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Executive Summary 

Acoustic recordings were made off Jacksonville, Florida (JAX) and Onslow Bay (OB), North 

Carolina, using seafloor-deployed Marine Acoustic Recording Units (MARUs) to provide data to 

examine marine mammal vocal behavior before, during and after mid-frequency active (MFA) 

sonar (henceforth, sonar) exercises. In a preliminary analysis of the MARU data recorded off 

Jacksonville, the probabilities of detecting calls produced by marine mammals in the presence 

and absence of sonar were calculated for several species of cetaceans and two broader 

taxonomic categories: ‘delphinids’ and ‘blackfish’ (including pilot whales, false killer whales and 

melon-headed whales; Norris et al. 2012). The results of the probability analysis for these 

taxonomic categories were indeterminate, and as such, it was decided that a more in-depth 

analysis that examined vocal effects of sonar on a species-by-species basis with more 

sophisticated statistical methods was needed. The study presented here is intended to address 

this need. There were three primary objectives for this study (listed chronologically): 1) classify 

delphinid detections to the lowest taxonomic group possible using the Real-time Odontocete 

Call Classification Algorithm (ROCCA, Oswald 2013), 2) detect and characterize MFA sonar in 

MARU recordings, and 3) develop robust statistical methods that can be used to evaluate 

differences in delphinid whistling behavior in response to MFA sonar.  

The first step in this analysis was to identify delphinid acoustic encounters to be used as inputs 

in the species classification analysis. A delphinid acoustic encounter was defined as a 

continuous portion of a recording with no more than a 30 minute (30 min) gap between sounds 

produced by delphinids. Delphinid sounds were defined as one of three mutually exclusive 

types: 1) whistles, 2) clicks or 3) burst pulses. ROCCA was used to extract and measure whistle 

features and to classify encounters containing whistles to species.  

The second step in this study involved the detection and characterization of MFA sonar events. 

This was conducted using the program SonarFinder (Bio-Waves 2013). SonarFinder is a 

Matlab-based program designed to automatically detect sonar pings and measure their acoustic 

features. Sonar events were defined as a series of sonar pings with no more than a 30 min gap 

between individual pings.  

A total of 1,259 delphinid acoustic encounters were logged from MARU recordings made at JAX 

and OB (deployments 1 and 2). Of these, 313 contained whistles with sufficient quality (i.e., > 3 

dB SNR and did not overlap significantly with other whistle contours) to include in the ROCCA 

analysis. All encounters that were included in the ROCCA analysis were classified as either 

striped dolphin (Stenella coeruleoalba), short-beaked common dolphin (Delphinus delphis), or 

short-finned pilot whale (Globicephala macrorhynchus). No encounters were classified as 

bottlenose (Tursiops truncatus) or Atlantic spotted dolphins (Stenella frontalis). This result was 

unexpected, given that bottlenose and Atlantic spotted dolphins were the two species most 

frequently encountered during recent aerial and vessel-based line-transect visual surveys off 

Florida and North Carolina (DoN 2008, Halpin et al. 2009, Hodge et al. 2013). It is likely that 

many of the encounters classified as striped and short-beaked common dolphins were 

misclassifications. Although the ROCCA classifier performed well when it was ground-truthed 

using visually validated test data from the Northwest Atlantic Ocean (86 percent of acoustic 
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encounters were correctly classified, n = 131; Oswald 2013), some bottlenose dolphin and 

Atlantic spotted dolphin encounters in the test data were misclassified (30 percent and 10 

percent, respectively). Both bottlenose and Atlantic spotted dolphins were most commonly 

misclassified as striped dolphins, which may partially explain the large number of delphinid 

encounters classified as striped dolphins. Misclassifications may have been due to the classifier 

being trained using data recorded using a towed hydrophone array close to the sea surface, 

whereas the MARU recordings were made using stationary recorders moored at depth. It is 

possible that the classifier is using features of the signal that are susceptible to propagation or 

instrumentation effects (i.e., differences in whistle features detected were caused by the sound 

propagation or the recorders, which may have affected classification results. An additional issue 

that may result in misclassifications is the fact that ROCCA’s Atlantic classifier only includes five 

species of whistling delphinids that are known to occur in the Northwest Atlantic Ocean. At least 

seven additional species that occur in this region are known to produce whistles (Palka 2012, 

Waring et al. 2012). If any of the delphinid vocalization encounters included in our analysis 

contained whistles from any of these species, they would be misclassified as one of the five 

species in the classifier, and so some of the encounters classified as striped and common 

dolphins could actually have been another species.  

The MFA sonar analysis was conducted using SonarFinder software. This analysis resulted in 

the detection of 58 sonar events comprising 421.2 hours consisting of 31,826 sonar pings for 

JAX deployment 1. For OB, 72 sonar events comprising 158.5 hours and 30,403 sonar pings 

were detected. JAX deployment 2 was not included in the analysis because results of Norris et 

al. (2012) indicated that sonar events during this deployment were relatively infrequent, brief 

and/or sporadic.  

The third step, statistical analysis, was divided into two approaches. The first approach used 

generalized estimating equations (GEEs), and the other used hidden Markov models (HMM). 

For the GEE approach, we defined three possible response variables, which in turn addressed 

three different research questions. These questions were as follows:  

1. Does the probability of detecting delphinid acoustic encounters change in the presence 

of sonar? 

2. Does the probability of detecting whistles, clicks or buzzes within a delphinid acoustic 

encounter change in the presence of sonar? 

3. Given that a whistle encounter is detected, do whistle characteristics change in the 

presence of sonar?  

The three corresponding response variables used in the three models were:  

1. Presence (or absence) of acoustic encounters in 1 min segments;  

2. Presence of signal type (e.g., whistles, clicks or buzzes) within an acoustic encounter 

(which we refer to as signal type models for short); and  

3. Response intensity (constructed by combining multiple whistle characteristics into 

Mahalanobis distances; DeRuiter et al. 2013).  
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Each response variable was related to explanatory covariates. GEEs were used as the model 

fitting tool to accommodate potential over-dispersion in the data and correlation in the model 

errors. A three-step model selection procedure was used to obtain the best-fitting models for 

each approach. Due to potentially confounding differences in responses among species and 

species groups, we built separate models for pilot whale acoustic detections and for the 

combined detections from the remaining delphinid species (abbreviated as DEUO in the 

following, including common dolphins, striped dolphins and unidentified odontocetes). We found 

that covariates pertaining to sonar were retained in the best fitting signal type models for the 

DEUO species group. Covariates pertaining to sonar were also retained in the best fitting 

whistle characteristics models for the DEUO species group. However, we did not explore all 

potentially important covariates with respect to sonar. None of our covariates included a 

cumulative effect (e.g., the number of sonar pings in the two hours preceding a 1 min segment 

for the presence models or sound exposure levels of sonar). Additional analyses are necessary 

before these cumulative affect covariates can be included.  

In the HMM-based modeling approach, the time series of acoustic encounters (response 

variable type 1 above) is assumed to be generated by a doubly stochastic process that switches 

between two different states, corresponding to acoustically active and more silent phases. 

HMMs naturally account for the multiphasic nature of the time series, with long periods without 

any acoustic encounters being recorded, occasionally interspersed with shorter periods that 

contain at least some acoustic encounters. In contrast to GEEs, in which case the correlation in 

the residuals is treated as a nuisance (i.e., a feature of the model that is not the focus of 

inference, but that needs to be accounted for, often in the simplest way possible - see, 

e.g., Basu 1977), HMMs attempt to explicitly model the correlation pattern, at the cost of 

increased computational complexity. By building separate models for pilot whales and for other 

delphinids, we investigated the effect of sonar-related covariates on the state-switching 

dynamics. For pilot whale HMMs, very few vocalizations (and hence also state transitions) 

occurred during the observation period. As a result, the estimation was numerically unstable in 

terms of local maxima of the likelihood. Furthermore, no clear pattern was found in the Akaike 

Information Criterion (AIC) values for the fitted models, likely due to the limited amount of 

information contained in these time series. For pilot whales in the JAX study area, the model 

with the covariate pertaining to the standard deviation of the ping interval (i.e. the SDEV ping 

interval covariate) was favored by the AIC, whereas in the OB study area the model without any 

covariates was favored. For the DEUO species group, the model with the Sonar covariate 

affecting the state transition probabilities was deemed best by the AIC, for both the JAX and OB 

study areas.  

The results of this work provide a framework for developing tools that can be used in many 

locations and situations to understand the potential effects of MFA sonar on marine mammal 

acoustic behavior. 
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1. Introduction  

Passive acoustic monitoring using autonomous recorders deployed on the seafloor is an 

effective method for long-term monitoring of marine mammals (Mellinger et al. 2007, Van Parijs 

et al. 2009). Autonomous recorders have been used to investigate the distribution, occurrence, 

and acoustic behaviors of a variety of marine mammals in diverse habitats and geographic 

locations (Clark et al. 2002, Clark and Clapham 2004, Baumgartner et al. 2008, Johnston et al. 

2008, Sousa-Lima et al. 2013). Recently, researchers have analyzed autonomous recorder data 

to investigate the effects of anthropogenic noise, such as seismic airguns and sonar, on the 

calling behavior of baleen whales (Nieukirk et al. 2004, Di Iorio and Clark 2010, Castellote et al. 

2012, Melcón et al. 2012, Risch et al. 2012). However, there have been only a few studies 

focused on using remote or autonomous recorder data to examine the effects of anthropogenic 

noise such as sonar on the acoustic behaviors of odontocetes (McCarthy et al. 2011, Tyack et 

al. 2011). 

Changes in vocal behavior in response to anthropogenic noise have been studied in several 

species of odontocetes. For example, beluga whales (Delphinapterus leucas), killer whales 

(Orcinus orca) and Pacific humpback dolphins (Sousa chinensis) have been documented to 

change call rates and time-frequency characteristics of their calls in response to vessel noise 

(Au et al. 1985, Lesage et al. 1999, Van Parijs and Corkeron 2001, Foote et al. 2004). Much 

less is known about the behavioral responses of odontocetes to mid-frequency active (MFA) 

sonar. Rendell and Gordon (1999) reported that long-finned pilot whales (Globicephala melas) 

increased whistling rates during and after exposure to military sonar signals. DeRuiter et al. 

(2013) analyzed acoustic data collected from DTAGs during controlled-exposure experiments 

using playbacks of MFA sonar and found that false killer whales (Pseudorca crassidens) and 

melon-headed whales (Peponocephala electra) increased whistling rates and appeared to 

mimic MFA signals after exposures. Based on these results, DeRuiter et al. (2013) suggested 

that vocal responses may be one of the dominant types of response to acoustic stimuli for 

delphinids. This may be because these highly social cetaceans rely on group awareness and 

group defense to alert others to perceived threats by communicating in the form of whistles and 

other acoustic signals.  

