving behavior record.   
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Results and Discussion 

Survey Effort and Sighting Rates 

Survey effort and data collection from June 2010 - January 2014 are summarized in Table 2.  Throughout 

this period, surveys were conducted during 8 different months, though effort was disproportionately 

focused in winter and spring months to balance previous efforts in the region which had occurred 

predominantly in the late summer and fall.   

Table 2.  Summary of effort by survey year.  An 'Identification' was counted as each time an individual group 
member was photographed for identification purposes in the field.  Bp identifications from 2013 and 
2014 were not finalized at the time of this report, and thus numbers reported are preliminary 
estimates.   

 
 

By combining all cetacean sighting records from surveys conducted around SCORE during both this 

study period and prior efforts in 2006-2009, which included effort in an additional month, some seasonal 

trends in cetacean occurrence are apparent despite the non-systematic nature of these surveys (Table 3).  

The majority of SCORE-based surveys focused on the deep waters of the San Nicolas Basin, with a lesser 

focus on the shallower, nearshore waters adjacent to the island, and this influenced sighting rates of 

several species with habitat-related distributions.  Eighteen total cetacean species were encountered 

(including both long-beaked and short-beaked common dolphins, combined as a single line in Table 3, 

and two ecotypes of killer whale, which were separated), though encounter rates with most species were 

low.   

Among the larger whales, only fin whales were encountered routinely around SCORE in every month 

surveyed, with a peak in observation rate during March and July.  Encounters with minke and humpback 

whales occurred sporadically in most months, suggesting these species may be present year-round in low 

numbers.  Gray whales were noted in the near-shore waters along both the east and west sides of SCI and 

to a lesser extent in the deep waters of the San Nicolas Basin in January during their southbound 

migration.  Because of frequent restrictions on near-shore navigation and an effort bias toward deepwater 

habitat, gray whale encounter rates are under-represented in this dataset; however, whales were frequently 

Year Survey Days Effort Hrs Sightings Biopsies Tags Deployed
Zc 

Identifications 
Bp 

Identifications 

2010 17 139.2 94 11 7 12 10
2011 23 198.9 125 12 11 22 16
2012 20 158.9 106 13 20 12 54
2013 23 192.4 137 11 21 27 ~72
2014 8 62.8 31 0 7 18 ~15
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visible from shore during January surveys.  Sumich & Show (2011) described from aerial surveys in 

1988-1990 the importance of offshore migratory corridors along SCI for southbound gray whales, and our 

observations suggest that pattern has continued in the decades since.  Encounters with northbound gray 

whales in March-May were rare.  Small numbers of blue whales also occur around SCORE, with 

sightings almost exclusively in summer and early fall.  A single adult male sperm whale was sighted in 

July 2011.   

 

Table 3.  The average number of individuals sighted per day of effort, by species and month, during 
surveys based at SCORE from 2006-2014.  The total number of months each species was 
sighted is on the right, the total number of species sighted per month at bottom.   

 

 

Month Jan Mar Apr May Jun Jul Aug Oct Nov

Years Surveyed 4 2 1 1 1 2 2 3 3 Months

Vessel Days 19 14 10 5 10 18 47 44 10 Seen

Ba,  Minke Whale 0.1 0.1 0.2 0.1 0.2 0.1 0.1 7

Be , Bryde's Whale 0.1 0.1 2

Bm,  Blue Whale 0.1 0.1 0.1 0.2 0.0 5

Bp,  Fin Whale 2.9 6.3 0.5 3.0 2.3 6.0 1.9 3.3 0.8 9

Er,  Gray Whale 2.5 0.6 2

Mn,  Humpback Whale 0.1 0.4 0.7 0.1 0.2 0.3 6

Pm,  Sperm Whale 0.1 1

Dsp,  Common Dolphin 165 89 89 9 150 338 243 109 210 9

Gg,  Risso's Dolphin 8.3 21.5 10.2 11.9 15.4 11.8 0.1 4.6 8
Gm,  Short-finned Pilot 
Whale 3.4 1
Lb,  Northern Right 
Whale Dolphin 3.8 104.1 1.6 99.0 1.0 1.4 3.9 7
Lo,  Pacific Whitesided 
Dolphin 7.6 12.9 6.5 13.7 1.0 0.7 6
OoOff,  Killer Whale- 
Offshore Ecotype 0.6 1
OoTr,  Killer Whale- 
Transient Ecotype 0.6 1.0 2

Pd,  Dall's Porpoise 4.2 1.1 0.4 0.3 1.2 5

Tt, Bottlenose Dolphin 2.3 1.2 10.0 5.4 9.0 14.4 18.2 1.0 8
Bba,  Baird's Beaked 
Whale 0.2 1
Zc,  Cuvier's Beaked 
Whale 2.9 1.3 2.0 1.2 1.1 1.1 1.9 1.0 8

Total Monthly Species 13 11 8 8 9 12 9 12 6

Large Whales

Delphinids 
and Porpoises

Beaked 
Whales
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Common dolphins are present in large numbers year round, and it should be noted that numbers from this 

study are biased low because this species was often actively avoided during M3R surveys, when their 

vocalizations compromised the ability to detect species of interest.  Risso's and bottlenose dolphins are 

also present in moderate numbers at SCORE year-round.  As with gray whales, the number of bottlenose 

dolphins sighted was biased low since they were most often sighted close to the island, where survey 

effort was lowest.  Northern right whale dolphins, Dall's porpoises, and pacific white-sided dolphins were 

all encountered predominantly in colder months, and northern right whale dolphins in particular occurred 

regularly in large groups in winter and spring, often associated with other cetacean species.   

Cuvier's beaked whales were encountered in the deep waters of SOAR during all survey months but April 

(when weather was predominantly poor).  Zc were sighted on average once every 20.8 hours of survey 

effort from 2010-2014, including effort in all survey conditions and areas regardless of habitat suitability.  

When effort was restricted to within the boundaries of SOAR, the rate was one Zc encounter for every 

10.8 hours of effort.  And if this sample were further restricted to hours on SOAR in "excellent" or "good" 

survey conditions (generally winds Beaufort three or less with no significant visual impairment due to 

atmospheric conditions or swell height), Zc were sighted on average once every 6.7 hours of survey 

effort.  The M3R system greatly improves the ability to find and work with this and any other beaked 

whale species on the instrumented range (Moretti et al. 2006, 2014), though the only other species that 

has been encountered there to date is Baird's beaked whale, with one encounter during earlier M3R 

surveys in 2007, and one each in 2010 and 2012 during effort associated with the SOCAL BRS study 

(Southall et al. 2014).   

Much of the cetacean seasonality we observed has been described or suggested from infrequent large-

scale, systematic visual survey data or long-term passive acoustic monitoring, which are methods better 

suited to this type of comparison (Forney & Barlow 1998, Douglas et al. 2014).  However, these studies 

have included minimal effort in the waters immediately adjacent to SCI or within SOAR.  Also, these 

surveys are unable to characterize the populations of species with low or sporadic sighting rates or fine-

scale geographic variation, most notably the beaked whales, which appear to occur in much higher 

densities in the San Nicolas Basin than larger scale studies have detected (Falcone et al. 2009).  Given the 

levels of anthropogenic activity in this area of diverse habitat, and thus diverse cetacean abundance, finer 

scale data collection should be continued to detect any possible changes related to local training activities.   

Photo-Identification-- Cuvier's Beaked Whales 

From the estimated 174 Zc that were approached during small-vessel surveys at SCORE since such effort 

began there in 2006, 145 were successfully photographed for identification purposes.  These 



 

13 
 

identifications represented sightings of 104 unique individuals, which were sighted on up to 4 different 

days and in as many as 4 different years, suggesting at least some whales exhibit residency to the San 

Nicolas Basin.  There have been relatively few published longitudinal photo-ID studies of beaked whales; 

however, most have suggested the focal species formed localized populations with limited ranges and 

apparently low rates of dispersion (Gowans et al. 2000, McSweeney et al. 2007, Claridge 2013), and this 

appears to also be true of Zc off Southern California.   

A sample of 118 annual captures of 94 unique adults with medium-high quality photos of the right side of 

the body was used to estimate abundance.  A closed mark-recapture model with capture/recapture 

probability held equal and constant across annual samples provided the best fit for this small dataset.  The 

capture/recapture probability was estimated at 0.062 and the abundance was estimated at 235 adults in the 

population.  This abundance estimate agrees well with numbers derived from comparing among sets of 

combined annual samples using the Chapman variant of the Lincoln-Petersen estimator (Table 4), though 

ultimately neither may be the most appropriate analytical method for assessing abundance in this 

population.  At least one longer term mark-recapture study has successfully used more complex Bayesian 

statistical methods to estimate abundance, capture and recapture probabilities, and apparent survival rates 

(which account for emigration/immigration) in another beaked whale species (Mesoplodon densirotris, 

Md) while accounting for heterogeneity in these parameters related to age and sex class (Claridge 2013), 

despite limited annual sample sizes.  While this method estimated these parameters with improved 

confidence, overall estimates of abundance were similar between models that did and did not account for 

heterogeneity.  Thus, we feel that an abundance estimate in the low hundreds of adult Zc is likely 

reasonable for the San Nicolas Basin.  With continued data collection in coming years, more complex 

analytical methods that can account for heterogeneity should provide improved estimates and a more 

complete understanding of demographic effects in this population than the preliminary methods used 

here, as it is likely that age- and sex-related heterogeneity also occur with Zc.  Further, tag data (see 

below) have shown that some individuals do emigrate, at least temporarily, from the San Nicolas Basin, 

which needs to be accounted for in future analyses as our sample improves.  Our current sample, in order 

to maintain an adequate sample size, was also not restricted by individual distinctiveness.  As has been 

noted previously (Falcone et al. 2009), the mark rates of calves, sub-adults, and even some adult females 

are lower in this population than they are in other studied beaked whale populations whose range overlaps 

more with cookie cutter sharks, the bites of which provide an additional source of persistent scarring 

across all age and sex classes (McSweeney et al. 2007, Claridge 2013).  While all adult males in our 

sample were consistently well-marked, some adult females and most calves and sub-adults were 

minimally marked, and this may reduce the odds of successful recapture for whales in these classes, even 
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with high quality photographs.  Though we attempted to mitigate for this by limiting our sample to higher 

quality images of adults only, the inclusion of some minimally marked adult females may have increased 

the odds of treating a re-sighted whale as a new individual, which would positively bias the abundance 

estimate.   

 

Table 4.  Abundance estimates for adult Zc in the San Nicolas Basin, using the Chapman variant of the Lincoln-
Petersen estimator to compare recapture rates among sets of year pairs.   