In a study designed to examine marine mammal vocal behavior before, during and after MFA 

sonar exercises, acoustic recordings were made off Jacksonville, Florida (JAX), and Onslow 

Bay, North Carolina (OB), using seafloor deployed Marine Acoustic Recording Units (MARUs). 

In a preliminary analysis of the MARU data recorded off JAX (Norris et al. 2012), the 

probabilities of detecting sounds produced by marine mammals in the presence and absence of 

sonar were calculated for several species of cetaceans (minke whales, Balaenoptera 

acutorostrata; sperm whales, Physeter macrocephalus; and delphinids). Delphinid species were 

analyzed as a single group instead of as individual species because most whistles from 

odontocetes are difficult to classify to species level without conducting detailed analysis using 

trained classification algorithms (Oswald et al. 2013). In the Norris et al. (2012) study, the 

results of the probability analysis for these taxonomic categories were indeterminate, likely 

because the analysis was classified to species-groups (e.g., delphinids) rather than the species 

level. For example, if one species responded to sonar by increasing its level of acoustic activity 
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and another responded by decreasing its activity, then the overall response would have 

indicated little or no change in acoustic behavior. Therefore, it is important to identify acoustic 

detections to the lowest taxonomic level possible before investigating the effects of sounds on 

acoustic behavior patterns. In this study, we used the dolphin whistle classification algorithm 

‘Real-time Odontocete Call Classification Algorithm’ (ROCCA; Oswald et al. 2013) to classify 

dolphin whistles before additional analyses were conducted.  

Calculating the probability of detecting sounds produced by marine mammals in the presence 

and absence of sonar has the potential to reveal changes in vocal behavior that occur in 

response to sonar. It is important to recognize, however, that differences in the probabilities of 

detecting an acoustic encounter do not necessarily imply changes in acoustic behavior. For 

instance, a decrease in the probability of detecting an encounter may mean that animals are 

less acoustically active. It could mean that animals have moved out of the area and their sounds 

are no longer detectable. It could also be a result of increased background noise. Hence, more 

detailed analyses are necessary in order to understand responses and the causes of these 

responses. Currently, no widely used or generally accepted statistical methods are available for 

examining these types of issues regarding detection of bioacoustics encounters. The main goal 

of this project, a collaboration between Bio-Waves, Inc., and St. Andrews University, is to 

develop statistical methods that can be used to analyze acoustic behaviors of delphinids before, 

during and after MFA sonar events.  

There were several objectives in this effort. The first objective was to classify delphinid 

detections to the lowest taxonomic level possible using the Atlantic delphinid whistle classifier 

version of ROCCA (Oswald 2013). This classification analysis allowed the relationships 

between vocal behavior and the presence of sonar to be examined on a species-by-species (or 

species-group, as sample size and classification results allowed) basis. The second objective of 

this project was to detect MFA sonar events and characterize individual sonar pings. This was 

accomplished using an automated detection and measurement algorithm called SonarFinder 

(Bio-Waves 2013). The outputs of ROCCA and SonarFinder were then provided to researchers 

at St. Andrews University who performed several statistical analyses.  

The third objective of this study was to investigate potential statistical analyses to address the 

following questions: 

1. Does the probability of detecting delphinid acoustic encounters change during or after 

periods in which MFA sonar is being broadcast? 

2. Does the probability of detecting whistles, clicks or buzzes within a delphinid acoustic 

encounter change in during or after periods in which MFA sonar is being broadcast? 

3. Given that a whistle encounter is detected, do whistle characteristics change during or 

after periods in which MFA sonar is being broadcast?  

In this report, we describe the several different analytical methods that can be used to address 

these questions, discuss the limits of possible inference, and provide examples of the types of 

answers that can be provided by analyzing the JAX and OB MARU datasets as an example. 

The results of this work provide a framework for developing tools that can be used in many 

locations and situations to understand the potential effects of MFA sonar on marine mammal 

acoustic behavior.   
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2. Methods 

2.1 Recording Methods 

Acoustic data were recorded using non-synchronized, sparsely distributed sets of MARUs 

deployed off JAX and OB (Figure 1). The MARUs were configured to record using two sampling 

rates: 32 kilohertz (kHz) (referred to as 32-kHz MARUs) and 2 kHz (referred to as 2-kHz 

MARUs). Because of the relatively high frequencies (typically above 10 kHz) produced by 

whistling delphinids, only data from the 32-kHz MARUs were used in this analysis. There were 

two deployments of six 32-kHz MARUs each off JAX, using the same locations in both 

deployments. The first deployment was in fall (13 September–4 October 2009), and the second 

deployment occurred in winter (4–26 December 2009). Two of the six MARUs were deployed in 

shallow water (44–46-meter [m] depth), three were deployed in water of medium depth (183 m), 

and one was deployed in deep water (305 m). In addition to the JAX deployments, there was a 

deployment of five MARUs in OB in the summer (6–27 July 2008). Two of the five OB MARUs 

were deployed in shallow water (64–73 m), one was deployed at medium depth (236 m), and 

two were deployed in deep water (366 m).  

2.2 Logging Delphinid Acoustic Encounters 

A delphinid acoustic encounter was defined as a continuous portion of a recording with no more 

than a 30 min gap between sounds produced by delphinids. When the interval between the 

detections of sounds exceeded 30 min, a new encounter was delineated. Signals were defined 

as one of three mutually exclusive sound types: 1) whistles, 2) clicks or 3) burst pulses. Whistles 

were defined as tonal (i.e., narrow-band) sounds that usually included some level of frequency 

modulation. Clicks were defined as broad-band impulsive sounds of relatively short duration 

(< 500 microseconds [μs]). Burst pulses (or buzzes) were defined as broadband click trains with 

very short inter-click intervals, so that the individual clicks were not discernible to the human 

ear. 

For the purposes of statistical analyses, delphinid acoustic encounters that occurred within 

24 hours of a sonar event were logged in greater detail (sub-logged) using a 1 min definition for 

the gap between events in addition to the 30 min time definition. In this case, a new sub-event 

was defined when at least 1 min elapsed between sequential delphinid sounds. This finer-

resolution allowed for a more detailed analysis of the temporal relationship between delphinid 

acoustic encounters and the presence of MFA sonar. The start and end times, type of sound 

(i.e., whistles, clicks, or buzzes), and sonar event condition (i.e., 24 hours before sonar, during 

sonar, 24 hours after sonar, or between sonar events) were documented for each encounter 

and sub-event. Delphinid encounters were logged using the 1 min resolution for JAX 

deployment 1 and OB data. The JAX deployment 2 data were not included in the statistical 

analysis due to the brief and sporadic nature of sonar events in these recordings.  

Acoustic data were reviewed using Triton software (Wiggins 2007) to create long-term spectral 

averages (LTSAs). When a delphinid acoustic encounter was detected, the start and end times 

for that encounter were logged in Triton and saved to a Microsoft Excel spreadsheet. Because 

there were no visual observations associated with the MARU recordings, it was not possible to 
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validate that acoustic encounters were independent (i.e., it was not possible to differentiate 

when one group, or school, of acoustically active animals left the area being monitored and 

another entered).  

2.3 Whistle Classification 

We used the ROCCA module in the software package PAMGuard (www.pamguard.org; 

Gillespie et al. 2008, Oswald et al. 2013) to classify each delphinid acoustic encounter to 

species. Only encounters that contained at least 10 whistles with moderate to good signal-to-

noise ratios (SNRs) (i.e., at least 3 decibels [dB]) were included in the analyses. Signal-to-noise 

was computed using Ishmael software (Mellinger 2001), a Matlab-based acoustic analysis 

software program. If an encounter contained more than 30 whistles, an algorithm written in 

R software (Version 2.15; The R Foundation for Statistical Computing 2012) was used to 

randomly select 30 whistles for analysis. Each whistle included in the analysis was automatically 

saved by ROCCA as an individual audio file in .wav format. To extract time-frequency contours 

from whistles, the analyst traced contours on ROCCA’s spectrographic display using a 

computer touch-pad. ROCCA automatically measured 50 variables from each extracted 

contour, including duration, frequencies (e.g., minimum, maximum, beginning, ending, and at 

various points along the whistle), slopes, and variables describing shape of the whistles (e.g., 

number of inflection points and steps; see Appendix A and Barkley et al. 2011 for a complete 

list and description of variables measured).  

A random-forest classifier within ROCCA was used to identify individual whistles and delphinid 

acoustic encounters to species. A random forest is a collection of decision trees grown using 

binary partitioning of the data. Each binary partition of the data is based on the value of one 

feature (in this case, a whistle feature; Breiman 2001). The goal for each split is to divide the 

data into two nodes, each as homogeneous as possible (i.e., containing whistles from the 

smallest number of species possible). Randomness is introduced into the tree-growing process 

by examining a random subsample of all of the features at each node. The feature that 

produces the most homogeneous split is chosen at each partition. When whistle features are 

analyzed using a random forest, each of the trees in the forest produces a species 

classification. Classifications are then tallied over all trees and the whistle is classified as the 

species that received the highest proportion of classifications. In addition to classifying individual 

whistles, delphinid acoustic encounters were classified based on the number of tree 

classifications for each species, summed over all of the whistles that were analyzed for that 

encounter.  

The number of tree classifications for the predicted species was used as a measure of the 

certainty of the classification. It was assumed that if a greater percentage of trees classified the 

whistle as a particular species, then that classification had a higher degree of certainty. Based 

on this assumption, a ‘strong whistle threshold’ was defined. If the percentage of trees that 

classified the whistle as a particular species was greater than this strong whistle threshold, the 

whistle was considered strongly classified, or simply ‘strong’ (Oswald et al. 2011). If the 

percentage of trees that classified the whistle as a particular species did not exceed the strong 

whistle threshold, then the classification was considered unreliable and the whistle was labeled 

as ‘ambiguous.’ If all of the whistles within a single acoustic encounter were labeled as 

http://www.pamguard.org/
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ambiguous, then that acoustic encounter was also classified as ambiguous. In general, as 

strong whistle threshold increases, correct classification scores also increase (Oswald et al. 

2013). However, as the strong whistle threshold increases, the number of whistles that can be 

classified decreases, eventually resulting in entire acoustic encounters being classified as 

ambiguous. In this study, a strong whistle threshold of 60 percent was used in order to 

maximize correct classification scores while minimizing the number of encounters that were 

labeled as ambiguous.  

The random-forest model used to analyze the MARU data was a two-stage model trained using 

whistles recorded from single-species schools in the Northwest Atlantic Ocean. A two-stage 

model was used because it resulted in much higher correct classification scores than a one-

stage model that classified whistles directly to species (Oswald 2013). Five species were 

included in the model: bottlenose dolphins (Tursiops truncatus), short-beaked common dolphins 

(Delphinus delphis), striped dolphins (Stenella coeruleoalba), Atlantic spotted dolphins (S. 

frontalis) and short-finned pilot whales (Globicephala macrorhynchus). The two-stage model first 

classified whistles to one of three categories: small delphinids (including common and striped 

dolphins), medium-sized delphinids (including bottlenose and spotted dolphins) and pilot 

whales. Whistles within each category were then classified to species in stage two (Figure 2).  

The recordings used to train the random-forest classifier had varying sampling rates from the 

MARU data. Some of the training data had a sampling rate of 48 kHz and other training data 

had a sampling rate of 198 kHz, whereas the MARU data had a sampling rate of 32 kHz. The 

MARU sampling rate resulted in an effective bandwidth of 16 kHz, which is not sufficient to 

capture the entire fundamental frequency contour of some whistles (Oswald et al. 2004). Using 

data that contains frequencies that are not captured in the MARU recordings in the classifier 

training set could affect classification results. To address this issue, any whistle contour that 

extended above 16 kHz was removed from the training dataset so that the classifier also was 

constrained to an effective ‘bandwidth’ of 16 kHz. When the 16 kHz bandwidth classification 

model was evaluated using a test dataset of visually validated recordings, 76 percent of whistles 

(n = 638) and 81 percent of encounters (n = 113) were correctly classified (Table 1).  

1.1 Mid-frequency Active Sonar 

Analysis of MFA sonar was conducted using the software program SonarFinder (Bio-Waves 

2013). This Matlab-based program was designed to automatically detect sonar pings and 

measure acoustic variables that characterize them. SonarFinder was used to detect individual 

sonar pings within sonar events that were initially detected manually by bioacoustic analysts 

using Triton software (Wiggins 2007) in a previous study (Norris et al. 2012). An MFA sonar 

event was defined as a series of sonar pings with no longer than 30 min elapsing between 

individual pings. Each MFA sonar event was given a unique identification number containing the 

sample rate, deployment number, site and event number. The .wav files for each event were 

placed into separate folders for later batch processing using SonarFinder.  

SonarFinder uses three stages to detect potential sonar pings. Each stage requires user-

defined thresholds. In the first stage, potential pings are detected based on a user-defined 

amplitude threshold. In the second stage, clipped signals (i.e., recorded signals that result in 
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distortions of the true signal when the amplitude exceeds the dynamic range of the recording 

system) are detected and eliminated. In the third stage, SonarFinder narrows the remaining 

detections by eliminating some of the false positives (the remaining false positive detections 

were removed by manually inspecting the spectrogram of each candidate detection). See Bio-

Waves (2013) for more detail on SonarFinder’s three detection stages. Thresholds for the three 

SonarFinder stages were determined individually for each site and deployment. The three 

thresholds were adjusted to maximize true detections and minimize missed detections. 

Thresholds were selected so that no more than 20 percent of pings were missed by 

SonarFinder.  

Once thresholds had been determined for each site and deployment, SonarFinder was used to 

batch process all MFA sonar events in the JAX deployment 1 and OB datasets. SonarFinder 

was not run on JAX deployment 2 because the sonar events in this deployment were 

considered too short and sporadic to be useful in the statistical analysis. SonarFinder was used 

to automatically detect and measure features from each ping. These measurements were saved 

to a Microsoft Excel spreadsheet.  

The features documented by SonarFinder included: date/time when the ping occurred, and 

measures of frequency bandwidth, peak frequency, minimum frequency, maximum frequency 

and sound pressure level (Bio-Waves 2013). Each ping was categorized according to its peak 

frequency and duration. Frequency labels included: “Type 1” (for pings < 3,999 Hertz [Hz]), 

“Type 2” (for pings between 4,000 Hz and 6,999 Hz) and “Type 3” (for pings > 7,000 Hz). 

Duration labels included: “Short” (for pings < 1.49 seconds in duration), “Medium” (for pings 

between 1.50 and 3.99 seconds in duration), and “Long” (for pings > 4.00 seconds in duration). 

SonarFinder also averaged ping measurements over all of the pings in a single MFA sonar 

event and measured average inter-ping interval and ping repetition rate for each event. These 

measurements were output to a second Microsoft Excel spreadsheet.  
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3. Results 

3.1 Delphinid Acoustic Encounters 

A total of 1,259 delphinid acoustic encounters were logged from JAX (deployments 1 and 2) and 

OB (Table 2). The greater number of encounters was logged from JAX deployment 1 (n = 550) 

and fewer encounters were logged from OB (n = 265). For JAX deployment 1 and OB, acoustic 

encounters logged at 30 min resolution were sub-logged into 1,738 and 933 1 min resolution 

encounters, respectively. JAX deployment 2 was not sub-logged because these data were not 

used in the statistical analyses. 

3.2 Whistle Classification 

3.2.1 OB 

A total of 100 delphinid acoustic encounters were analyzed using ROCCA. Numerous 

encounters (n = 165) were not included in the ROCCA analysis because they contained few or 

no whistles, or because the whistles were not of sufficient quality (i.e., < 3 dB SNR or 

overlapped significantly with other whistle contours) for contour extraction. All encounters 

analyzed were classified as either short-beaked common dolphin (n = 48), striped dolphin (n = 

37), or short-finned pilot whale (n = 15) (Figure 3). No encounters were classified as bottlenose 

dolphin or Atlantic spotted dolphin. 

3.2.2 JAX Deployment 1 

A total of 158 delphinid acoustic encounters were analyzed using ROCCA. A large number of 

encounters (n = 392) were not included in the ROCCA analysis because they contained few or 

no whistles, or the whistles were not of sufficient quality for contour extraction. All encounters 

that were included in the ROCCA analysis were classified as either striped dolphin (n = 74), 

short-beaked common dolphin (n = 54), or short-finned pilot whale (n = 30; Figure 4). No 

encounters were classified as bottlenose or Atlantic spotted dolphins. 

3.2.3 JAX Deployment 2 

A total of 55 delphinid acoustic encounters were analyzed using ROCCA. Many (n = 389) were 

excluded from the ROCCA analysis because they contained few or no whistles, or the whistles 

were not of sufficient quality for contour extraction. All encounters that were included in the 

ROCCA analysis were classified as either striped dolphin (n = 21), short-finned pilot whale (n = 

18), or short-beaked common dolphin (n = 16; Figure 5). No encounters were classified as 

bottlenose or Atlantic spotted dolphins. 

3.3 Mid-frequency Active Sonar 

3.3.1 OB 

A total of 72 sonar events consisting of 158.5 hours were detected by SonarFinder. The mean 

duration of sonar events was 2.2 hours, with a standard deviation of 3.3 hours. There were 

30,403 sonar pings detected during these events. Sonar events were plotted with delphinid 
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acoustic encounters, both for all delphinid acoustic encounters combined and by individual 

species (ROCCA-classified encounters) to indicate when sonar and delphinid acoustic 

encounters overlapped (Figures 6-9). 

3.3.2 JAX Deployment 1 

A total of 58 sonar events comprising 421.2 hours were detected by Sonar Finder. The mean 

duration of sonar events was 7.3 hours, with a standard deviation of 11.3 hours. There were 

31,826 sonar pings detected during these events. Sonar events were plotted with delphinid 

acoustic encounters, both for all delphinid acoustic encounters combined and by individual 

species (ROCCA-classified encounters) to show when sonar and delphinid acoustic encounters 

overlapped (Figures 10-13). 

3.3.3 JAX Deployment 2 

During a previous analysis (Norris et al. 2012), 63 sonar events comprising 95.5 hours of sonar 

were logged using Triton for JAX deployment 2. Sonar events were plotted with delphinid 

acoustic encounters, both for all delphinid acoustic encounters combined and by individual 

species (ROCCA-classified encounters) to show when sonar and delphinid acoustic encounters 

overlapped (Figures 14–17). 
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4. Discussion 

4.1 Species Identification of Delphinid Vocalization Encounters 

All delphinid vocalization encounters that were classified to species using ROCCA were 

classified into one of only three species: short-finned pilot whales (20 percent), striped dolphins 

(42 percent) or short-beaked common dolphins (38 percent; Figures 3-5). Both striped dolphins 

and short-finned pilot whales were expected to occur in the study areas and generally occur 

beyond the continental shelf (CETAP 1982, Au and Perryman 1985, Selzer and Payne 1988, 

Olson and Reilly 2002, Payne and Heinemann 1993), although sightings of striped dolphins in 

these areas have been extremely rare (CETAP 1982, Waring et al. 2013). Short-beaked 

common dolphins, however, generally are distributed along the shelf break from Cape Hatteras 

to Nova Scotia and are considered very rare south of Cape Hatteras (CETAP 1982, Selzer and 

Payne 1988, Gaskin 1992, Waring et al. 2013). As such, the relatively high number of 

encounters classified as striped or common dolphins was unexpected. Another unexpected 

result was that no encounters were classified as bottlenose or Atlantic spotted dolphins. 

Bottlenose and Atlantic spotted dolphins were the two species most frequently observed during 

recent aerial and boat-based line-transect visual surveys off Florida and North Carolina (DoN 

2008, Halpin et al. 2009, Hodge et al. 2013). Therefore, we expected that a large proportion of 

delphinid acoustic encounters would be classified as either Bottlenose or Atlantic spotted 

dolphins.  

There are several possible explanations for these results. First, it is important to note that the 

acoustic encounters that were classified using ROCCA represent less than half of the total 

delphinid acoustic encounters (40, 14 and 38 percent of encounters for JAX deployment 1, 2, 

and OB, respectively). Although short-beaked common dolphins and striped dolphins made up 

the majority of the classifications, they did not necessarily represent the majority of the total 

encounters. The delphinid encounters that were excluded in the classification analysis were 

omitted because they either contained few or no whistles, or the SNR was too low for reliable 

whistle contour extraction. The paucity of whistles did not necessarily represent a lack of 

whistling by the dolphins. The dolphins may have simply been too far away from the recorders 

to obtain good signals. Poor quality whistles may also be caused by propagation effects (such 

as a ‘surface duct,’ which can trap sounds near the ocean surface), as dolphins tend to spend a 

significant proportion of their time in the surface waters and the MARUs were located on the sea 

floor at depths ranging from 44 m to 366 m. The lack of whistles may also reflect the behavior of 

the dolphins. For example, the habitat in which the MARUs were deployed might be used more 

for foraging than for socializing, and the predominance of clicks versus whistles in the 

recordings may reflect this.  