 

An increased likelihood of missed matches among less distinctive adult females may also contribute to a 

female-biased sex ratio among adults in this study, though several real biological processes may also 

contribute to this pattern.  Again using small-vessel survey photos collected at SOAR from 2006-2014, 

there were 51 individual adult females (49%), 25 adult males (24%), 14 sub-adults (13%), 7 calves (7%), 

and 7 individuals of unknown age/sex (7%) identified in the course of this work.  When this same dataset 

was parsed into daily sex ratios to control for missed matches between days (which are most likely among 

females and sub-adults), the sex ratios remained highly skewed toward adult females (Table 5).  This 

suggests that failed matches between days for adult females are less likely to be a major factor in the sex 

distribution of the overall catalog, though failed matches involving calves and sub-adults may well be 

occurring (and hence their exclusion from mark-recapture models).  The distribution of days sighted per 

individual was similar for adult males and females (Figure 2).  It does not appear that individual males 

tend to be sighted less often than individual females, which might be expected if males tend to have lower 

site fidelity to the basin or larger home ranges that only partially include it.  They do appear to be re-

sighted at slightly higher rates than adult females, which might be expected if their distinctiveness 

artificially increased their recapture probability over less-marked females.  It was also noteworthy that 

four whales were classified as adult females based on body size (large relative to other group members), 

pigmentation (extensive pale coloration beyond the blowhole), and confirmed lack of erupted teeth, but 

which had unusually heavy linear scarring relative to adult females whose age and sex were confirmed by 

association with a calf.  While most adult males of similar size and pigmentation (but with erupted teeth) 

Sample 1 Sample 2 n ID1 n ID2 n ID12 N CV

CI 95%-
L

CI 95%-
U

2007-2008 2009-2010 36 17 2 332 0.29 229 481
2007-2008 2011-2012 36 21 8 101 0.15 83 122
2007-2008 2013-2014 36 26 3 332 0.27 236 466
2009-2010 2011-2012 17 21 2 197 0.28 137 282
2009-2010 2013-2014 17 26 3 161 0.25 117 221
2011-2012 2013-2014 21 26 3 197 0.26 142 273

220Average Population Estimate Across Years
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were more heavily and deeply scarred than these presumed adult females, it can't be ruled out that these 

are actually males without erupted teeth.  If so, this would artificially increase the number of females in 

the catalog.  We are unaware of any reports of this occurring in beaked whales, though such data are 

limited.  To date, none of these four heavily scarred females has been seen with a calf, also raising the 

possibility that they are older, potentially post-reproductive females who have simply had more years to 

acquire scars-- though with only one sighting each, this is purely speculative.  A long post-reproductive 

life span for females would also contribute to a female-bias in the population, as is seen in resident killer 

whales (Olesiuk et al. 1990).   

Table 5.  Average daily sex ratios by year among individual Zc identified during surveys based at SCORE. 

Year Days Adult-F Adult-M Sub-Adult Calf Unk 

2006 1 1.00 0.00 0.00 0.00 0.00 
2007 4 0.34 0.48 0.09 0.00 0.09 
2008 4 0.58 0.11 0.08 0.13 0.10 
2009 2 0.63 0.13 0.25 0.00 0.00 

2010 2 0.56 0.44 0.00 0.00 0.00 
2011 5 0.44 0.31 0.14 0.12 0.00 
2012 3 0.37 0.57 0.07 0.00 0.00 
2013 6 0.58 0.13 0.21 0.08 0.00 
2014 4 0.54 0.17 0.21 0.04 0.04 

Overall Daily Averages 0.56 0.26 0.12 0.04 0.03 
 

 

Figure 2.  Total days sighted for adult male and adult female Zc 
identified at SCORE from 2006-2014. 

In two other studies of beaked whales (Zc and Md in Hawaii, McSweeney et al. 2007; and Md in the 

Bahamas, Claridge 2013), the reconciled catalogs were also female-biased, though not as heavily.  For 
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Md in the Bahamas, female bias was partially explained by the fact that adult males are the class most 

likely to be found solitary, and solitary individuals are less likely to be sighted than whales in larger 

groups.  Further, groups containing multiple individuals in both the Bahamas and Hawaii seldom contain 

more than one adult male, further reducing the overall capture rate of males in those studies.  Adult males 

also predominated among solitary individuals in our dataset, accounting for 55% of single-whale 

sightings (n = 11), followed by adult females (27% of solitary individuals), and 18% solitary individuals 

of unknown age and sex (likely to be older sub-adults).  In contrast to these other studies, however, 

groups containing more than one adult male were not uncommon in this dataset, with 13 (40%) of 37 

groups of multiple animals including 2-3 adult males, though these groups tended to be larger than 

average (mean group size = 6.5 whales for groups with >1 male vs.  4.4 whales for all groups >1).  Given 

the consistently skewed sex ratio in these data and the evidence of intra-specific competition among 

males in Zc (erupted teeth and associated heavy scarring on adult males) (Heyning 1984), it is likely that 

this species is also engaging in female defense polygyny, though perhaps not as strongly as Md.  In 

contrast, studies of the larger northern bottlenose whale (Hyperoodon ampullatus) have revealed stable 

associations among adult males (Gowans et al. 2001).  Our findings suggest Zc in Southern California 

may have a social system intermediate to these two species, with elements of both, though our data are 

insufficient to assess the stability of associations between the males sighted together in multi-male 

groups.  The sex ratio skew and recapture rates of males in our study may suggest that the turnover rate 

among dominant adult males in this area is low, and that sub-adult males may be more likely to disperse 

than females.   

Ten of the 51 adult females identified in the course of this work were sighted with at least one calf 

between 2006 and 2014.  Six of these females were sighted on more than one occasion, and one of these 

females, CRC103, was sighted with two calves across four consecutive years of sightings.  These data 

provide the first insights into female reproductive cycles in this population (Table 6).  CRC103 was first 

sighted on 02 May 2011 with a calf in attendance.  She was then sighted on 15 January 2012 and again on 

29 March 2013, without a calf in either group.  On 06 January 2014, approximately 9 months after her 

previous sighting, she was sighted with her second calf, indicating a calving interval of 3-4 years for this 

whale.  It also suggests this female rested a year between weaning her first calf and becoming pregnant 

again.  There were three cases where a female was sighted with a calf and then subsequently sighted 

without a calf.  The intervals between these sightings were 0.7, 1.9, and 2.2 years.  There were two cases 

where a female was seen without a calf in one sighting and with a calf in the next; these sighting intervals 

were 0.8 and 1 year.  There were three females sighted with calves on two subsequent occasions, these 

were 1 day, 0.2, and 0.4 years apart.  These intervals suggest that calves are likely weaned at 1-2 years of 
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age, though it should be noted that due to the low mark rates of calves and sub-adults in this population, 

from photos alone recaptures can seldom be made between these two classes and it will be difficult to 

confirm whether a sub-adult sighted in the same group as a known adult female could be her previously 

sighted calf.   

Table 6.  Sighting histories of six adult female Zc that were sighted with 
and without calves between 2006 and 2014.  The asterisk 
denotes a sighting in which both these females were present 
with an older calf not very closely associated with either 
female.  The calf was believed to belong to CRC127, though 
this could not be confirmed by photos due to lack of markings.   

 

 

Moore & Barlow (2013) used line-transect survey data to detect a declining trend in Zc abundance in the 

California Current ecosystem from 1991-2008, though the cause of the decline was not clear.  The San 

Nicolas Basin represents a very small portion at the southern end of that study area, but photo-ID is 

providing the first opportunity to understand finer scale population dynamics for Zc within this larger area 

of concern, and Zc photo-ID effort in this region should be continued into the future.  Ideally, another 

photo-ID study should be initiated for a reference Zc population elsewhere in the California Current 

ecosystem to assess the degree to which impacts associated with military training exercises might 

differentially affect whales in the San Nicolas Basin.  Passive acoustic studies have suggested that Zc are 

the predominant beaked whale species in the Monterey Canyon (Baumann-Pickering et al. 2014), a region 

to the north that is readily accessible by boat from the mainland coast.  A comparison of population 

dynamics and vital rates between these areas could be informative.   

Female ID
Sighting 

Date
With 
Calf?

Years Since Previous 
Sighting

23 24-Oct-07 No --
23 24-Oct-08 Yes 1.0
23 29-Sep-10 No 1.9
50 22-Oct-08 Yes --
50 23-Oct-08 Yes 0.0
54 23-Oct-08 Yes --
54 05-Jan-11 No 2.2

103 02-May-11 Yes --
103 15-Jan-12 No 0.7
103 29-Mar-13 No?* 1.2
103 06-Jan-14 Yes 0.8
126 05-Jan-13 Yes --
126 20-May-13 Yes 0.4
127 05-Jan-13 Yes --
127 29-Mar-13 Yes?* 0.2
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Photo-Identification-- Fin Whales 

Photo-identification of Bp in the Southern California Bight has occurred within a larger effort to 

understand the population structure of fin whales along the coast of western North America (Table 7).  

From 1992-2012, 338 individuals have been identified between Point Conception and the US-Mexico 

border, at distances up to 356 km from the mainland coast.  Prior to 2009, Bp photos were predominantly 

collected opportunistically during sporadic surveys in the outer waters of the Southern California Bight 

(from 30-100 km from the mainland coast), and almost exclusively in summer and early fall.  Beginning 

in 2009, Bp sightings in the nearshore waters of the Bight (<30 km from the mainland coast) increased 

considerably, particularly during late fall and winter months which were previously underrepresented.  

This trend has persisted, and through occasional nearshore surveys associated with this project and 

opportunistic photo contributions from naturalists, tour operators, and other coastal surveys by CRC staff 

and collaborators, the geographic and temporal distributions of Bp identifications have shifted in recent 

study years, and individual re-sightings both within and between study years have increased.   

 

Table 7.  Summary of Bp photo-identification along the west coast of North America, including photos 
collected as part of this study, other research by CRC and collaborating organizations (SWFSC, 
Dept. of Fisheries and Oceans Canada, Aquarium of the Pacific), naturalists, and tour operators.   

 
 

Individual Bp off Southern California were identified on an average of 2 days each in the study period, 

though the majority of whales were only seen once.  As was reported previously (Falcone et al. 2011), Bp  

identified off Southern California were rarely identified elsewhere, suggesting extra-regional movements 

are relatively infrequent, though sampling outside Southern California is much more limited and 

seasonally biased.  A subset of 95 whales were seen on as many as 21 different days off Southern 

California, and 49 of these whales were sighted in up to 5 different years.  Whales with the highest 

numbers of daily sightings were found predominantly in nearshore waters, which in part reflects heavy 

sampling in later study years when coastal Bp sightings increased.  Because sampling in the outer waters 

did not occur as consistently as inshore sampling, it was difficult to characterize the relationship between 

Region
First 
Year

Last 
Year

Identification 
Records

Identifications 
with ID

Unique 
IDs

Avg 
Identifications 

per ID

British Columbia-Southeast Alaska 2004 2009 110 92 48 1.92

Oregon-Washington 2005 2012 67 63 55 1.15

Northern California 1987 2012 96 65 54 1.20

Southern California Bight 1992 2012 1090 692 338 2.05

Mexico-Eastern Tropical Pacific 2003 2011 41 29 21 1.38
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the whales using the inner and outer waters of the Bight.  To date, 21 (22%) of 95 whales identified more 

than once off Southern California have been sighted both within and beyond 30 km of the mainland coast.  

It is notable that 49 re-sighted whales were seen in multiple seasons (to a maximum of all four), which 

suggests that at least some individual whales are present in the region year-round, and that the low 

inshore-offshore recapture rate may result from under-sampling offshore regions in the summer relative to 

inshore regions in the winter.  This, combined with the limited movements of satellite tagged individuals 

(see below), suggests that there may be a sub-population of Bp that ranges broadly throughout the 

Southern California Bight year-round, aggregating coastally in fall and winter and dispersing throughout 

the outer waters in summer and spring.  Non-migratory populations of Bp have been described elsewhere, 

so this pattern may not be uncommon within the species.  However, these populations tend to occur in 

more geographically isolated seas, such as the Gulf of California and the Mediterranean Sea (Tershy et al. 

1993, Bérubé et al. 2002), so the presence of a distinct population within the continuous waters that Bp 

use along the west coast seems more unusual.  Genetic data has also suggested a population boundary 

may exist for fin whales in Southern California (Archer et al. 2013).   

After restricting the data to right sides of non-calves and to medium to high quality images, the sample 

used to estimate abundance for Bp included 173 annual captures of 141 individuals photographed in 

Southern California from 2009-2012.  Using the Chapman variant of the Lincoln-Peterson estimator to 

compare among pairs of sample years resulted in an average abundance estimate of 298 whales (range 

167 - 556, n = 6 year pairs, Table 8A).  Further restricting the sample to identifications collected inshore 

resulted in an average estimate of only 164 whales (range 106 - 264, Table 8B).  A comparison among 

simple closed models using RMark suggested one, in which capture and recapture probability were equal 

but varied annually, fit the data best (AIC = -542.3).  This model produced capture probabilities ranging 

from 0.08 in 2011 to 0.18 in 2012 and an estimated abundance of 312 individuals.  This was followed by 

the model in which capture and recapture probabilities were equal and constant at 0.14 (AIC = -535.3), 

with an estimated abundance of 318 whales.  These two models agreed well with the Chapman estimator 

results for paired years.  The final model, with capture and recapture probabilities constant but different at 

0.07 and 0.14 respectively (AIC = -534.3) resulted in an abundance estimate of 570 individuals.   
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Table 8.  Population estimates for Southern California Bp, using photos collected from 2009-2012 in 
both inshore and offshore regions (A), and in inshore regions only (B). 