In addition, the majority of encounters included in the classification analysis were recorded on 

deep (305–366 m) or medium-depth (183–236 m) deployments (e.g., 70 percent of encounters 

for JAX, 86 percent of encounters for OB). Almost all sightings of Atlantic spotted dolphins in 

Onslow Bay have occurred over the shelf (Hodge et al. 2013), so the deep and medium-depth 

MARU deployments may be located outside the expected range for this species (although they 

would still be expected on the shallow MARUs). In addition, a more diverse assemblage of 
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delphinid species has been observed beyond the shelf break in the OB study area (Hodge et al. 

2013). Short-beaked common and striped dolphins may be more common in the JAX and OB 

study areas than previously thought based on visual observations. 

Finally, it is likely that some of the encounters classified as striped and short-beaked common 

dolphins were misclassifications. Although the ROCCA classifier performed well when it was 

ground-truthed using visually validated test data from the Northwest Atlantic Ocean (81 percent 

of acoustic encounters were correctly classified, n = 113; Oswald 2013), both the training and 

testing data were collected near the surface (< 20 m depth) using towed hydrophone arrays 

(Oswald 2013). It is possible that the classifier is using features that are susceptible to 

propagation effects or instrumentation effects (i.e., differences in whistle features caused by the 

sound propagation). For example, one of the most important variables in the classifier was 

duration (Oswald 2013). This variable is susceptible to propagation effects because signals can 

be ‘smeared’ in time via multi-path signal arrivals for low-frequency components, or shortened 

due to attenuation for high-frequency components of signals. If whistles recorded at depth have 

different characteristics than those recorded at the surface, this could influence the performance 

of classifiers. Efforts should be made to collect visual data and recordings at the surface in 

conjunction with autonomous recordings. These data could be used to ground-truth the 

performance of ROCCA’s Atlantic classifier on data collected at different depths and gain insight 

to why so many encounters were classified as striped and common dolphins in this study. 

Perhaps the most important consideration is that the Atlantic version of the ROCCA classifier 

used in this study includes only five delphinid species that occur in the northwest Atlantic Ocean 

and are known to whistle. Whistling species such as pantropical spotted dolphin (Stenella 

attenuata), rough-toothed dolphin (Steno bredanensis), Clymene dolphin (Stenella clymene), 

long-finned pilot whale (Globicephala melas), false killer whale, Risso’s dolphin (Grampus 

griseus) and Atlantic white-sided dolphin (Lagenorhynchus acutus) are known to occur in the 

northwest Atlantic Ocean (Palka 2012, Waring et al. 2012) but are not currently included in the 

ROCCA classifier because the available data were insufficient to reliably train the classifier at 

the time the Atlantic classifier was developed (Oswald 2013). If any of the delphinid vocalization 

encounters included in our analysis contained whistles from any of these species, they would be 

misclassified as one of the five species in the classifier and so some of the encounters classified 

as striped and common dolphins may actually have been another species.  

4.2 SonarFinder 

Ideally, an automated detection method should find only the signals it was intended to detect 

(true positives) and reject those it was not (true negatives) without missing signals (false 

negative) nor incorrectly identifying signals (false positives). But in reality the sensitivity of the 

detector is configured to optimize the trade-off among true positives, false positives and false 

negatives, where optimization is project dependent (Mellinger et al. 2007). The desired outcome 

of this tradeoff will influence the parameterization of automated detectors, because in some 

contexts it is more important that true signals are not missed (e.g., during real-time monitoring 

for impact mitigation), whereas in other situations it is more important to eliminate most false 

detections even if some true signals are missed (e.g., when using automated detection methods 

for density estimation). We used the Matlab program SonarFinder to provide data on the 
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occurrence and characteristics of sonar to allow an assessment of delphinid vocal behavior in 

relation to sonar. As such, it was important to maximize true positive detections while minimizing 

missed detections. To accomplish this goal, SonarFinder’s performance was optimized to 

accurately detect 80 percent of medium-intensity pings (SNR >2 dB), which we decided was the 

optimal tradeoff for minimizing missed detections and producing a manageable number of false 

positives. Although this approach resulted in a small number of missed pings, there were many 

false positive detections. These false positives were caused primarily by ‘self-noise’ due to hard 

drive ‘spin-up’ within the individual MARU devices, which occurred as frequently as every 11 

seconds for some periods. This spin-up noise is a frequency-modulated signal that is similar in 

some aspects (e.g., the frequency band) to sonar signals. A few false positive detections also 

occurred due to boat noise and biological noise, but these were less common than the hard-

drive spin-up false positives. False positives were removed by manual review of all sonar 

detections by data analysts, a time-consuming process. Changing the parameters within 

SonarFinder to further reduce the number of missed pings would have resulted in an 

unreasonable number of false positives that would have had to be reviewed manually by data 

analysts. Future efforts should focus on obtaining ‘clean’ (i.e., high-fidelity) recordings without 

sources of instrumentation noise, especially in the band of concern. 
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5. Modelling Approach Using Generalized 

Estimating Equations  

5.1 Methods 

Statistical analyses were conducted on delphinid acoustic sub-event data recorded during sonar 

exercises (see definition in the next section), as well as the periods 24 hours before and after 

these exercises for JAX deployment 1 and the OB deployment (Table 3). 

5.1.1 Defining Control Periods 

To identify potential changes in delphinid vocal behavior in response to MFA sonar, 

observations from periods during or after sonar were compared to observations from a control 

period before sonar. We used a 24-hour period before the commencement of each sonar 

exercise as the control period. Every acoustic sub-event occurring during these periods was 

labeled as ‘before.’ This 24-hour period represented a compromise between trying to capture a 

potentially ongoing effect after sonar and to avoid introducing additional variability by extending 

too far beyond the time of the sonar exercise, while keeping a balance between the periods 

included before and after. For each site, a sonar exercise was defined to include all the sonar 

pings occurring consecutively with no gap of longer than 48 hours. When a gap was longer than 

48 hours, the subsequent sonar pings were attributed to a different exercise. Acoustic sub-

events were labeled as ‘during’ when sonar pings were recorded simultaneously at any time 

during the acoustic sub-event. Acoustic sub-events were labeled as ‘between’ when they 

occurred between sonar pings within an exercise. Acoustic sub-events occurring in the 24 hours 

directly after a sonar exercise were labeled as ‘after’. These definitions of ‘before’, ‘during’, 

‘between’ and ‘after’ are illustrated in Figure 18.  

5.1.2 Defining the Response Variable 

The research questions of interest for this study were:  

1. Does the probability of detecting delphinid acoustic encounters change during or after 

periods in which MFA sonar is being broadcast? 

2. Does the probability of detecting whistles, clicks or buzzes within a delphinid acoustic 

encounter change during or after periods in which MFA sonar is being broadcast? 

3. Given that a whistle encounter is detected, do whistle characteristics change during or 

after periods in which MFA sonar is being broadcast?  

To investigate these questions, we used a modeling approach where a response variable was 

related to explanatory covariates to describe and investigate the pattern in the response. 

Although the available covariates were the same for each question, the type of response varied 

among them. These are detailed in the following sections.  
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5.1.2.1 1 MIN PRESENCE OF ACOUSTIC ENCOUNTERS MODELS 

In the following, we refer to this type of model as the presence model for simplicity. For the 

presence models we created data records for each site, which consisted of 1 min effort 

segments encompassing the 24 hours before a sonar exercise (n = 1440 segments), the time 

during a sonar exercise (variable number of 1 min segments) and the 24 hours after a sonar 

exercise (n = 1440 segments). For each 1 min segment, the detection or non-detection of an 

acoustic encounter was recorded as a binary variable (1 for presence, 0 for absence). Hence, 

we take the output of the detector as a proxy for acoustic presence or absence. In addition, 

each effort segment was labeled as one of four conditions (‘before,’ ‘during,’ ‘between’ or ‘after’) 

according to when it occurred in relation to the sonar exercises at the same site, using the 

definitions for these from Section 5.1.1. Those effort segments that corresponded with periods 

of the sonar exercise were either labeled as ‘during’ if any sonar pings had been recorded 

during the respective 1 min segment and as ‘between’ if not. For this analysis we assumed a 

binomial error structure and modeled the predictor with factor, linear and smooth terms via a 

logit-link function.  

To eliminate potentially confounding issues in responses among different species, we 

conducted the analysis separately for two different encounters: 1) pilot whales and 2) striped 

dolphins, common dolphins and unidentified odontocetes combined (which we refer to hereafter 

as the DEUO species encounter). There are potentially confounding issues with respect to 

combining multiple species in a classification. One of these is that one species might react to 

sonar differently (e.g. by vocalizing less frequently) than another species (e.g. that might react 

by vocalizing more frequently). The overall effect might then not be detectable (i.e. because 

they offset each other) when combining whistles from these two species in a single analysis. 

However, it was not possible to analyze striped and common dolphins separately because the 

classifier could not reliably distinguish between these two species.  

5.1.2.2 PRESENCE-OF-SIGNAL-TYPE-GIVEN-ACOUSTIC-ENCOUNTER (PSTGAE) MODELS 

For the PSTGAE models, we analyzed the delphinid acoustic sub-events, where each sub-

event represented a separate observation, regardless of length of the sub-event. Of the 2,673 

sub-events included in this analysis, 57.5 percent were less than 1 min, and 71.7 percent were 

less than 2 min. However, some were as long as 2 hours, with 0.6 percent being longer than 

1 hour. For each of the acoustic signal types—whistles, clicks and buzzes—the response was 

then defined as a binary variable similar to the presence models in the previous section (1 or 0 

to indicate presence or absence, respectively, of the respective signal  type within each acoustic 

sub-event). As for the presence models, we conducted each analysis for two different 

encounters to eliminate potentially confounding issues in responses among different species. 

These encounters were: 1) pilot whales and 2) and the DEUO species encounter.  

5.1.2.3 WHISTLE-CHARACTERISTICS MODELS 

For this approach, individual whistles represented the observation units for analysis. These 

were extracted from those detections that were classified to species using ROCCA (see 

Section 2.3 above for details). In total, we analyzed 2,904 whistles—670 from pilot whales, 

1,178 from common dolphins and 1,056 from striped dolphins. We analyzed the whistles from 

pilot whale detections separately from striped and common dolphins because the identification 

of pilot whale encounters using ROCCA has a small error rate (see above, Section 2.3). As 
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identification of common and striped dolphins had a relatively large error rate, we lumped 

whistles from these two species together for the analysis.  

The whistle characteristics included in these analyses were: maximum and minimum and the 

standard deviation of frequency, duration, mean slope of the whistle, mean of the positive slope 

values in the whistle contour, mean of the negative slope values in the whistle contour, percent 

positive slope and percent zero slope. Other whistle characteristics, including mean frequency 

and percent negative slope, were excluded due to collinearity with other characteristics. The 

observed values of the whistle characteristics were normalized by subtracting the mean value 

and dividing by the standard deviation for each vector of observed whistle characteristics (using 

the scale function of the base package in R). For each whistle, the information from these 

characteristics was combined into one response variable using Mahalanobis distances, DMi 

(DeRuiter et al. 2013). These were calculated for the ith whistle using:  

𝐷𝑀𝑖(𝒙𝑖) =  √(𝒙𝑖 − 𝝁𝑐)𝑇𝑺𝑐
−1(𝒙𝑖 − 𝝁𝑐) , 

where xi represents a vector of observed characteristics for the ith whistle, 𝝁𝑐 represents a 

vector of means for each whistle characteristic obtained from a set of control whistles (see 

below for a definition of control whistles) and Sc is the covariance matrix of the control whistles). 

(T is a mathematical symbol for transposing a vector.) 

For defining the control whistles, two main strategies may be followed. For one strategy, all 

whistles that occurred in the 24 hours before a sonar exercise are included in the control group. 

Each whistle, including those from ‘before,’ ‘during,’ ‘between’ and ‘after’ sonar, is then 

compared to this control group. An alternative strategy is to define the control whistles 

individually for each whistle as a set of n whistles that are preceding the respective whistle. The 

benefit of the second strategy is that it may reveal sharper contrasts in the case of a short-term 

change. However, the difficulty for this strategy is choosing n such that it is biologically 

meaningful. Here, we applied the first strategy, and used these Mahalanobis distances as 

proxies for potential response intensity following the example of DeRuiter et al. (2013); the 

distances were then related to explanatory covariates.  

5.1.3 Explanatory Covariates 

All covariates that were available for the analyses are listed in Table 4. The covariate Sonar 

was a factor covariate with four levels: ‘before,’ ‘during,’ ‘between’ and ‘after’ a sonar exercise, 

where level ‘before’ represented the base level to which the other levels were compared. The 

covariate Anysonar was a binary variable which was set to 1 for all records where Sonar 

equaled the condition ‘during;’ otherwise it was set to 0. Anysonar was considered only if Sonar 

was not significant. If Sonar was significant, Anysonar only entered the model as an indicator 

variable in an interaction term with covariates pertaining to sonar measurements. As an 

indicator variable it switched on the respective covariate related to sonar measurements for 

those observations where Sonar equaled ‘during’ or else set them to zero in the case that the 

covariate could not be observed. This is different from setting the covariate to zero itself as it 

influences the covariance matrix of the model.  
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Sonarlag was used to represent the time lag since the last recorded sonar ping. When using 1 

min segments for the presence models, this covariate was measured in 1 min segments; 

otherwise it was measured in seconds. This covariate entered the model as an interaction with 

an indicator variable, I(Sonarlag), which switched Sonarlag off for those effort 

segments/acoustic sub-events before the first recorded sonar ping at each site (i.e., when it 

could not be determined how much time had passed since the last sonar occurrence before the 

deployment of the MARUs).  

The covariate Site was included to determine if the potential differences in any of the responses 

were due to differences in the MARU sites (e.g., different ocean depth, propagation conditions, 

differences in the instruments, or different time of the year as recordings at the different sites 

were made during different times of the year—see Table 3). The covariate Location was only 

tested if Site was not significant in the model.  

Several types of sonar pings were classified during this study (see Section 2.4). Because it was 

possible, even likely, that more than one sonar type occurred in any given 1 min effort segment, 

the presence/absence of each type was recorded for each sonar event. Two other covariates 

related to individual sonar pings were included, sound pressure level and peak frequency. All 

other covariates related to sonar from Table 4 represent summary statistics of sonar events 

(see Section 2.4 for definition of sonar event).  

5.1.4 Modeling Approach Using Generalized Estimating Equations 

Generalized estimating equations (GEEs) are an extension of generalized linear models (GLMs) 

that, similar to GLMs, allow the specification of different distributions for the error structure 

(e.g., binomial or Poisson). In contrast to GLMs, GEEs also allow modeling of various 

correlation structures for the errors. In this respect GEEs have the advantage over mixed-effect 

models because they allow unbiased estimation of regression coefficients despite possible 

mis-specification of the correlation structure (Ghisletta and Spini 2004). Hence, GEEs are most 

useful when the main interest lies in examining the relationship between the response and the 

explanatory variables (as opposed to the correlation structure), as was the case for this study. 

For this study, we expected correlation in the observations, regardless of the type of response. 

Another advantage of GEEs is that they estimate the dispersion parameter and therefore 

accommodate overdispersed data.  

GEEs may be fitted in R using the geeglm function of the geepack package (Halekoh et al. 

2006). As with the glm function, smoothing terms can be added using the bs function of the 

splines package. Using splines allows for more flexibility in the relationship between the 

response and the explanatory covariate compared to restricting this relationship to be linear (on 

the scale of the link function). However, we limited the flexibility of the relationship in our models 

by using the default settings of the bs function which fits polynomial splines with only three 

degrees of freedom. A polynomial spline can be thought of as a smooth function for which the 

number of maxima and minima depends on the specified number of degrees of freedom. Using 

three degrees of freedom often generates a smooth function with one maximum and one 

minimum. More flexibility could be achieved by including knots which allow the relationship to be 

more ‘wiggly’ than a polynomial spline. This, however, was beyond the scope of this study.  
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For the MARU dataset, we used the default correlation structure ‘independence’ where 

correlated observations were grouped using a block identifier (argument id from the geeglm 

function). Each block consisted of consecutive observations. These were the consecutive 1 min 

segments, consecutive delphinid acoustic sub-events, or consecutive whistles, respectively, for 

the presence models, PSTGAE models and the whistle-characteristics models, where the size 

of the blocks was determined using the acf function from the stats package. This function 

estimates the autocorrelation between consecutive residuals for various lags. A plot created by 

the same function displays these estimates by lags, including 95 percent confidence intervals 

around zero for comparison with the estimates. The estimated autocorrelation is 1 for lag 0 and, 

depending on the type (negative or positive) and amount of correlation, generally decays more 

or less rapidly with increasing lag. We used the lag at which the absolute value of the correlation 

between Pearson’s residuals first decayed within confidence bounds around zero 

autocorrelation. For the independence correlation structure, group size has no effect on the 

parameter estimates; however, for a given model, standard errors and p-values associated with 

the estimates increase with an increase in group size. Larger p-values, in turn, influence which 

covariates should be retained (see Section 5.1.4.1).  

5.1.4.1 MODEL SELECTION FOR GEES 

Our methods for selecting the final model included three main steps: 1) stepwise forward 

selection based on marginal p-values; 2) elimination of collinear covariates; and 3) stepwise 

backwards selection by inspecting 95 percent confidence intervals around partial fit plots. These 

steps are explained in greater detail below.  

Model selection for GEEs remains an area of ongoing research with no clear-cut best strategy, 

particularly when models include smooth terms (such as occurred in this study). The often-used 

quasi-likelihood information criterion (QIC) under the independence model is considered 

somewhat equivalent to AIC (Akaike Information Criterion) for GLMs or generalized linear mixed 

models (Pan 2001). The main difference is that QIC uses a quasi-likelihood as opposed to the 

likelihood used in AIC. Like AIC, QIC only takes into account the coefficients and the relative fit 

of these coefficients to the data, but not the autocorrelation of the errors. The autocorrelation is, 

however, reflected in the p-values of the coefficient estimates. In our study, because there was 

an independence correlation structure for the errors, estimates of the coefficient values 

remained the same for any given model regardless of choice of block size, while p-values of the 

estimated coefficients increased with increasing block sizes. Hence, using QIC for model 

selection may lead to retaining covariates in the model with relatively large p-values. Because of 

this, we used p-value based forward model selection where we started with a null model (with 

no covariates) and added one covariate at a time, testing whether it improved the model. For 

this test, we used the marginal p-values associated an F-test statistic, which tested whether 

each covariate in the model was important given that the other covariates were already in the 

model. For this purpose we used the getPvalues function from the R package MRSea (Scott-

Hayward et al. 2013). Continuous covariates were fitted as smooth terms first. If the smooth 

terms were not significant, we tried adding these as linear terms.  

If covariates are collinear, it is possible to retain covariates in the model that otherwise have no 

effect on the response. If more than one covariate was retained in the model, these were tested 

for collinearity using variance inflation factors. Collinear variables were eliminated by measuring 
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variance inflation factors (VIF) using the vif function from the car library in R software. We 

excluded all covariates that scored VIFs > 10 (Fox and Monette 1992).  

A further step for selecting the best model included a potential backwards step, which included 

inspecting partial fit plots for each of the covariates retained in the best fitting model so far. 

Partial fit plots were created using a modified version of the runPartialPlots function from the 

MRSea package, which uses parametric bootstrapping of model coefficients to create 

confidence intervals around the partial fit. During this step we eliminated covariates that 

exhibited 95 percent confidence intervals around their partial fits that were wide enough to fit a 

straight horizontal line within the bounds of the confidence limits through the entire range of 

observed covariate values. This was an indication that the respective covariate potentially had 

no effect on the response.  

5.2 Results 

5.2.1 Presence Models 

Sizes for the blocks of the GEEs were identified for the presence models for each species group 

by visually inspecting the ACF (Auto-Correlation Function) plots in Figure 19. The group sizes 

were 150 and 1,050 for the pilot whale and the DEUO species group, respectively (Table 5).  

Using a logit-link function, the relationship between the coefficients of Table 5 and the response 

can be interpreted as follows: the expected odds (i.e., probability of success p divided by the 

probability of failure, 1-p) are expressed as the exponent of the predictor, e.g., log(p/(1-p)) = β0 

+ ß1x1 + … βkxk, where the β0 represents the intercept and the βk are the coefficients associated 

with covariates xk, respectively. The partial fit plots in Figures 20 and 21 indicate the 

relationship between the log of the odds, log(p/(1-p)), and the respective covariate. For 

polynomial splines fitted here, the effect of the three terms are summed which can best be 

traced with the partial fit plots (Figures 20 and 21) rather than looking at the coefficients from 

Table 5.  