A. 

 

B. 

 

 

Using the same combined inshore-offshore dataset in the POPAN open population model resulted in 

similar abundance estimates to both closed models.  The data were best fit by a model in which apparent 

survival and capture probability were constant at 0.74 and 0.24, respectively, but in which the probability 

of entry into the population varied annually from nearly zero to 0.35 (AIC value 216.55).  This resulted in 

an abundance estimate of 352 whales.  The next best fit model ranked only slightly below (AIC 216.58), 

and assumed time-varying capture probability while all other parameters were held constant.  In this case, 

apparent survival was 0.78, probability of entry was 0.17, and capture probability ranged from 0.14 - 

0.28.  This produced an abundance estimate of 326 whales.  The third model run assumed both apparent 

survival and probability of entry varied annually, but capture probability did not (AIC 216.84).  Apparent 

survival estimates ranged from 0.54 to nearly 1, probability of entry ranged from 0.02 to 0.36, capture 

probability was constant at 0.22, and the abundance was estimated at 355 whales.  These abundance 

estimates agree well with those from the closed models, though the additional parameters modeled here 

suggest that there may be a fairly stable core population of approximately 100-200 whales, which 

increasingly use the inshore waters, with a smaller proportion of animals that are passing in and out of the 

region each year and which predominantly use the under-sampled outer waters.  This could explain the 

Year 1 Year 2 n ID1 n ID2 n ID12 N CV

CI 95%-
L

CI 95%-
U

2009 2010 42 47 8 257 0.18 204 323

2009 2011 42 27 4 300 0.24 221 408

2009 2012 42 57 9 276 0.17 222 343

2010 2011 47 27 8 167 0.17 135 207

2010 2012 47 57 5 556 0.23 413 749

2011 2012 27 57 7 231 0.18 182 293

298Average Population Estimate Across Years

Year 1 Year 2 n ID1 n ID2 n ID12 N CV

CI 95%-
L

CI 95%-
U

2009 2010 35 38 7 200 0.18 158 253

2009 2011 35 21 5 157 0.21 121 205

2009 2012 35 33 9 135 0.15 111 164

2010 2011 38 21 8 106 0.15 87 129

2010 2012 38 33 5 264 0.22 199 350

2011 2012 21 33 6 124 0.18 98 156

164Average Population Estimate Across Years
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lower apparent survival rates and high probabilities of entry estimated by the POPAN model.  Continued 

data collection and more complex analytical techniques should help resolve the structure and stability of 

the fin whale population off Southern California.   

Fin whales off Southern California are currently managed as part of a California-Oregon-Washington 

population estimated at approximately 3000 individuals (Carretta et al. 2012).  If this population 

definition is accurate, our numbers suggest that roughly 10% of this population may be using the 

Southern California Bight preferentially, with a smaller percentage of these whales increasingly using the 

busy inshore waters.  Using line-transect survey data from 1991-2005, Barlow & Forney (2007) estimated 

the abundance of Bp in Southern California at 359 (CV = 0.4), which agrees well with the mark-recapture 

results and suggests that Bp abundance may have remained fairly stable in the ensuing years, though the 

CV associated with the earlier estimate indicates a considerable degree of uncertainty.  Moore & Barlow 

(2011) provided evidence that fin whale abundance was increasing in the California Current from 1991 - 

2008, and, barring changes in population dynamics, continued growth was expected.  However, they also 

noted that the trend was less consistent in the southern portion of their study area.  It is notable that both 

our photo-ID data and other genetic analyses (Archer et al. 2013) suggest there could be differentiation in 

the fin whale population north and south of Point Conception, and thus the population increases in Moore 

& Barlow (2011) may not be occurring uniformly along the US West Coast, because that study included 

two distinct population segments.   

Ship strike has been cited as a risk to fin whales in this region, and this risk may be disproportionately 

high for whales that tend to aggregate along the densely populated coast around Los Angeles-Long Beach 

in fall and winter, and also on the SOAR range in spring and summer.  Redfern et al. (2013) suggested the 

ship strike risk to fin whales in Southern California is likely below the potential biological removal rate 

set by the National Marine Fisheries Service.  However, this estimate did not account for the fact that fin 

whale carcasses are much less likely to be recovered if they are struck in their offshore habitat (relative to 

the carcasses of more coastally distributed blue whales, for which there is currently greater concern), or 

that fin whales off Southern California may not be from the same large and growing population from 

which takes are currently estimated.  It also predominantly relied on data from prior to the apparent 

inshore winter distribution shift that started in 2009, and thus may have underestimated their use of the 

most heavily trafficked areas in the region.   

It is also interesting that although there are indications of a year-round sub-population of fin whales off 

Southern California, with increased sighting rates in coastal waters during winter, young calves are 

nevertheless seldom sighted.  In fact, young fin whale calves have rarely been documented in either 
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historic whaling records (Clapham et al. 1997, Mizroch et al. 2009) or in more recent sighting data from 

the eastern North Pacific used in this larger photo-ID study.  Whaling data have shown that fin whales, 

like other large baleen whales, appear to give birth primarily in winter; however, they do not display clear 

seasonal migratory patterns associated with their reproductive cycle in the North Pacific, as they do in 

other oceans (Mizroch et al. 2009).  To date, we have sighted only one neonate calf during this study, in 

November on the SOAR range.  The calf was very small and potentially pre-term.  We have noted 

increased surface-oriented social behavior and larger group sizes among fin whales sighted in surveys 

from November through March, including "racing" behavior associated with courtship in blue whales, 

and thus it is likely whales are engaging in reproductive behavior during winter.  However, this does not 

appear to include routine use of the area for calving.  At a minimum, this suggests there may be 

heterogeneity in capture rates related to age, sex, and reproductive status in this population that might 

affect abundance estimates.  Because fin whales are not sexually dimorphic, and even older calves are 

infrequently sighted (thus providing a sex for the mother), the only reliable way to sex a sizeable number 

of individuals in this population and integrate this covariate into future population models will be through 

increased genetic sampling of individuals that are photographed.  This should be considered for future 

efforts to improve our understanding of age and sex stratified demography, distribution, and impacts.   

Satellite Telemetry-- Cuvier’s Beaked Whales 

Eighteen beaked whales were tagged between 2008 and January 2014.  In this report, we summarize the 

movements and habitat use of all 18 whales.  As the diving behavior from eight of these tags was 

described in previous contract reports and published recently in Schorr et al. (2014), in this report we only 

summarize dive data from a subset of tags that were active on or near SOAR during two periods when 

MFAS was not reported within the SCB-- providing our first sizeable sample of behavior in the absence 

of this type of disturbance.   

Movements and Habitat Use-- Cuvier’s Beaked Whales 

The two earliest tags deployed on Zc were location-only Argos transmitters (Spot5, Wildlife Computers, 

Redmond, WA); all others provided both location and diving behavior data (SPLASH10, Wildlife 

Computers, Redmond, WA).  The majority of whales (n = 16) were tagged on the SOAR range; however 

two tags were deployed in the Catalina Basin, off the NE corner of San Clemente Island, in 2014.  The 

median transmission duration for all tags was 44.8 days (range = 7.2 – 121.3, n = 18), providing 2581 

locations (Table 9).  Grand mean distance to deployment for these locations was just 38 km (sd = 46.1), 

though the maximum distance traveled from tagging location was 697 km (Figure 3).   
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Early photo-ID and telemetry data have suggested that animals tagged on the SOAR range exhibit a high 

degree of site fidelity to the San Nicolas basin (Falcone et al. 2009, Schorr et al. 2014).  Six of the tagged 

whales have been photographed in more than one year, with the time between re-sightings ranging from 

0.5-5.4 years (Table 10).  Movements beyond the basin have continued to occur primarily into the Santa 

Cruz Basin to the north or Tanner Canyon to the south, though several whales have made larger extra-

regional movements, mostly to the south.  Movements into the Catalina Basin, which lies immediately 

east of the San Nicolas Basin, have been strikingly uncommon despite close proximity and the fact that Zc 

are known to occur there (Yack et al. 2013).  In total, we have 688 days of tracking data from 16 Zc 

tagged on SOAR.  Only two of these whales entered the Catalina Basin during their transmission period: 

one individual was present on one day, another for two days, representing less than 2% of their total 

transmission durations (Table 11).  The first two tag deployments on whales in the Catalina Basin also 

revealed limited movement patterns.  While these two whales were in the same group when tagged, they 

separated within 1 day.  In a total of 103 days of independent movement data from these two whales, only 

two poor quality locations were received from within the San Nicolas basin, both of which were right 

along the boundary of the Catalina Basin and associated with a degree of uncertainty.  This suggests some 

Zc in the SCB may exhibit a degree of basin-specific site fidelity (Figure 4), despite a demonstrated 

ability to move extensive distances.  Even within the San Nicolas Basin, most whales preferentially used 

the central and western sides of the basin, suggesting core use areas within a preferred basin may be quite 

small (Figure 4).   
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Table 9.  Deployment summaries for 18 Zc tags.  Spot5 tags provided location data only; SPLASH10 tags 
provided locations and diving behavior. 

 

 

TagID Date Deployed
Transmission 

Duration (Days)
Num. 

Locations

Median Dist to 
Deployment 

location (Range)
Location 
Tagged Tag Type

ZcTag004 8/3/2008 121.3 350 41 (2-152) SOAR Spot5

ZcTag007 7/20/2009 42.4 179 12 (1-697) SOAR Spot5

ZcTag010 6/29/2010 53.6 172 68 (5-266) SOAR SPLASH10

ZcTag011 6/29/2010 89.8 175 199 (4-289) SOAR SPLASH10

ZcTag014 1/6/2011 22.5 81 18 (2-94) SOAR SPLASH10

ZcTag015 1/6/2011 70.6 292 84 (4-452) SOAR SPLASH10

ZcTag016 1/6/2011 88.7 195 20 (1-103) SOAR SPLASH10

ZcTag017 7/23/2011 9.7 43 29 (6-236) SOAR SPLASH10

ZcTag019 1/15/2012 12.0 50 12 (1-33) SOAR SPLASH10

ZcTag020 1/15/2012 26.4 122 17 (1-42) SOAR SPLASH10

ZcTag021 3/29/2013 47.3 132 72 (0-122) SOAR SPLASH10

ZcTag022 3/30/2013 27.8 65 11 (1-41) SOAR SPLASH10

ZcTag023 3/30/2013 7.2 24 14 (2-37) SOAR SPLASH10

ZcTag024 1/4/2014 11.8 41 17 (0-61) SOAR SPLASH10

ZcTag025 1/4/2014 8.2 33 21 (2-56) SOAR SPLASH10

ZcTag026 1/7/2014 47.2 194 24 (2-46) Catalina SPLASH10

ZcTag027 1/7/2014 57.8 255 17 (1-47) Catalina SPLASH10

ZcTag028 1/11/2014 48.6 178 10 (0-27) SOAR SPLASH10
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Figure 3.  Daily distance to tag deployment location.  The grand mean distance to tagging 
(38 km) is represented by the dashed black line.  Despite large extra-regional 
movements by a few whales, most returned to, or remained within, the San 
Nicolas Basin.  The one individual which traveled the furthest away (ZcTag07) 
was an adult male.   

Overall, 91% of all Zc locations fell within the boundaries of the SOCAL Range Complex.  For whales 

tagged on SOAR, 57.1% of all their locations were within the boundaries of that range (Table 11) and 

67.5% within the San Nicolas Basin (Figure 4).  For the two whales tagged in the Catalina Basin, 20% 

and 27% of locations were within the Shore Bombardment Area (SHOBA) or 3803XX, respectively 

(Figure 4, Table 11).  With sufficient sample sizes, telemetry data combined with photo-ID could allow 

for a more detailed assessment of disturbance by operation type and operation area, and may allow for 

accounting of more realistic take numbers for this species in this region.   
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Table 10.  Sighting histories of six tagged Zc that were photographed in more than one year. 

 

 

Table 11.  Percentage of locations within designated ranges and geographic basins.  Group means (sd) are in bold 
at the bottom of the table. 

 

TagID Age Sex Sightings Years First to Last Sighting

ZcTag004 Adult Female 3 3.45

ZcTag015 Adult Female 3 0.53

ZcTag017 Adult Female 2 1.69

ZcTag023 Adult Male 2 2.76

ZcTag025 Adult Male 4 5.42

ZcTag028 Sub-Adult Unk 2 0.79

TagID n

% of Locs 
in SoCal 
Complex

% of Locs 
in SOAR

% Locs in 
SHOBA

% Locs in 
3803XX

% Locs in 
San 

Nicolas

% of Locs 
in Santa 

Cruz Basin

% Locs in 
Catalina 

Basin

ZcTag004 350 100% 25% 0% 0% 33% 0% 2%

ZcTag007 179 92% 67% 0% 0% 72% 0% 0%

ZcTag010 172 49% 12% 0% 0% 31% 62% 1%

ZcTag011 175 41% 14% 0% 0% 23% 0% 0%

ZcTag014 81 80% 58% 0% 0% 73% 16% 1%

ZcTag015 292 79% 17% 0% 0% 33% 17% 0%

ZcTag016 195 99% 56% 0% 0% 72% 1% 0%

ZcTag017 43 100% 51% 0% 0% 63% 0% 0%

ZcTag019 50 100% 96% 0% 0% 100% 0% 0%

ZcTag020 122 98% 79% 0% 0% 93% 0% 0%

ZcTag021 132 100% 37% 0% 0% 43% 0% 0%

ZcTag022 65 100% 85% 0% 0% 94% 0% 0%

ZcTag023 24 100% 100% 0% 0% 100% 0% 0%

ZcTag024 41 100% 61% 2% 0% 85% 0% 0%

ZcTag025 33 100% 61% 0% 0% 64% 0% 0%

ZcTag026 194 100% 0% 19% 15% 0% 0% 92%

ZcTag027 255 100% 0% 1% 10% 1% 0% 98%

ZcTag028 178 100% 96% 0% 0% 100% 0% 0%

Overall average 89% 38% 2% 2% 47% 7% 17%
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Figure 4.  Daily positions of tagged Zc in the SCB, with animals tagged on SOAR denoted by red 
diamonds and animals tagged in the Catalina Basin by yellow circles.  Movements 
between the San Nicolas Basin (where SOAR is located) and the Catalina Basin were 
very rare.  SOAR is outlined in white, SHOBA in red, and 3803XX in green.   

 

Dive Behavior-- Cuvier’s Beaked Whales 

Schorr et al. (2014) summarized the first 3732 hours of dive data from eight Zc tagged as part of this 

work in 2010-2012.  Since then, eight additional dive-reporting tags were deployed in 2013 and 2014, 

bringing this total body of data to 8248 hours.  The pressure sensor on ZcTag027 failed somewhere 

between 0.6-3 days into a 57.8 day deployment, yielding erroneous dive depth data; removal of affected 

data reduced the dataset to 6891 hours.  Prior to tag deployments in 2014, we beta-tested a new land-

based Argos receiving station on San Clemente Island called a MOTE (Wildlife Computers, Redmond, 

WA).  The MOTE dramatically improved Argos data throughput, yielding a 422% increase in total 

messages received over Argos satellites alone, including a 56% increase in total behavior log data.  
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Uncorrupted messages were received from as far away as 67km.  This unit is currently on loan from 

Wildlife Computers as a test unit, and we will work to secure funding to purchase one for permanent 

installation on San Clemente Island.  This increase in data throughput for animals on SOAR will 

significantly improve future analyses of Zc behavior in relation to MFAS use, which has been 

complicated by discontinuity in the behavioral records from earlier tags that relied solely on Argos 

satellites to offload data.   

Two extended periods without reported MFAS use were identified during tag deployments: one in 

January 2011 and the next in January 2014.  Though SPORTS was not queried for the month of 

December prior to deployment dates, the SCORE range operations center reported that sonar use is very 

rare in the last week of December due to holidays and an annual range maintenance closure which 

typically extends 1-2 weeks into January.  This provides up to three weeks without sonar use at SOAR in 

late December-early January for most years.  The first reports of MFAS use in the SoCal Range Complex 

in 2011 occurred on January 11, and in 2014 MFAS use was not reported until January14.  There were 

three tags active prior to the date of the first MFAS in January 2011, and five in January 2014.  Real-time 

monitoring of the SOAR hydrophone array (as part of M3R-associated fieldwork) occurred during 

daylight hours for all dates except 10 January 2011 and 12-13 January 2014, thus providing secondary 

confirmation that tagged animals were not exposed to sonar for most of the overlapping dates.  The 

behavioral records from these eight whales provided a total of 633 hours of dive data in the absence of 

reported MFAS.   

Basic dive parameters during the sonar-free period are summarized for each tagged whale in Table 12A.  

The group mean deep dive depth was 1430 m (sd = 205, n = 8) and the deepest dive was 1940 m.  These 

values are very similar to the larger dataset when whales were within the San Nicolas Basin, and continue 

to suggest that deep dive depth is primarily driven by bottom depth.  Group mean deep dive duration was 

63.5 min (sd = 6.5, n = 8), slightly shorter than the group mean of the larger dataset (67.4 min).  The 

longest dive during the sonar-free period was 103.8 min.  While still very long, it was considerably 

shorter than the longest dive of 137.5 min (Schorr et al. 2014).  Despite the relative brevity of these 

datasets (0.6-9.3 consecutive days per whale), considerable variability in deep dive duration was again 

evident both within and between individuals (Figure 5, Table 12A).  The group mean surfacing duration 

was slightly longer in the non-exposed data, though most individual median values spanned a similar 

range to those presented in Schorr et al. (2014), so this difference appears to primarily have been driven 

by the unusually long surfacing bouts seen in ZcTag014 (Table 12B).   
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The group mean IDDI was 102.6 min (sd = 12.3, n =6), with a total range across all whales of 21.6-

244.2 min (Table 12).  This average was virtually identical to the group mean IDDI for the larger data 

which included sonar exposures (Schorr et al. 2014).  The maximum IDDI captured during this period 

(244.2 min) was, however, much shorter than the maximum in the data that included sonar use 

(431.1 min).  Individual deep dive rates were higher in the sonar-free dataset (group mean of 0.36 dives/hr 

versus 0.30 dives/hr), though this difference was heavily influenced by the brief and highly fragmented 

record from ZcTag014.  Excluding this whale's data resulted in a group mean deep dive rate of 

0.34 dives/hr in the sonar-free period, or about 8 deep dives per day, as in the larger dataset.  The general 

similarity in the average IDDI and deep dive rates in the absence of sonar to those seen in the larger 

dataset collected both with and without sonar supports two suggestions in Schorr et al. (2014): that Zc in 

this region appear to conduct fewer foraging dives each day than animals in other regions (Baird et al. 

2006, Tyack et al. 2006); and that factors other than sonar exposure are likely driving these regional 

differences.  However, even the slight increase in deep dive rate seen here, particularly when taken with 

the much lower maximum IDDI in the absence of sonar, supports the suggestions that some sonar 

exposures can cause measurable disruptions in foraging behavior (DeRuiter et al. 2013, Schorr et al. 

2014).  If these disruptions occur often enough, they may decrease overall foraging rates for whales that 

preferentially use SOAR.   
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Table 12.  Summary of diving behavior during an extended period without the use of MFAS.  Values are presented 
by individual median (range), with the group mean (sd) across individuals in bold at the bottom.   

A.  Diving parameters.   

 

B. IDDI, deep dive rate (deep dives per hour of data received), and surfacing durations.   

 

 

Whale ID  n Depth (m) Duration (min) n Depth (m) Duration (min)

ZcTag014 3.5 12 1536 (1232-1808) 59.7 (38.9-66.7) 38 272 (66-560) 14.3 (2.0-23.5)

ZcTag015 4.1 29 1424 (960-1904) 58.1 (42.1-82.3) 141 296 (56-816) 20.3 (1.1-30.9)

ZcTag016 4.0 25 1200 (1104-1584) 71.1 (49.6-84.8) 114 280 (96-544) 22.4 (5.2-40)

ZcTag024 9.3 44 1552 (872-912) 70.2 (38.2-103.8) 183 272 (58-624) 21.9 (2.6-52.1)

ZcTag025 8.2 29 1680 (1104-1840) 71.7 (53.7-92.5) 127 256 (68-592) 21.4 (5.3-51.9)

ZcTag026 6.2 56 1200 (880-1328) 55.0 (42.3-83.4) 265 228 (54-656) 17.4 (3.9-30.9)

ZcTag027 0.6 5 1200 (1136-1264) 61.6 (60.5-73.5) 31 208 (94-656) 16.2 (10.6-30.7

ZcTag028 2.3 19 1648 (1328-1712) 60.4 (51.4-86.7) 105 256 (66-704) 16.5 (2.8-37.5)

Total 219 1430 (205.2) 63.5 (6.5) 1004 259 (28.6) 18.8 (3.1)

Days 
without 
MFAS

Deep Dives Shallow Dives

Whale ID n # Shallow Dives Duration (min) n Duration (min)

ZcTag014 5 1 (0-3) 32.6 (3.7-67.6) 0.49 50 2.7 (1.0-22.7)

ZcTag015 24 5 (1-9) 116.2 (29.3 - 194.6) 0.35 170 2.4 (0.5-34.9)

ZcTag016 23 5 (1-7) 132.3 (61.4 - 195.9) 0.31 139 2.4 (0.6-38.1)

ZcTag024 30 4 (1-8) 103.3 (21.6 - 235.7) 0.34 226 2.1 (0-57)

ZcTag025 20 4 (1-7) 117.2 (27.4 - 244.2) 0.33 153 2.0 (0-56.4)

ZcTag026 55 5 (0-9) 101.5 (28.7 - 178.3) 0.38 320 1.8 (0.5-73.2)

ZcTag027 5 6 (4-9) 116.6 (63.3-178.7) 0.33 36 1.6 (0.9-8.5)

ZcTag028 19 5 (2-10) 101.2 (40.5 - 228.5) 0.35 123 1.9 (0-21.1)

Total 181 4.4 (1.5) 102.6 (30.2) 0.36 (0.06) 1217 2.10 (0.25)

SurfacingsInter-Deep Dive Intervals

Deep dives 
per hr
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Figure 5.  Deep dive durations during time periods with no reported MFAS use.  Left: Histogram plot of 
deep dive duration by individual, demonstrating the variability in this behavior both within 
and between individuals.  The solid black line connects the median value for each individual; 
the dashed lines connect the upper and lower 25th percentiles.  Right: Box plot of deep dive 
duration by day for Zc026, the whale with the most extensive sonar-free dataset.  The red dots 
represent extreme outliers in this whale’s data.   

 

Satellite Telemetry-- Fin Whales 

Fifty-six fin whales were tagged at SCORE from 2008–2014 (Appendix II).  Two tags did not transmit 

and one tag provided no locations.  Median transmission duration was 20 days (range = 1-240), and tags 

provided a mean of 6.1 (sd = 2) locations per day.  During summer and spring, with just one exception 

tags were predominantly deployed in offshore waters of the bight.  Fall and winter deployments occurred 

more broadly on whales encountered from 4-139 km from the mainland (Figure 6).   
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Figure 6.  Fin whale tag deployment locations by season.  Summer = red, Fall = green, Winter = blue, 
Spring = yellow. 