For the presence models, the covariates retained in the best fitting model included the factor 

covariate Site for both the pilot whale and the DEUO species group models (Table 5, Figures 

20 and 21). Factor covariates are generally fitted by first defining a base level (usually the first 

level in numerical or alphabetical order). This base level forms part of the intercept estimate 

against which other levels are contrasted. For example, for covariate Site, the level 2 was 

absorbed in the intercept. The coefficients of the remaining levels for this covariate represent 

how these levels contrast against the intercept. For the pilot whale models only levels 154 and 

161 were significantly different from the base level. For the DEUO species group, the levels 4, 

7, 154 and 161 were significantly different from the base line.  

For the DEUO species group, the polynomial spline for Time was also retained in the best fitting 

final model. The partial fit plot for covariate Time in the DEUO model indicated that vocalization 

rates were higher early and late in the day, corresponding to night-time hours, and reached a 

low in the late afternoon (Time was measured in seconds, hence 60,000 seconds corresponded 

to approximately 4:40 pm) (Figure 21).  
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5.2.1.1 ASSESSING PRESENCE MODEL ASSUMPTIONS 

For a binomial GLM, model assumptions include a mean-variance relationship of  

variance = mean(1-p) = np(1-p), 

where p is the probability of success and n is the sample size. Also, model errors are assumed 

to be uncorrelated. We accommodated potential violation of these assumptions by using GEEs 

as the model- fitting tool. For the binomial models, the estimates of the scale parameter were 

near one for both the pilot whale and the DEUO species group models giving indication that the 

data were likely not overdispersed (Table 5).  

As described in Section 5.1.4, we incorporated a blocking structure to the observations where 

observations within the same block were allowed to be correlated (see Table 5). Taking these 

block sizes into account, we expected to see no additional pattern in the residuals on scales 

larger than these blocks. When plotted in order of observation, we expected to see a random 

pattern of standardized residuals around zero with a constant mean and variance across the 

range of observed values. To assess whether the distribution of the residuals remained constant 

across the range of observations, we split the residuals into 20 equally sized bins in the order of 

observation (i.e., ordered by Site first and then by date). For each of these bins, we calculated 

the mean of the residuals (Figure 22). For both the pilot whale and the DEUO species group 

model, the pattern of residual means across the range of observed values was random with no 

increase or decrease in variance.  

5.2.1.2 ASSESSING PRESENCE MODEL FIT  

To assess model fit, we split the fitted values into 20 equally sized bins similar to the previous 

section, however, this time in ascending order of fitted values. We then calculated the means of 

the fitted values per bin and plotted these against the mean of the corresponding observed 

values in Figure 23. We expected to see a random pattern around the line of perfect fit. This 

was the case for both the pilot whale and the DEUO species group models.  

An additional method to assess model fit is to compare the predicted presences and absences 

against the observed presences and absences for each observation. For this purpose, we 

generated predicted presences using the fitted values of the best model. If, for a given 

observation, the fitted value was larger than the overall mean of the fitted values, we attributed a 

presence to the respective record. In the case that the fitted value was smaller than the overall 

mean of the fitted values, we attributed an absence to the respective record. Table 6 lists the 

number of correct predictions as well as the falsely predicted presences and absences. Overall, 

the presence models for pilot whales and the DEUO species group predicted 55 percent and 53 

percent, respectively, of all observations correctly. A large percentage of predictions, however, 

were false positives (44 percent and 41 percent for the pilot whales and DEUO species group, 

respectively). The large percentage of falsely predicted presences for pilot whales was due to 

predicting with one factor covariate (i.e., Site). For the pilot whale model, 99 percent of all 1 min 

segments were observed absences. Due to converting those predictions into presences where 

the fitted value was larger than the overall mean of the fitted values, all 1 min segments from a 

given site received the same predicted value. This was 1 (presence) for those levels of Site that 

had larger coefficients (levels 2, 4, 7, 9 and 159) and 0 (absence) for the levels of Site that had 
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smaller coefficients (see Table 5 and Figure 20). We conclude that our model was able to pick 

up some variability between the different sites. None of the other available covariates, however, 

were able to describe the finer-scale forces that drive the underlying pattern.  

The pilot whale results were similar to those for the DEUO species group model. For the DEUO 

model, 94 percent of all 1 min segments were observed absences. For this model, the 

polynomial spline for Time was retained in the final model in addition to the factor covariate Site. 

This improved the predictive power of the model; however, a large percentage of false 

predictions remained.  

5.2.2 PSTGAE Models  

We ran three separate PSTGAE models for both the pilot whales and the DEUO species group. 

These will be referred to as whistle, click or buzz models in the following. Block sizes for the 

correlation structures of the GEEs were determined using the ACF plots shown in Figure 24. 

These block sizes were one, one and two for the whistle, clicks and buzzes models for pilot 

whales (Table 7). Block sizes were six, six and seven for each of the whistle, click and buzz 

models, respectively, for the DEUO species group.  

As for the presence models from the previous section, a logit-link function was used to relate the 

explanatory covariates to the response. For pilot whales, each best-fitting model contained the 

factor covariate Site indicating that for each of the signal types the respective presences varied 

(Table 10). Additional covariates retained in the whistle model for pilot whales were the factor 

covariate Presence of clicks and the polynomial spline for Time. The negative coefficient for 

level ‘presence’ of the covariate Presence of clicks indicated that when clicks were present 

within a given delphinid acoustic encounter, the odds of observing presences of whistles were 

lower (Table 7 and Figure 25). The polynomial spline for Time indicated that between midnight 

(time = 0) and approximately 8:20 am (time = 30,000) the odds of detecting whistles within a 

delphinid acoustic encounter were increasing and remained relatively high throughout the 

remainder of the day.  

Additional covariates retained in the best fitting click model for pilot whales were the factor 

covariates Presence of whistles (with a negative coefficient for level ‘presence’) and Presence 

of buzzes (with a positive coefficient for level ‘presence’) (Table 7 and Figure 26). Presences of 

whistles within an acoustic sub-event had a negative effect on the odds of observing clicks while 

presences of buzzes had a positive effect on the odds of observing clicks.  

An additional covariate retained in the best fitting buzz model for pilot whales was the factor 

covariate Presence of clicks with a positive coefficient for level ‘presence’ (Table 7 and Figure 

27).  

For the DEUO species group, Site was again retained in all PSTGAE models, indicating that for 

each signal type the odds of observing the respective signal type within a delphinid acoustic 

encounter varied (Table 8 and Figures 28 - 30). Additional covariates retained in the whistle 

model were the factor covariates Sonar and Presence of clicks. The significantly positive 

coefficient for level ‘during’ of covariate Sonar indicated that the odds of observing whistles 

within a delphinid acoustic encounter were higher during sonar events compared to before 
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sonar events. The coefficients of the other two levels, ‘between’ and ‘after’, were not significant. 

The negative coefficient for level ‘presence’ of the Presence of clicks covariate indicated that the 

odds of detecting whistles decreased when clicks were present in a delphinid acoustic 

encounter.  

Four additional factor covariates were retained in the best click model for the DEUO species 

group. These were Presence of whistles (with a negative coefficient for level ‘presence’) as well 

as Presence of buzzes, Presence of Type 1-short sonar pings and Presence of Type 3-medium 

sonar pings—each with positive coefficients for level ‘presence’ (the latter two covariates pertain 

to the type of sonar ping and its duration—see Section 2.4 for details). Again, negative 

coefficients indicate a decrease in the odds of detecting clicks within a delphinid acoustic sub-

event while positive coefficients indicate an increase in the odds.  

For the buzz models for the DEUO species group, additional covariates retained in the best 

model were the two factor covariates Sonar and Presence of clicks (Table 8 and Figure 30). 

For Sonar, all coefficients were significantly positive, indicating an increase in the odds of 

observing buzzes within a delphinid acoustic sub-event for each level ‘during’, ‘between’ and 

‘after’ sonar events compared to the 24 hours before. Again, the positive coefficient for level 

‘presence’ of covariate Presence of clicks indicated an increase in the odds of observing buzzes 

when clicks were present within the delphinid acoustic encounter.  

5.2.2.1 ASSESSING PSTGAE MODEL ASSUMPTIONS 

As was done for the presence models (see Section 5.2.1), we accommodated potential over-

dispersion by using GEEs as the model fitting tool. No over-dispersion was evident for five of 

the PSTGAE models. For the pilot whale models, scale parameter estimates were < 1 for the 

whistle model (0.22, SE=0.09) and buzzes model (0.84, SE=1.49). However, for the presence of 

clicks model, the estimate was 3.32 (SE=114.0, Table 7). For the DEUO species group models, 

the estimates of the scale parameter were all near 1: 1.02 (SE=1.35) for the whistles model, 

1.07 (SE=0.54) for the clicks model and 0.98 (SE=0.72) for the buzzes model (Table 8).  

We also assessed whether the distribution of residuals remained constant across the observed 

values by splitting the residuals into 20 equally sized bins in order of observation (i.e., ordered 

by Site first, then by date). The mean of the residuals were plotted against the means of the 

respective fitted values for each bin in Figure 31. Here we expected to see a random pattern 

which was the case for all models, except the whistle model for pilot whales, where variability in 

mean residuals decreased throughout the observations.  

5.2.2.2 ASSESSING PSTGAE MODEL FIT 

To assess model fit, we plotted the means of fitted values split into 20 equally sized bins in 

ascending order against the means of the corresponding observed values for each bin in Figure 

32. Again, we expected a random pattern with a tight fit around the line of perfect fit (red line in 

Figure 32). This was the case for each of the models.  

As was done for the presence models, we also assessed model fit by comparing predictions 

with observed presences and absences. Again, we converted the fitted values (which 

correspond to the estimated probability of success) into presences and absences by attributing 

a predicted presence to the respective observation if the fitted value was larger than the overall 
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mean of fitted values and predicted absences otherwise. For pilot whales, 91 percent, 88 

percent and 60 percent of all predictions were correct, respectively, for the whistle, click and 

buzz models (Table 9). For the DEUO species group, 80 percent, 77 percent and 74 percent of 

predictions were correct, respectively, for the whistle, click and buzz models (Table 9).  

5.2.3 Whistle Characteristics Models 

For the whistle characteristics models, we first divided the whistles into those from pilot whales 

and those belonging to common and striped dolphins. We then calculated the Mahalanobis 

distances for each whistle where we used the 24 hours before as the control period. These 

distances were related to explanatory covariates using GEEs as the model-fitting tool. Here, we 

only included Site, Time, Sonar and Sonarlag in the model selection. Block sizes for both the 

pilot whale and the common/striped dolphin models were determined as 3 and 12, respectively, 

using Figure 33.  