Movements and Habitat Use-- Fin Whales 

A plot of the best daily locations for all tagged whales demonstrates extensive use of the northern half of 

the San Nicolas and Catalina basins, the inshore waters near Palos Verdes, and west of the shelf extending 

northwest from San Nicolas Island-- most of which are encompassed by several military training ranges 

or designated shipping lanes (Figure 7).  It is important to note that many tags were deployed in these 

same areas, and thus there is some bias inherent in the data.  However, at a minimum the data demonstrate 

that whales encountered in these areas tend to remain there for days or weeks at a time.  To reduce the 

effect of tagging location bias introduced by shorter duration tags, we plotted only the tracks of nine tags 

which transmitted for more than 50 days (Figure 8).  These tracks suggest prolonged and repeated use of 

the SCB is common among Bp tagged there.  While several whales left the SCB, most either had returned 

or were en route back when the tag stopped transmitting.  The whale that traveled furthest during its 

deployment had returned to within 300 km of the tagging location before the tag stopped transmitting 

(Figure 9).  The whale with the longest transmission duration (240 days) made limited excursions to the 

north and south, but returned quickly and spent the majority of its transmission time in the SCB (Figure 

10).  The maximum distance between the southernmost (central Baja California) and northernmost (Cape 

Mendocino, California) locations from the entire dataset was 2070 km.  The longest round-trip excursion 

from the SCB was 79.4 days, and one tagged whale left the SCB for 72 days before the tag stopped 



 

33 
 

transmitting.  Most excursions were much shorter in duration, and occurred both in summer and fall 

(Figure 8).  Group median distance to tagging location was just 34 km (max range by individual = 5 – 

1088, n = 53).  The median rate of travel between locations within the SCB was 0.7 km/hr, which was 

significantly slower than the rate of travel outside the SCB (1.4 km/hr) (Kruskal-Wallis Multiple 

comparison, Z-value = 4.2, p <0.001).   

Taken in combination with photo-identification data that document the same individuals using the SCB 

repeatedly both within and between years, the movement patterns and habitat use captured by these tags, 

even those of shorter duration, support the theory that the SCB represents a core use area for a sub-

population of whales along the US West Coast.   

 

Figure 7.  One location per day for each tagged fin whale off Southern California.  The Pt. Mugu Sea Range is 
outlined in green, the SoCal Range Complex is outlined in white. 

Of the 9136 locations received, a total of 8061 (88%) were within either the SoCal Range Complex (50%) 

or the Pt. Mugu Sea Range (38%) (Figure 7).  (See Appendix II for individual details.)  A total of 13% of 

all locations were within the SOAR range boundary.  To minimize the bias associated with tagging 

location, from 15 individuals we sub-sampled 2318 locations that were received more than 30 days after 

the deployment date.  Of these locations, 68% were within one of the range complexes, though the total 

proportion of locations within the range varied widely by individual (Appendix II).  These results suggest 

Catalina Basin 

San Nicolas Basin 

Palos Verdes Peninsula
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that individual fin whales are spending extended periods within the boundaries of the training ranges of 

the SCB, regardless of where within the Bight they were tagged.   

 

Figure 8.  Map showing the tracks of the 9 tags that transmitted for more than 50 days.  While 
some animals left the SCB, traveling both to the north and south, most whales 
returned, or were on their way back, to the SCB before their tags ceased transmitting.  
Dates of the northern- and southern-most locations for selected tracks are labeled 
with the corresponding track color.   

12/17/2009

10/10/2010 

7/12/2012 

12/12/2012 

6/28/2014 
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The group mean water depth used was 1033 m, though this varied seasonally (Table 13).  This indicates 

that although fin whales have been documented feeding on prey relatively shallow in the water column 

(Croll et al. 2001), they preferentially do so in much deeper water habitat.  Given the overlap of 

distribution with training ranges and shipping lanes, this may help explain why fin whales are one of the 

most frequently ship-struck large whales in the stranding record along the US west coast (Redfern et al. 

2013): as ships move further offshore into deeper waters away from areas like the Santa Barbara Channel, 

both ship speeds and sea states generally increase, both of which decrease the likelihood that transiting 

vessels can detect and/or avoid whales.  It also suggests that the carcasses of fin whales struck by large 

ships are much less likely to be observed, since mortally injured whales are likely to sink in very deep 

water far from shore, and that actual collision rates may be considerably higher than for blue whales, 

which are more likely to be struck in shallower nearshore habitat and thus be recovered or observed.  

Coupled with the percentage of time spent above 20m water depth (see diving behavior below), fin 

whales could be at even greater ship strike risk in the SCB.   

 

Figure 9.  Distance to deployment location by day for fifteen tags that transmitted for more 
than 30 days.  Only four individuals traveled more than 600 km from the tagging 
location, with all four heading back towards the tagging location when the tag 
ceased transmitting.   
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Figure 10.  A 220-day track of a fin whale tagged on the SOAR range in January 
2014, with the northern- and southern-most points labeled with the 
date of the position estimate. 

 

Seasonality-- Fin Whales 

From historical whaling records (Mizroch et al. 2009), visual surveys (e.g., Forney & Barlow 1998, 

Douglas et al. 2014), and more recently through passive acoustic monitoring (Sirović et al. 2013), fin 

whales have been documented year-round in the SCB.  However these methods provided little insight as 

to the identity of the whales in the area, and were too coarse to provide data on seasonal changes in 

distribution within the region.   

6/28/2014 

2/4/2014 
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The seasonal distribution of Bp tag deployments is summarized in Table 13.  The sub-sample of data used 

to assess changes in the seasonal distribution of Bp in the SCB (restricted to locations between N32.2o and 

N34.6o latitude) contained the following number of locations by season: Spring = 2021, Summer = 1653, 

Fall = 1006, Winter = 2865.  A clear seasonal distribution shift was evident, with whales tending to 

aggregate along the mainland coast and in the northern Catalina Basin in the fall and winter, and disperse 

throughout the outer waters of the SCB and west of the continental shelf in spring and summer (Figures 

11 and 12), though several areas were used year-round.  The northern portion of the San Nicolas Basin 

was one such important area.  There was no significant difference in distance to the mainland between fall 

and winter; but the differences between winter/fall and summer/spring were highly significant 

(Bonferroni multiple comparison test, p = 0.001, all Z values > 30.4), with whales much further offshore 

during the summer and spring (Table 13).   

Use of nearshore waters in fall and winter appears to be a recent development, based on our own personal 

experience, conversations with local tour operators and naturalists (many of whom have routinely 

conducted winter whale watching trips for gray whales for many years), and the CalCOFI study, which 

included year-round survey effort throughout the SCB.  Sighting data from CalCOFI surveys in 2004-

2008 suggested Bp were further from shore in fall than summer (the seasons with the highest number of 

sightings in that study), and closest to the mainland in spring, though the mean distance to the mainland 

was still 66 km (Douglas et al. 2014).  Both this and another earlier line-transect study documented Bp in 

the SCB during the winter months (Forney & Barlow 1998, Douglas et al. 2014), and in both cases 

whales were closer to shore in winter than in summer or fall.  However, these observations were based on 

a limited number of sightings.  In our study, encounters with dense winter aggregations of fin whales 

resulted in the largest number of tags deployed in any one season (20).  Both earlier studies used data 

collected prior to 2009 (Forney & Barlow 1998, Douglas et al. 2014), whereas almost all tags included 

here were deployed in 2009 or later.  Tags were not deployed in the same seasonal ratio across all years: 

most of the fall locations were from 2008-2009, and most winter locations from 2012-2014, so there is 

some potential bias introduced by annual variation in whale distribution (Figure 13).  This apparent 

increase in nearshore habitat use during the fall and winter beginning in 2009 could be due to an increase 

in abundance (as suggested by Moore & Barlow 2011) and a subsequent increase in observations 

throughout their existing range, an eastward shift in habitat use by the existing population not unlike that 

observed for blue whales off central California in the early 1980s (Calambokidis et al. 1990), or a 

combination of these factors.  However, when combined with results of photo-identification (see above) 

and the previous abundance estimate from Barlow & Forney (2007), the data more strongly suggest an 

inshore shift in distribution than an increase in abundance.   
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It is interesting to note that even with this inshore shift, only two whales entered the Santa Barbara 

Channel during the winter, and they were present there for just six total days.  This may be driven by 

habitat preferences for this species-- elsewhere in the SCB tagged whales tended to use deeper habitat 

than is available in the Santa Barbara Channel (Table 13).  It is also possible that fin whales have not 

historically used this area, which is heavily used by blue whales during the productive summer months 

(Fiedler et al. 1998), but that fin whales may begin to shift into this area during winter in the future if 

sufficient prey occur.  Larger blue whales are the dominant baleen whale species in spring and summer 

months throughout much of the habitat that was used by tagged fin whales in fall and winter.  Blue 

whales in the SCB are part of a broad Eastern North Pacific population, and historically have tended to 

arrive in the SCB in late spring but shift north out of the area as summer progresses and productivity 

increases further up the California coast (Calambokidis et al. 2009).  While the two species are known to 

co-occur in the spring and summer, the larger-scale Bp seasonal shifts may represent a form of seasonal 

niche partitioning for these ecologically similar species, with whales from the smaller, local fin whale 

sub-population shifting into coastal habitat during periods where it is not dominated by blue whales.   

In addition to seasonal changes in distribution, there were also significant seasonal differences in the rate 

of daily displacement.  Minimum rate of travel was calculated between the Best Daily Locations (Douglas 

et al. 2012) for each individual, using only locations that were received between12 and 36 hours apart to 

avoid spuriously high or low values.  Median rates were highest in the fall (1.1 km/hr, range = 0.04 – 9.1) 

followed by summer (1.0 km/hr, range =0.04 – 6.8), with both seasons significantly higher than winter 

and spring (Bonferroni multiple comparison, Z-values > 2.66).  Winter rates of movement were the 

lowest with a median of 0.6 km/hr (range = 0.03 – 6.8), reflecting the stability and limited range used by 

winter aggregations.  This may be because whales are drawn to these areas for both feeding and social 

reasons.   

 

Table 13.  Summary of locations received and habitat used by season.  Values are group medians, with 
the range of individual medians in parentheses.  Four locations that plotted on land were 
excluded from this analysis.   

 

Season Start Date End Date No. locs. Depth (m)
Distance to 
land (km)

Distance to 
Mainland (km)

Summer 21-Jun 20-Sep 2373 1153 (13 - 4654) 41 (0 - 271) 103 (7 - 278)

Fall 21-Sep 20-Dec 1402 868 (5 - 4431) 22 (0 - 390) 38 (1 - 390)

Winter 21-Dec 20-Mar 3082 889 (15 - 4531) 18 (1 - 139) 51 (1 - 163)

Spring 21-Mar 20-Jun 2275 1223 (32 - 4508) 36 (2 - 304) 111 (2 - 304)



 

39 
 

 

 

Figure 11.  Bp locations by season, with each individual represented by a unique color.  Top: Position estimates 
from 19 tagged whales during spring.  Bottom: Position estimates from 15 tagged whales during 
summer.   
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Figure 12. Bp locations by season, with each individual represented by a unique color.  Top: Position estimates 
from 13 tagged whales during fall.  Bottom: Position estimates from 21 tagged whales during winter.   
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Figure 13.  Seasonal distribution of fin whale locations by year. 