For the whistle characteristics models, we used a gamma error structure with an identity link 

function. Using the identity link, the response MD was related to the explanatory covariates xk via 

MD = ß0 + ß1x1 + …  ßkxk where the ßk term represents the coefficients. Again, both the pilot 

whale and the common/striped dolphin models contained the covariate Site in the best-fitting 

model (Table 10 and Figures 34 and 35). An additional covariate retained in the best model for 

the common/striped dolphins was Sonar. A significantly positive coefficient for a factor level 

from Table 10 indicated an expected increase in MD, while a significantly negative coefficient 

indicated an expected decrease in MD. We conclude that during and after the emission of sonar, 

MD increased, i.e., whistle characteristics changed causing an increase in the respective MD. 

Further analyses are necessary to determine in which manner these characteristics changed.  

5.2.3.1 ASSESSING WHISTLE CHARACTERISTICS MODEL ASSUMPTION 

For a gamma GLM, the variance is assumed to equal the squared mean. The estimates of the 

dispersion parameters for the pilot whale model were < 1, with small standard errors (0.34, 

SE=0.07, Table 10). Hence, there was no evidence for over-dispersion of the pilot whale MD 

data. For the common/striped dolphins, the scale parameter was > 1 (4.42, SE=2.16), however, 

this over-dispersion was accounted for in our model.  

For a gamma model, we expected to see a random pattern of Pearson’s residuals with a right-

skewed distribution across the entire range of observed values. The random distribution of 

residuals was the case for the pilot whale data (Figure 36). For the common/striped dolphins, 

this was also the case; however, we observed a spike in residual values which was caused by 

11 residual values (i.e., < 0.5 percent of all residuals) that were larger than 10. For both models, 

the distribution of residuals was right skewed which was evident from the histograms of 

residuals.  

5.2.3.2 ASSESSING WHISTLE CHARACTERISTICS MODEL FIT 

We assessed the model fit using observed versus fitted plots (Figure 37). The horizontal lines in 

Figure 37 were caused by predicting with factor covariates, which limits the number of unique 

predicted values according to the levels of factor covariates. We had 10 unique predicted values 

for the pilot whale model and 25 for the common/striped dolphin model. For each of these, we 

expected a random right-skewed pattern centered around the red lines shown in the plots. To 
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inspect whether this was the case, we created histograms for the observed values 

corresponding to each unique fitted value (not shown) and added means and medians of 

observed values for each unique fitted value to Figure 37. For our models, the distribution of 

observed values was right-skewed (confirmed by the histograms and evident from the means 

being larger than the medians, Figure 37). However, large observed values were often under-

predicted for both whistle characteristics models, in particular for the common/striped dolphins. 

Here, the largest discrepancy was in the small proportion of observed values that were larger 

than 10 which were all predicted to be approximately 4.  

5.3 Discussion 

5.3.1 Pros and Cons of Modeling Strategies 

The three types of models we developed for analyzing the acoustic sub-event data were the 

presence-of-acoustic-encounter-models, the presence-of-signal-type-given-acoustic-encounter 

models and the whistle-characteristics models. Modeling the presence of acoustic encounters in 

1 min segments as a binary response has the advantage over modeling length of acoustic sub-

events (or other possible measures) in, for example, a gamma model, that it takes into account 

the amount of time during which no acoustic encounters were detected. For length-of-

vocalization models, the time periods with no vocalizations do not contribute any information to 

the model. Our presence models also have the advantage over modeling some measure of 

vocalization rate available from the acoustic sub-event data (e.g., number of seconds during 

which vocalizations were detected within 10 min segments) in a Poisson model, because the 

length of the segments create an artificial limit on possible values for model residuals, resulting 

in violations of model assumptions. This issue could be avoided by increasing the size of the 

segments so that they are longer than the longest delphinid acoustic encounter. However, as 

some delphinid acoustic sub-events from the present study lasted up to 2 hours, this would 

result in the loss of temporal resolution of the delphinid acoustic encounter data.  

Another potential way to avoid the issue of creating an artificial limit on possible values for 

model residuals would be to model the proportion of time within predefined segments (e.g., 10 

min segments) during which delphinid acoustic sub-events were recorded in a binomial model. 

However, for either the vocalization-rate models or the proportion-of-time models, the current 

format of the data is not appropriate. Individual delphinid acoustic sub-events were defined to 

encompass all consecutive vocalizations with gaps no longer than 60 seconds. No information 

was available on the actual time that vocalizations were detected within a sub-event. As a 

result, a 1 min delphinid acoustic sub-event may consist of two whistles that were 60 seconds 

apart or of continuous vocalizations by multiple individuals. This is an additional reason why our 

1 min presence models were more appropriate than vocalization-rate or proportion-of-time 

models.  

We encountered difficulty in determining the best way to fit covariates that were related to 

measurements of sonar pings. Generally, we included these covariates as interaction terms with 

the covariate Anysonar, which acted as an indicator variable, switching covariates on or off 

depending on whether sonar pings coincided with any time of the observation. This method 

implied that these covariates only had the potential for affecting the immediate vocalization 
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behavior of delphinids. Hence, inference on long-term responses of delphinid vocal behavior to 

any of these measurements individually was not possible. The only covariate that incorporated a 

lag in potential response was Sonarlag, i.e., the time lag since the last detected sonar ping. 

Again, we fitted this covariate as an interaction term with an indicator variable which switched 

the covariate off for those records where this covariate could not be observed (i.e., the first 24 

hours before the first sonar ping for each site). Although this is not an ideal approach, it 

represents an improvement over assigning an artificial large value to those observations where 

the values could not be observed. The improvement lies in that using artificially large values 

creates a large gap between these and observed values. This may, in turn, create a large 

amount of uncertainty in the partial fit for this covariate, in particular when fitting polynomial 

splines. However, Sonarlag was not retained in any of the best-fitting models.  

An additional problem was encountered with fitting smooth functions in our models. If our model 

selection strategy had only included the first two steps described in Section 5.1.4.1 

(i.e., marginal p-values and elimination of collinear covariates), we would have retained 

covariates as polynomial splines in the model for which no-effect was a plausible answer. 

Generally, the objective of model selection is to retain only important covariates in the model. 

Using p-values from an F-test statistic, important covariates were identified as those that 

explained some of the residual variability in the data given that the other covariates were in the 

model. The residual variability that was explained by the respective covariate was illustrated in 

the partial fit plots. Generally, the further the partial fit is from a straight horizontal line, the more 

variability the covariate explains. Confidence intervals around the partial fits give a range of 

plausible values for the relationship between the covariate and the response. After model 

selection step 2, for some of the smooths of our models, the confidence limits were wide 

enough in the vertical dimension across the range of observed covariate values that it was 

possible to fit a straight line through them. This indicated that one possible function describing 

the relationship between the covariate and the response was a constant (i.e., no effect). Hence, 

we included the third step in our model selection procedure (i.e., eliminating those covariates for 

which no-effect was plausible). Inference from the partial fit plots for factor covariates was more 

straightforward. For factor covariates, confidence intervals for a level that do not include zero as 

a plausible value provide evidence for a significant difference between the respective level and 

the baseline.  

One may argue that for the presence-of-signal-type-given-acoustic-event models we should 

include an offset term to account for varying durations of acoustic encounters. However, for 

these models it is difficult to determine what this offset term should be and how to define the 

relationship between the response and the offset term. One option is to include the length of the 

acoustic sub-event as an offset term. Another option is to include the time since the start of the 

delphinid acoustic encounter until the time of the first occurrence of the respective signal type as 

the offset term. In this case, this relationship may be strongly correlated with what type of signal 

initiated the new acoustic encounter. In either case, the fitted values of the model (i.e., the 

expected probability of detecting the respective signal type) are bound by 1, whereas the length 

of the offset for either case does not have any length restrictions and can potentially take any 

value). As the relationship between the probability of observing the respective signal type and 

the offset term therefore clearly cannot be linear, an additional parameter that describes this 

relationship would need to be estimated.  
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Further, we realize that for these analyses, it was not ideal to combine multiple delphinid 

species into one species group (i.e., the DEUO species group) as they may have different 

responses to sonar with respect to any of the three responses (presence of acoustic encounter, 

presence of signal type given acoustic encounter and whistle characteristics). However, as 

identification of all delphinid species other than pilot whales using ROCCA has higher 

uncertainty, we concluded that combining these species (common dolphins, striped dolphins 

and unidentified odontocetes) into one analysis might be the best option. There may be 

confounding issues when trying to detect a change in vocal behavior using this strategy. Some 

species may respond to sonar by not vocalizing while others may increase their vocal activity 

during sonar. In addition, responses in delphinid acoustic behaviors to sonar are very likely 

influenced by behavioral context, an animal’s previous experience with sonar, and the animal’s 

motivation and habituation (Weilgart 2007, Ellison et al. 2011). For example, foraging dolphins 

may have a very different response to sonar than resting or socializing dolphins. Information on 

behavioral context was not available for these data, but would be a valuable addition to data 

collection protocols in the future. This would require concurrent visual observations or tag data 

(e.g. multi-sensor data-loggers). Finally, dolphins may change the characteristics of their 

whistles during sonar. As species identification using ROCCA is based on these characteristics, 

a change in whistle characteristics due to sonar may lead to an increase in mis-identification as 

a result of sonar. In order to make inference for changes in whistle characteristics for individual 

delphinid species, certainty of species identification is needed for acoustic encounters for each 

period with respect to sonar (before, during, between and after).  

5.3.2 Possible Inference from Models 

In the previous section we described the pros and cons of the three different modeling 

approaches. However, one has to also be aware of the types of inference that can be drawn 

from these models. The presence-of-acoustic encounters models, for example, do not explain 

variability in the proportion of time that animals were acoustically active. Rather, they only 

describe changes in the probability of detecting acoustically active animals (which entails the 

probability of animals being acoustically active but also the probability that these signals are 

received by the detector, etc.), and only at a maximum resolution of 1 min. If, for example, 

covariate Sonar was retained in the best-fitting proportion model and the level ‘during’ of this 

covariate was significantly higher compared to the base level of ‘before’, we could only infer that 

during sonar, the proportion of time during which vocalizations were detected was higher than 

before sonar. We could not directly infer that animals spent a larger proportion of time 

vocalizing. For the latter, we would need to make the implicit assumption that by looking at the 

probability of detecting vocalizations on a MARU recording, that we are examining the 

probability of animals vocalizing. But this is far from axiomatic. Alternative explanations include 

the possibility that if animals spent the same proportion of time vocalizing, animal density may 

have changed or animals may have re-distributed with respect to the recorder locations. As the 

probability of detecting vocalizations is dependent on range and propagation conditions (see 

Section 5.3.3), this would also have an effect on the proportion of time vocalizing. Other 

properties, including source levels of vocalizations or orientations of animals, may change as a 

result of sonar occurrence. All of these possibilities could result in fewer detections of acoustic 

signals. Detection of any of the signal types within a delphinid acoustic encounter may be 

affected in a similar manner.  
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5.3.3 Why Not Model Potentially Changing Numbers of Delphinids in Relation to 

Sonar Occurrence? 