 

Diving Behavior-– Fin Whales 

1974 hours of dive data were collected from nine whales, all of which were tagged in winter or spring 

(Table 14).  Overall group mean dive depth was just 45 m, with a mean duration of 4.2 minutes.  Fin 

whales suction cup-tagged in the same region during August 2003 had an average dive depth of 248 m 

and duration of 7.0 minutes (Goldbogen 2006).  The shorter and shallower dives from our dataset may 

indicate a seasonal shift toward feeding in the upper water column during these months, or may reflect an 

increase in time spent engaged in behavior other than foraging.  Regardless of the reason, data from these 

whales indicate that on average they spend 71 percent of their time above 20 m, which is within one body 

length of the surface for most whales and could increase their susceptibility to ship strikes.  Further tag 

deployments in other times of the year are warranted to address possible seasonal differences in diving 

behavior.   
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Table 14.  Primary dive parameters by individual, with the group mean (sd) across individuals in bold at 
the bottom.  Individual table values are medians, with ranges in parentheses.  Dives were 
recorded as submergences below 20 m for more than 30 sec, with the start and end time 
marked as the animal passed 5 m depth.   

 

 

Concluding Remarks 

Prior to the initiation of M3R-associated surveys at SOAR in 2006, it was unknown if any beaked whales 

would be found on or near such a heavily used training range.  Through the continuation of these surveys 

in recent years, we now know that despite the frequent use of MFAS, Zc are present year-round in the San 

Nicolas Basin.  It also appears that these whales are part of a small, fairly localized population with basin-

specific core use areas.  We have collected the most extensive body of behavioral data from this species 

in existence, and have expanded the known limits of their diving capabilities (Schorr et al. 2014).  With 

continued effort, we will build on these photographic and behavioral data sets to address the question of 

what effect anthropogenic activity might be having on this small population.  In combination with a 

growing collection of sonar use data, we will be able to document how whales in this population react to 

the training exercises they must routinely experience.  Even more importantly, our demographic data have 

the potential to document changes in population size and structure that might occur as a result of 

cumulative sonar exposure.  Few other types of study can provide this level of validation to theoretical 

behavioral and population models.   

This work has also provided the first detailed look at fin whale population structure off the US West 

Coast, and particularly Southern California.  We have shown through both photo-ID and telemetry that 

whales encountered off Southern California tend to remain off Southern California, undergoing seasonal 

distribution shifts but remaining largely within a fairly limited latitudinal range.  There is increasing 

TagID Date tagged
Hrs Dive 

Data
Number of 

dives
Dive Depth 

(m)
Dive Duration 

(min)
%  time  <20m 

depth

BpTag050 1/5/2013 87 510 29 (20-248) 2 (0.5-14.5) 73%

BpTag051 1/8/2013 505 1672 35 (20-288) 4.5 (0.5-15.5) 74%

BpTag057 3/23/2013 13 35 52 (20-132) 5.1 (0.8-9.1) 78%

BpTag058 3/23/2013 258 1215 38 (20-376) 3 (0.5-13.8) 73%

BpTag059 3/29/2013 114 383 39 (20-264) 4.7 (0.5-14.9) 72%

BpTag060 3/29/2013 92 620 38 (20-312) 3 (0.6-13.1) 58%

BpTag061 3/29/2013 102 350 66 (20-272) 4.5 (0.5-10.0) 75%

BpTag063 5/19/2013 396 1539 69 (20-392) 4.8 (0.5-12.4) 70%

BpTag066 1/10/2014 407 1198 38 (20-304) 6.2 (0.5-21.8) 68%

1974 7522 45 (14.2) 4.2 (1.3) 71%  (57%)
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evidence that these whales also form a fairly small, localized sub-population, whose range overlaps 

heavily with military training areas and shipping lanes, increasing the level of impacts they are subjected 

to relative to whales outside this region.   

Beyond these focal species, we have collected photographic, genetic, and telemetry datasets from this 

relatively inaccessible region to support collaborative studies and also potential future work with a range 

of species that occur there.  Chief among these are killer whales-- including the extended satellite tracks 

from "offshore" ecotype whale-- Risso's dolphins, bottlenose dolphins, and sperm whales.   

Ultimately, this work has provided valuable data products in and of itself, and it will continue to form the 

basis of future work in an area that is likely to be of considerable interest to the military and 

environmental managers for years to come.   
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Appendix I 

CRC Fin Measurement Protocol v.  29 September 2014 

Prepared by Erin Falcone, Erin Keene, and Eric Keen.  Cascadia Research Collective. 

Goal:  Obtain a series of consistent dorsal fin measurements and use these to create a unique set of 

proportions to describe each whale/dolphin in the catalog.  Use these proportions to objectively 

rank fins during comparison by similarity in shape.  These ranks will function in conjunction with 

species-specific filters to prioritize subsets containing the most likely match.   

Tools: Dorsal fin images, ImageJ (and Java runtime environment), MS Access and a copy of the CRC 

Digital Catalog system for the species of interest.   

Before you begin, you will need to install the program ImageJ on your computer.  You can download the 

program from http://rsbweb.nih.gov/ij/download.html, if needed.  You will need the Java runtime 

environment to run it.  So if you don't already have that on your computer, you can also get that from the 

same website.  Run the executable file or files to install the program.   

To expedite fin measurement in ImageJ, install macros at the end of this document as follows:  

a. Copy macro text and open ImageJ.   
b. On the top toolbar, navigate: Plugins > Macros > StartUp Macros…   
c. Scroll to the bottom of the window that pops up.   
d. Paste the copied text to the bottom of this file.   
e. In this window, go File > Save   
f. Close the window, then close ImageJ.   

As you work with the various functions we are using, ImageJ will remember many menu settings you 

change, even between work sessions.  Before you measure your first ever image (or after reinstalling 

ImageJ), you need to configure the results window which stores measurements as you take them so that it 

matches the table structure into which you will be pasting them.  In the menu bar, go to "Analyze/Set 

Measurements...."  Check only the boxes for "Display label" and "Add to overlay" and set Decimal places 

to 1.   

1) Open ImageJ.   
a) It will appear as a small floating toolbar somewhere on your desktop.   

2) Open your first image for this work session.   
a) The keyboard shortcut for this command is Crtl+O; or use the menu bar to go to "File/Open..."   
b) Browse to the folder that contains the images with which you will be working.   

3) Open an image to be measured from the Images list.   
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4) Rotate the image until the base of the fin is as close to horizontal as you can reasonably get it by eye.   
a) Select the line tool.   
b) Click-and-drag a line across the base of the dorsal fin, from where the dorsal begins to where it 

ends.  Be as accurate as you can possibly be.   
c) Click the “L” key.  The image should automatically rotate so that the fin’s base is now horizontal.   
d) If you are not happy with the rotation, draw a new line and type “L” again.  Adjust the angle until 

you are happy with the rotation, then click OK.   
e) Note that the arch of the whale's back can interfere with your perception of level.  Really try to 

level the base of the fin to horizontal, not necessarily the topline of the back.   
5) Prepare the image view for measuring.   

a) Use the + or – keys to zoom in or out.  Or select the Magnifier in the toolbar to zoom into the fin, 
if needed.   
i) Left click zooms in, right click zooms out.   
ii) When the image zooms, it will center over where your cursor is positioned.  If you position it 

well, you can zoom without having to reposition the image after you are done.   
b) Select the Hand tool if you need to reposition the fin in the window.   

6) Measure 1, the vertical distance from the posterior fin tip to the caudal peduncle.  NOTE: If you have 
a triangular or disfigured fin, find the point at which the leading edge transitions to the trailing edge 
as best you can.  This may be well inside the insertion of the trailing edge.  It's ok, as long as we are 
consistent in the definition.   
a) Select the Straight Line tool from the toolbar.   
b) Place the cursor at center of the most posterior tip of the fin.   

i) Note that as you move the cursor around the image, the status window below the toolbar will 
tell you the exact coordinates to help you fine tune your placement-- though this doesn't have 
to be perfect.   

c) Press Shift and hold down the left mouse button to draw a vertical line that meets the top of the 
back below.   
i) Shift forces the line to be vertical or horizontal.   

d) Press Ctrl+M to log the measurement to the results window and Ctrl+D to draw the line.   
7) Before you move the Line Tool, mark the control points along this line by typing the “Q” key.   
8) Measure 2, the horizontal distance from the top of 1 to the leading edge of the fin.  NOTE: For 

triangular or disfigured fins, this distance may be zero.  In this case, just place the cursor on the top 
point without dragging, and skip to step c below.   
a) Place your cursor on the bottom point of 1, until it turns to a little hand.   
b) Press Shift and hold down the left mouse button to pivot this line horizontally around the top 

point until it meets the leading edge.   
c) Press Ctrl+M to log the measurement to the results window and Ctrl+D to draw the line.   

9) Measure 3, the horizontal distance from the upper quarterline point to the trailing edge.  NOTE: 
For triangular or disfigured fins, this distance may be zero, or technically negative.  In this case, just 
place the cursor on the midpoint of the vertical without dragging, and skip to step c below.   
a) Place the cursor on the mark you made for the upper quarterline.   
b) Press Shift and hold down the left mouse button to drag this line horizontally until it meets the 

trailing edge of the fin.   
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c) For fins that are very triangular or distorted, and for which the trailing edge is actually behind the 
vertical (relative to the leading edge), just place the cursor on the midpoint of 1, and left click 
once.   

d) For fins that have a notch at the point where the line meets the trailing edge, please estimate 
where the edge would have been were the notch not there, to the best of your ability.  We will be 
integrating notches into the system a different way, and this should just group fins into their 
overall shape.  This way you can still search whales in the historical data that may have gained a 
notch later.   

e) Press Ctrl+M to log the measurement of 3, and if you opted for the single point on a triangular 
fin, this length should be zero.   

10) Measure 4, the horizontal distance from the upper quarterline mark to the leading edge.   
a) Place the cursor on the end point of 3 at the trailing edge until it becomes a little hand.   
b) Press Shift and hold down the left mouse button to drag this line horizontally until it meets the 

leading edge of the fin.   
c) Press Ctrl+M to log the measurement and Ctrl+D to draw the line.   

11) Measure line pairs 5-6 and 7-8, as seen in Figure 14, in the same fashion as you did for 3-4.   
12) Select and then Cut (Ctrl+X) measurements 1-8 from the Results window and paste them into the 

MS Access Digital Catalog you will be using to compare them using the functions provided in the 
database.   
a) Verify that you got all measurements and that they are in the correct order.  For the vast majority 

of fins, measurements 3, 5, and 7 will be much shorter than the others.  If this pattern is not true, 
verify that you measured in the correct order.   

13) Save a cropped copy of the image you just measured for future reference, and go to the next image 
in the folder.   
a) Switch to the Rectangular Selection tool in the tool bar.   
b) Draw a box around the fin and the measurement grid you just drew over it.   
c) Click Ctrl+Shift+X to crop this image.   
d) Click Ctrl+S to save a copy to the Measured folder inside the Historical folder.  (Use the Default 

filename provided; it will convert it to a TIFF file.)   
e) Click Ctrl+Shift+O to open the next image in line.  (Or just Ctrl+O to open the browser 

window, from which the next on the list can be opened, if you are not working through images 
sequentially.)   

f) Go to Step 4 above and repeat for the next image to be measured.   
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Figure 14.  Measurement layout. 

 

ImageJ Macros (See above for instructions for installation.)   

 
//The macro "Leveler" is used to quickly rotate an image such that the base of a dorsal fin is 
horizontal. 
// Before running the macro, draw a line across the base of the fin. 
macro "Leveler [l]" { 
// Get the angle of this line with the picture's horiztonal; 
//run("Draw"); 
run("Measure"); 
theta =getResult("Angle"); 
 
if(theta > 90) { 
theta = -(180-theta); 
} 
 
if(theta < -90) { 
theta = (180+theta); 
} 
 
// Increase canvas size; 
h = getHeight(); 
w = getWidth(); 
w = w*1.3; 
h = h*4; 
run("Canvas Size...", "width=&w height=&h position=Center zero"); 
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run("Clear Results"); 
 
// Open the rotate dialog box and rotate by that angle; 
run("Rotate...  ", "angle=&theta grid=8 interpolation=Bilinear fill=TRUE englarge=TRUE"); 
//setTool("hand"); 
setLineWidth(1); 
} 
 
 
 
// The macro "quarters" draws dots along a line selection 
// at the beginning, 1/4 way point, 1/2 way point, 3/4 point, and ending of the line. 
 
macro "quarters [q]" { 
 
getLine(x1,y1,x5,y5,width); 
 
// Make oval size and line width a function of line length 
if(x1==x5) { 
orient = "v"; 
length = abs(y5-y1); 
ovwit = (length/(length/3))+1; 
} 
 
if(y1==y5) { 
orient = "h"; 
length = abs(x5-x1); 
ovwit = (length/(length/3))+1; 
} 
 
y2 = y1 + ((y5-y1)/4); 
y3 = y1 + ((y5-y1)/2); 
y4 = y5 - ((y5-y1)/4); 
 
x2 = x1 + ((x5-x1)/4); 
x3 = x1 + ((x5-x1)/2); 
x4 = x5 - ((x5-x1)/4); 
 
// Adjust coordinates for the fillOval function 
adj = ovwit/2; 
x1 = x1 - adj; 
x2 = x2 - adj; 
x3 = x3 - adj; 
x4 = x4 - adj; 
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x5 = x5 - adj; 
 
y1 = y1 - adj; 
y2 = y2 - adj; 
y3 = y3 - adj; 
y4 = y4 - adj; 
y5 = y5 - adj; 
 
setTool("brush"); 
setColor("magenta"); 
setLineWidth(3); 
fillOval(x1,y1,ovwit,ovwit); 
fillOval(x2,y2,ovwit,ovwit); 
fillOval(x3,y3,ovwit,ovwit); 
fillOval(x4,y4,ovwit,ovwit); 
fillOval(x5,y5,ovwit,ovwit); 
setLineWidth(1); 
setTool("line"); 
} 
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Appendix II.  Bp deployment summaries, using all locations that passed the Argos Filter.   

TagID 
Date 

Tagged 
Tag 
Type 

Trans-
mission  
duration   
(Days) 

Number 
of 

Locations 

Mean 
Number 

of  
Locations 
per Day 

(sd) 

Cumulative 
horizontal 
distance 
traveled      

(km) 

Median 
distance to 

Deployment 
Location  

(Max)        
(km) 

Percent 
Locations 

inside 
SOCAL 
Range 

Complex 

Percent 
Locations 
inside Pt. 

Mugu 
Range 

Percent 
Locations 

inside 
SOAR 

Percent 
inside 

SCORE--
Locations 
>30 days 

Percent 
inside Pt. 
Mugu-- 

Locations 
>30 days 

BpTag001 08/08/2008 Spot5 035.0 087 03.2 (1.8) 0781 031 (143)0 064.4 040.2 026.4 000.0 100.0 

BpTag002 10/22/2008 Spot5 026.2 136 05.0 (3.2) 1983 090 (422)0 075.0 011.8 020.6 N/A N/A 

BpTag003 10/23/2008 Spot5 086.8 581 09.2 (2.8) 5527 086 (297)0 052.2 031.3 001.9 049.1 025.3 

BpTag004 07/24/2009 Spot5 012.1 010 02.0 (0.7) 0200 058 (74)00 060.0 060.0 010.0 N/A N/A 

BpTag005 07/25/2009 Spot5 037.2 090 02.5 (1.6) 1607 129 (215)0 025.6 072.2 002.2 000.0 100.0 

BpTag006 07/25/2009 Spot5 022.1 176 07.7 (1.9) 1224 060 (151)0 057.4 068.8 010.2 N/A N/A 

BpTag007 07/25/2009 Spot5 160.1 501 06.3 (2.0) 5014 094 (862)0 013.2 074.7 000.6 011.1 067.2 

BpTag008 07/25/2009 Spot5 019.1 129 06.5 (2.5) 1323 212 (414)0 024.0 051.9 006.2 N/A N/A 

BpTag009 11/12/2009 Spot5 011.1 052 04.3 (2.8) 0295 010 (25)00 025.0 000.0 000.0 N/A N/A 

BpTag010 11/13/2009 Spot5 006.1 031 04.4 (2.1) 0208 029 (51)00 000.0 000.0 000.0 N/A N/A 

BpTag011 11/16/2009 Spot5 010.1 001 N/A 0005 003 (5)000 100.0 000.0 000.0 N/A N/A 

BpTag012 11/16/2009 Spot5 002.8 023 05.8 (3.3) 0110 016 (50)00 030.4 000.0 000.0 N/A N/A 

BpTag013 11/21/2009 Spot5 008.1 065 07.2 (3.1) 0293 011 (31)00 013.8 000.0 000.0 N/A N/A 

BpTag014 11/22/2009 Spot5 003.1 028 07.0 (2.7) 0283 014 (66)00 000.0 003.6 000.0 N/A N/A 

BpTag015 11/23/2009 Spot5 005.0 029 05.8 (2.9) 0250 010 (30)00 000.0 000.0 000.0 N/A N/A 

BpTag016 11/24/2009 Spot5 012.2 018 02.3 (1.6) 0131 025 (37)00 000.0 000.0 000.0 N/A N/A 
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TagID 
Date 

Tagged 
Tag 
Type 

Trans-
mission  
duration   
(Days) 

Number 
of 

Locations 

Mean 
Number 

of  
Locations 
per Day 

(sd) 

Cumulative 
horizontal 
distance 
traveled      

(km) 

Median 
distance to 

Deployment 
Location  

(Max)        
(km) 

Percent 
Locations 

inside 
SOCAL 
Range 

Complex 

Percent 
Locations 
inside Pt. 

Mugu 
Range 

Percent 
Locations 

inside 
SOAR 

Percent 
inside 

SCORE--
Locations 
>30 days 

Percent 
inside Pt. 
Mugu-- 

Locations 
>30 days 

BpTag021 06/28/2010 Spot5 124.4 625 08.3 (1.6) 3991 395 (569)0 010.1 038.2 000.5 000.0 010.8 

BpTag022 06/28/2010 Spot5 027.3 223 08.0 (2.5) 1814 134 (326)0 034.1 066.8 004.5 N/A N/A 

BpTag026 05/04/2011 Mk10-A 004.3 045 09.0 (7.0) 0305 065 (156)0 037.8 084.4 015.6 N/A N/A 

BpTag027 05/04/2011 Mk10-A 001.1 003 01.5 (0.7) 0046 025 (42)00 066.7 100.0 000.0 N/A N/A 

BpTag028 05/06/2011 Mk10-A 027.3 110 04.4 (2.6) 0909 051 (188)0 088.2 046.4 004.5 N/A N/A 

BpTag029 06/22/2011 Spot5 016.6 084 04.9 (2.0) 1021 169 (405)0 042.9 058.3 004.8 N/A N/A 

BpTag030 06/22/2011 Spot5 028.2 251 08.7 (2.7) 1770 163 (286)0 000.0 085.3 000.0 N/A N/A 

BpTag031 01/20/2012 Spot5 179.2 491 05.9 (3.2) 5783 076 (640)0 048.1 000.0 000.4 064.7 000.0 

BpTag032 01/20/2012 Spot5 011.1 061 05.1 (2.9) 0351 007 (27)00 023.0 000.0 000.0 N/A N/A 

BpTag033 01/20/2012 Spot5 025.0 127 05.1 (2.4) 0605 021 (55)00 009.4 000.0 000.0 N/A N/A 

BpTag034 01/21/2012 Spot5 018.0 093 05.2 (2.3) 0475 030 (51)00 014.0 000.0 000.0 N/A N/A 

BpTag035 01/21/2012 Spot5 018.0 119 06.6 (2.6) 0669 006 (56)00 012.6 000.0 000.0 N/A N/A 

BpTag036 03/14/2012 Spot5 010.1 051 04.6 (3.0) 0273 017 (35)00 100.0 000.0 000.0 N/A N/A 

BpTag037 03/15/2012 Spot5 007.1 039 04.9 (2.2) 0228 010 (62)00 100.0 012.8 012.8 N/A N/A 

BpTag038 03/16/2012 Spot5 057.2 383 07.7 (2.5) 2542 062 (195)0 065.8 055.6 019.3 007.9 094.3 

BpTag039 03/16/2012 Spot5 002.0 022 07.3 (4.7) 0110 018 (32)00 100.0 000.0 000.0 N/A N/A 

BpTag040 03/20/2012 Spot5 038.3 128 03.8 (2.2) 2877 049 (979)0 050.8 027.3 031.3 000.0 000.0 

BpTag041 03/20/2012 Spot5 042.2 146 03.7 (2.3) 1823 199 (310)0 041.8 005.5 002.7 087.1 019.4 
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TagID 
Date 

Tagged 
Tag 
Type 

Trans-
mission  
duration   
(Days) 

Number 
of 

Locations 

Mean 
Number 

of  
Locations 
per Day 

(sd) 

Cumulative 
horizontal 
distance 
traveled      

(km) 

Median 
distance to 

Deployment 
Location  

(Max)        
(km) 

Percent 
Locations 

inside 
SOCAL 
Range 

Complex 

Percent 
Locations 
inside Pt. 

Mugu 
Range 

Percent 
Locations 

inside 
SOAR 

Percent 
inside 

SCORE--
Locations 
>30 days 

Percent 
inside Pt. 
Mugu-- 

Locations 
>30 days 

BpTag042 03/20/2012 Spot5 018.1 134 07.1 (2.6) 0658 021 (110)0 067.2 079.1 026.9 N/A N/A 

BpTag043 03/21/2012 Mk10-A 023.2 255 11.6 (2.9) 1498 034 (98)00 093.3 036.1 064.3 N/A N/A 

BpTag045 11/17/2012 Mk10-A 055.1 353 09.3 (4.0) 4404 575 (1088) 013.9 011.3 000.3 009.4 000.0 

BpTag046 11/17/2012 Spot5 000.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

BpTag047 01/05/013 Mk10-A 000.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

BpTag048 01/05/2013 Mk10-A 028.2 322 12.4 (3.3) 1848 047 (113)0 095.0 030.1 012.1 N/A N/A 

BpTag049 01/05/2013 Spot5 004.1 033 06.6 (4.3) 0139 011 (35)00 100.0 003.0 063.6 N/A N/A 

BpTag050 01/05/2013 Mk10-A 006.1 072 10.3 (4.8) 0271 023 (37)00 100.0 001.4 044.4 N/A N/A 

BpTag051 01/08/2013 Mk10-A 046.2 394 11.3 (4.4) 2373 032 (127)0 083.5 039.1 018.0 054.1 049.2 

BpTag052 01/13/2013 Spot5 086.1 482 07.4 (2.6) 3416 047 (178)0 083.2 019.7 014.9 060.9 018.8 

BpTag053 01/16/2013 Spot5 022.1 193 08.4 (2.7) 1321 025 (143)0 004.7 005.7 000.0 N/A N/A 

BpTag057 N/A Mk10-A 013.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

BpTag058 03/23/2013 Mk10-A 014.2 157 10.5 (2.1) 0605 047 (75)00 040.1 084.7 016.6 N/A N/A 

BpTag059 03/29/2013 Mk10-A 010.3 089 08.1 (4.2) 0489 015 (29)00 100.0 043.8 061.8 N/A N/A 

BpTag060 03/29/2013 Mk10-A 011.2 100 08.3 (4.4) 0606 022 (94)00 084.0 075.0 025.0 N/A N/A 

BpTag061 03/29/2013 Mk10-A 011.1 078 06.5 (3.3) 0423 016 (28)00 100.0 003.8 096.2 N/A N/A 

BpTag062 03/30/2013 Spot5 044.3 215 05.2 (2.7) 2058 034 (142)0 078.1 045.6 035.8 072.5 029.4 

BpTag063 05/19/2013 Mk10-A 083.2 282 05.8 (2.9) 3074 105 (292)0 066.3 043.3 001.1 083.7 017.3 

BpTag064 07/08/2013 Spot5 023.3 203 08.5 (2.4) 2359 078 (308)0 077.3 029.6 004.9 N/A N/A 
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TagID 
Date 

Tagged 
Tag 
Type 

Trans-
mission  
duration   
(Days) 

Number 
of 

Locations 

Mean 
Number 

of  
Locations 
per Day 

(sd) 

Cumulative 
horizontal 
distance 
traveled      

(km) 

Median 
distance to 

Deployment 
Location  

(Max)       
(km) 

Percent 
Locations 

inside 
SOCAL 
Range 

Complex 

Percent 
Locations 
inside Pt. 

Mugu 
Range 

Percent 
Locations 

inside 
SOAR 

Percent 
inside 

SCORE--
Locations 
>30 days 

Percent 
inside Pt. 
Mugu-- 

Locations 
>30 days 

BpTag065 01/10/2014 Spot5 240.0 557 06.6 (2.6) 6812 177 (578)0 044.3 060.3 009.1 003.5 090.4 

BpTag066 01/10/2014 Mk10-A 021.3 157 06.9 (2.7) 1264 125 (219)0 094.9 055.4 025.2 N/A N/A 

BpTag067 08/26/2010 Spot5 020.4 101 04.8 (3.3) 1226 212 (318)0 046.5 053.5 000.0 N/A N/A 
 



 

58 
 

Initial Distribution List 
 
 
1. 
 
 
 
2. 
 
 
 
3.  
 
 
 
 
4. 
 
 
 
 
5.  
 
 
 
6.  
 
 
 
7.  
 
 
 
8.  
 
 
 
9.  
 
 
 
10.  
 
 
 
11.  
 
 
 
 
 

Defense Technical Information Center 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA  22060-6218 
 
Dudley Knox Library, Code 013 
Naval Postgraduate School 
Monterey, CA  93943-5100 
 
Erin Oleson 
National Marine Fisheries Service 
Pacific Islands Fisheries Science Center 
Honolulu, HI 
 
John Hildebrand 
Scripps Institution of Oceanography 
University of California 
La Jolla, CA 
 
John Calambokidis 
Cascadia Research Collective 
Olympia, WA  
 
Greg Schorr 
Cascadia Research Collective 
Olympia, WA 
 
Erin Falcone 
Cascadia Research Collective 
Olympia, WA 
 
Ching-Sang Chiu 
Naval Postgraduate School 
Monterey, CA  
 
Curtis A. Collins  
Naval Postgraduate School 
Monterey, CA 
 
Thomas A. Rago 
Naval Postgraduate School 
Monterey, CA 
 
Tetyana Margolina 
Naval Postgraduate School 
Monterey, CA 
 
 
 

2  
 
 
 
2  
 
 
 
1 
 
 
 
 
1 
 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
 
 



 

59 
 

12.  
 
 
 
13.  
 
 
 
14.  
 
 
15.  
 
 
 
16. 
 
 
 
17.  
 
 
 
18.  
 
 
 
19.  
 
 
 
20.  
 
 
 
 
21.  
 
 
 
 
22.  
 
 
 
23.  
 
 
 
 
 

Chris Miller 
Naval Postgraduate School 
Monterey, CA 
 
John Joseph  
Naval Postgraduate School 
Monterey, CA 
 
Katherine Whitaker 
Pacific Grove, CA 
 
Frank Stone 
CNO(N45) 
Washington, D.C. 
 
Jay Barlow 
Southwest Fisheries Science Center, NOAA 
La Jolla, CA 
 
CAPT Ernie Young, USN (Ret.)  
CNO(N45)  
Washington, D.C.  
 
Dale Liechty 
CNO(N45) 
Washington, D.C.  
 
Dave Mellinger 
Oregon State University  
Newport, OR 
 
Kate Stafford  
Applied Physics Laboratory 
University of Washington 
Seattle, CA 
 
Sue Moore 
NOAA at Applied Physics Laboratory 
University of Washington 
Seattle, WA 
 
Petr Krysl 
University of California  
La Jolla, CA  
 
Mark McDonald  
Whale Acoustics 
Bellvue, CO  
 
 
 

1 
 
 
 
1 
 
 
 
1 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
 
1 
 
 
 
 
1 
 
 
 
1  
 
 
 
 
 



 

60 
 

24.  
 
 
 
25.  
 
 
 
26.  
 
 
 
27.  
 
 
 
28.  
 
 
 
29.  
 
 
 
 
30.  
 
 
 
 
31.  
 
 
 
32.  
 
 
 
33.  
 
 
 
34.  
 
 
 
35.  
 
 
 
 

Ted Cranford  
San Diego State University 
San Diego, CA 
 
Monique Fargues  
Naval Postgraduate School 
Monterey, CA 
 
Mary Ann Daher 
Woods Hole Oceanographic Institution 
Woods Hole, MA 
 
Heidi Nevitt 
NAS North Island 
San Diego, CA 
 
Rebecca Stone       
Naval Postgraduate School 
Monterey, CA 
 
Sean M. Wiggins  
Scripps Institution of Oceanography  
University of California 
La Jolla, CA  
 
Gregory S. Campbell  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
Marie A. Roch  
San Diego State University  
San Diego, CA  
 
Anne Douglas  
Cascadia Research Collective  
Olympia, WA 
 
Julie Rivers  
COMPACFLT   
Pearl Harbor, HI  
 
Jenny Marshall  
Naval Facilities Engineering Command 
San Diego, CA  
 
Chip Johnson  
COMPACFLT  
Pearl Harbor, HI 
 
 

1  
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
 
1 
 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
 



 

61 
 

36.  
 
 
 
37.  
 
 
 
38.  
 
 
 
39.  
 
 
 
40.  
 
 
 
41.  
 
 
 
42.  
 
 
 
43.  
 
 
 
44.  
 
 
 
45.  
 
 
 
46.  
 
 
 
47.  
 
 
 
48.  
 
 

CDR Len Remias 
U.S. Pacific Fleet 
Pearl Harbor, HI 
 
LCDR Robert S. Thompson 
U.S. Pacific Fleet  
Pearl Harbor, HI  
 
Jene J. Nissen  
U. S. Fleet Forces Command 
Norfolk, VA 
 
W. David Noble  
U. S. Fleet Forces Command 
Norfolk, VA 
 
David T. MacDuffee 
U. S. Fleet Forces Command 
Norfolk, VA 
 
Keith A. Jenkins  
Naval Facilities Engineering Command, Atlantic 
Norfolk, VA 
 
Joel T. Bell  
Naval Facilities Engineering Command, Atlantic 
Norfolk, VA 
 
Mandy L. Shoemaker  
Naval Facilities Engineering Command, Atlantic 
Norfolk, VA 
 
Anurag Kumar 
Naval Facilities Engineering Command, Atlantic  
Norfolk, VA 
 
Merel Dalebout  
University of New South Wales  
Sydney, Australia  
 
Robin W. Baird 
Cascadia Research Collective 
Olympia, WA  
 
Brenda K. Rone  
National Marine Mammal Laboratory  
Seattle, WA  
 
Phil Clapham  
National Marine Mammal Laboratory  
Seattle, WA  

1 
 
 
 
1 
 
 
 
1 
 
 
 
1  
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1  
 
 
 
1 
 
 
 
1  
 
 
 
1  
 
 



 

62 
 

 
49.  
 
 
 
50.  
 
 
 
51.  
 
 
 
52.  
 
 
 
53.  
 
 
 
 
54.  
 
 
 
55.  
 
 
 
56.  
 
 
 
57.  
 
 
 
58.  
 
 
 
59.  
 
 
 
60.  
 
 
 
 

 
Laura J. Morse  
National Marine Mammal Laboratory  
Seattle, WA  
 
Anthony Martinez  
NOAA Southeast Fisheries Science Center  
Miami, FL  
 
Darlene R. Ketten 
Woods Hole Oceanographic Institution 
Woods Hole, MA  
 
David C. Mountain  
Boston University  
Boston, MA  
 
Melissa Soldevilla  
NOAA/NMFS 
Southeast Fisheries Science Center  
Miami, FL 
 
Brandon L. Southall 
Southall Environmental Associates, Inc.  
Santa Cruz, CA 
 
David Moretti  
NUWC  
Newport, RI  
 
Michael Weise  
Office of Naval Research, Code 32  
Arlington, VA  
 
Dan Costa  
University of California, Santa Cruz 
Santa Cruz, CA  
 
Lori Mazzuca  
Marine Mammal Research Consultants, Inc.  
Honolulu, HI  
 
Jim Eckman  
Office of Naval Research 
Arlington, VA  
 
Ari Friedlaender  
Duke University  
Beaufort, NC  
 
 

 
1 
 
 
 
1  
 
 
 
1  
 
 
 
1 
 
 
 
1 
 
 
 
 
1 
 
 
 
1 
 
 
 
1  
 
 
 
1  
 
 
 
1  
 
 
 
1  
 
 
1 
 
 
 
 
 



 

63 
 

61.  
 
 
 
 
62.  
 
 
 
63.  
 
 
 
64.  
 
 
 
65.  
 
 
 
66.  
 
 
 
67.  
 
 
 
68.  
 
 
 
 
69.  
 
 
 
 
70.  
 
 
 
 
71.  
 
 
 
 
 
 

CAPT Robin Fitch, USN (ret)  
Office Assistant Secretary of the Navy Energy, Installations,  
    and Environment 
Washington, DC 
 
Mary Grady  
Southwest Fisheries Science Center  
La Jolla, CA  
 
Lisa Ballance  
Southwest Fisheries Science Center  
La Jolla, CA  
 
Angela D’Amico  
SPAWAR  
San Diego, CA  
 
Amy Smith  
Science Applications International Corporation 
McLean, VA 
 
Peter Tyack  
Woods Hole Oceanographic Institution  
Woods Hole, MA  
 
Ian Boyd  
University of St. Andrews  
St. Andrews, Scotland, UK  
 
Simone Baumann-Pickering  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
Lisa K. Baldwin  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
Anne E. Simonis  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
Mariana L. Melcon  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
 
 

1 
 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
 
1 
 
 
 
 
1 
 
 
 
 
1  
 
 
 
 
 
 



 

64 
 

72.  
 
 
 
73.  
 
 
 
74.  
 
 
 
75.  
 
 
 
76.  
 
 
 
77.  
 
 
 
78.  
 
 
 
79.  
 
 
 
80.  
 
 
 
81.  
 
 
 
 
82.  
 
 
 
 
83.  
 
 
 
 

Daniel L. Webster  
Cascadia Research Collective  
Olympia, WA  
 
Daniel J. McSweeney  
Wild Whale Research Foundation  
Holualoa, HI  
 
Sabre D. Mahaffy  
Cascadia Research Collective  
Olympia, WA  
 
Jessica M. Aschettino  
Cascadia Research Collective  
Olympia, WA  
 
Tori Cullins 
Wild Dolphin Foundation 
Waianae, HI  
 
Alison Stimpert  
Naval Postgraduate School  
Monterey, CA  
 
Diane Claridge  
Bahamas Marine Mammal Research Organisation  
Abaco, Bahamas  
 
Charlotte Dunn  
Bahamas Marine Mammal Research Organisation  
Abaco, Bahamas  
 
Cathy Bacon  
Smultea Environmental Sciences, LLC  
Issaquah, WA  
 
Ana Širović  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
Amanda Cummins  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 
Sara Kerosky  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA  
 

1  
 
 
 
1  
 
 
 
1  
 
 
 
1 
 
 
 
1  
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
1 
 
 
 
 
1 
 
 
 
 
1 
 
 
 
 



 

65 
 

84.  
 
 
 
 
85.  
 
 
 
86.  
 
 

Lauren Roche  
Scripps Institution of Oceanography  
University of California  
La Jolla, CA 
 
Brian Bloodworth  
National Marine Fisheries Service 
Silver Spring, MD  
 
Antoinette M. Gorgone  
NOAA Southeast Fisheries Science Center  
Beaufort, NC  

 

1 
 
 
 
 
1 
 
 
 
1 
 
 

 