Using passive acoustic monitoring devices such as MARUs has the advantage of providing the 

capability of collecting large amounts of data at a relatively low cost. However, several 

difficulties exist when analyzing data obtained from single-hydrophone passive-acoustic 

monitoring devices. In particular, inference related to the number of delphinids detected by the 

device, be it via an estimate of density or abundance, is limited. Detection probabilities generally 

decay with increasing distance of vocalizing delphinid schools from the hydrophone (e.g., Helble 

et al. 2013, Küsel et al. 2011). This decay in detection probabilities may also vary among 

different devices due to varying technical properties of the devices or different sound 

propagation properties or background noise levels near the device locations. If we were able to 

measure or estimate the distances to the vocalizing dolphin schools (e.g., by using sound-

propagation models, or localizing detections), we could apply distance sampling methods to 

estimate density of delphinid vocalization cues around the hydrophone locations. Alternatively, if 

at each study site the MARUs were located near enough to each other so that the same 

vocalization could be captured at more than one hydrophone, spatially explicit capture-recapture 

methods could be applied to estimate density of vocalizations (Borchers 2010, Marques et al. 

2012, Martin et al. 2013, Borchers et al. submitted). To convert estimates of vocalization density 

into estimates of dolphin density requires additional information to estimate vocalization rates 

and average school sizes, which was not available for our study. Therefore, inference on 

potentially varying dolphin densities at the study sites in relation to sonar activities was beyond 

the scope of this study.  

5.3.4 Results on Effects of MFA Sonar on Delphinid Vocalization Behavior  

The best-fitting presence-of-acoustic-encounter models for either pilot whales or the DEUO 

species group did not retain any covariates pertaining to sonar in the final model. Here, 

however, the percentage of observed presences was very small (1 percent and 6 percent of all 

1 min segments for the pilot whale and the DEUO species group model, respectively) and 

therefore, predictive power of our models was relatively poor (see Section 5.2.1.2).  

For our signal-type-given-acoustic-encounter models, predictive power was generally better 

compared to the presence-of-vocalization models (see Section 5.2.2.2). For this type of model, 

only the DEUO species group models retained covariates related to sonar. In this model, 

presence of whistles given vocalization and presence of buzzes given vocalization contained 

the covariate Sonar. These models provided evidence that the expected odds of observing 

whistles within a vocalization encounter were higher during the emission of sonar pings 

compared to the 24 hours before sonar. Also, the odds of observing buzzes within a vocalization 

encounter were higher during, between and in the 24 hours after sonar compared to the 24 

hours before sonar. Furthermore, we found evidence that for the DEUO species group, the odds 

of observing clicks in an acoustic encounter increased during the presence of Type 1-short and 

Type 3-medium pings. Similarly, the odds of observing buzzes within an acoustic encounter 

increased during the presence of Type 3-medium sonar pings. In addition, we found evidence 

that, whistle characteristics of common/striped dolphins changed during the emission of sonar 

and in the 24 hours after sonar when compared to 24 hours before sonar. Further analyses are 
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needed to identify which characteristics changed and in which manner. For pilot whales no 

change in whistle characteristics in relation to sonar was evident.  

However, we did not explore all potentially important covariates with respect to sonar. None of 

our covariates included a cumulative effect (i.e., a quantitative measure that summarizes the 

energy or level of sonar in the time directly preceding the vocalization). An example for such a 

covariate is the number of sonar pings in the two hours preceding a 1 min segment for the 

presence models or sound exposure levels of sonar. Additional analyses are necessary before 

these can be included.  
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6. Analysis Using Hidden Markov Models  

6.1 Introduction and Motivation for the Consideration of HMMs 

We now summarize the results of fitting HMMs to the time series of acoustic sub-events of pilot 

whales and of the DEUO species group, with the aim of identifying potential effects of sonar 

exposure on the animals’ acoustic behaviors. The full data set is described in detail in Section 

5.1.2.1, and here we fit the HMMs to the series of delphinid acoustic encounters in time intervals 

of length 60 seconds.  

A total of 20 time series were considered: six for both pilot whales and the DUEO species group 

from the JAX MARUs, and four for both pilot whales and the DUEO species group from the OB 

MARUs. There were long periods without any vocalizations present. Those periods were 

occasionally interspersed with shorter periods that contained at least a few vocalizations. This 

pattern can be modeled using stochastic mixtures, with one mixture component corresponding 

to periods with no activity (i.e., absence of any vocalization) and the other mixture component 

corresponding to periods with activity (i.e., positive probability of detecting vocalizations), with a 

random mechanism selecting which of the two components is active at any time. Furthermore, 

there was persistence in both the non-activity and the activity periods, as confirmed by the 

sample autocorrelation functions (shown for pilot whales in JAX in Figure 38). Overall, this 

pattern motivates the use of dependent stochastic mixtures such as HMMs to model these data. 

These stochastic mixtures account both for the multiphasic nature of the time series (in terms of 

alternating non-active and active periods) and for the serial correlation in the occurrence of the 

different phases. 

6.2 A basic HMM for Modeling Vocalization Frequency 

6.2.1 Model Formulation 

An HMM is a stochastic time-series model involving two stochastic processes, only one of which 

is observed. The unobserved ‘state’ (or ‘component’) process is an 𝑁-state Markov chain (i.e., a 

stochastic process that takes values in {1, … , 𝑁} and satisfies the memoryless property, such 

that conditional on the present value of the process, future values are independent of past 

values). The observed time series, typically referred to as the ‘state-dependent’ process, is such 

that its values are assumed to be generated by one of 𝑁 component distributions, with the 

underlying Markov chain selecting which component distribution is active at any time. Such a 

model is a dependent mixture, with each state corresponding to one mixture component (here 

corresponding to different levels of vocal activity) and the Markov chain selecting the states and 

hence inducing dependence. In the following, we denote the observable state-dependent 

stochastic process by 𝑋𝑡 and the underlying unobservable 𝑁-state Markov chain by 𝑆𝑡, and 

focus on the two-state case (𝑁 = 2). We assume a basic dependence structure where, given 

the current state of 𝑆𝑡, the variable 𝑋𝑡 is conditionally independent from previous and future 

observations and states, and where the Markov chain is of first order. Figure 39 displays the 

dependence structure of such a basic HMM in a directed graph. 
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Assuming homogeneity of the Markov chain, we summarize the probabilities of transitions 

between the different states in the 2 × 2 transition probability matrix (t.p.m.)  

𝚪 =  (
𝛾11 𝛾12

𝛾21 𝛾22
), 

where 𝛾𝑖𝑗 = Pr(𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖). The initial state probabilities are summarized in the row vector 

𝜹, where 𝛿𝑖 = Pr (𝑆1 = 𝑖).  

Conditional on the current underlying state, it is assumed that the binary observation 𝑋𝑡, which 

indicates if a vocalization is detected at time 𝑡 (in which case 𝑋𝑡 = 1), follows a Bernoulli 

distribution, with probability of detecting a vocalization varying across states.  

That is, we assume that  

𝑋𝑡| 𝑆𝑡 = 𝑖 ∼ Bernoulli(𝜋𝑖), 

so that  

Pr(vocalization recorded|𝑆𝑡 = 𝑖) = 1 − Pr(no vocalization recorded|𝑆𝑡 = 𝑖) = 𝜋𝑖, 

with 𝜋1 ≠ 𝜋2 in general.  

This simple HMM was fitted separately to:  

 the six time series of delphinid acoustic encounters of pilot whales in JAX 

 the four time series of delphinid acoustic encounters of pilot whales in OB 

 the six time series of delphinid acoustic encounters of the DUEO species group in JAX 

 the four time series of delphinid acoustic encounters of the DUEO species group in OB. 

In each of these four cases, the five model parameters were assumed to be common to all 

(either four or six) time series. This is a potentially unrealistic, yet necessary, assumption given 

the very small numbers of state transitions observed per time series (the individual time series 

simply do not contain sufficient information in order to fit HMMs separately to each series). The 

consideration of models with random effects is not feasible either, given both a) the small 

number of component series and b) the computational complexity of HMMs incorporating 

random effects (Schliehe-Diecks et al. 2012). For the non-hierarchical models described above, 

model fitting was performed via a numerical maximization of the log-likelihood, as described in 

Zucchini and MacDonald (2009). 

6.2.2 Results of Fitting the Baseline HMM to the Pilot Whale and DUEO Species 

Group Vocalization Data 

For the four different combinations of species and study area, the t.p.m.s were estimated as 

𝚪 =  (
0.9992 0.0008
0.0504 0.9496

)   (Jacksonville − pilot whales),        

𝚪 =   (
0.9998 0.0002
0.0180 0.9820

)  (Onslow Bay − pilot whales),        
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𝚪 =  (
0.9948 0.0052
0.0531 0.9469

)  (Jacksonville − DEUO)  and 

𝚪 =  (
0.9977 0.0023
0.0361 0.9639

)   (Onslow Bay − DEUO).      

According to the fitted models, the times spent in state 1 are substantially longer, on average, 

for pilot whales than for the DEUO species group. In each of the four cases, the first state is the 

‘silent’ state and the second state is the ‘vocally active’ state (i.e., producing whistles, clicks or 

buzzes), with the state-dependent vocalization probabilities estimated as 

(𝜋1, 𝜋2) = (0.000, 0.803)  (Jacksonville − pilot whales), 

(𝜋1, 𝜋2) = (0.000, 0.874)  (Onslow Bay − pilot whales), 

(𝜋1, 𝜋2) = (0.001, 0.799)  (Jacksonville − DEUO)  and 

(𝜋1, 𝜋2) = (0.002, 0.815)  (Onslow Bay − DEUO). 

To illustrate the modeling approach and potential sources of lack of fit, Figure 40 panel (a) 

graphically represents one of the time series of pilot whale vocalizations recorded in the OB 

study area, and the bottom panel (b) depicts a time series simulated from the model fitted to the 

OB pilot whale data. Overall, the model seemed to capture the observed general pattern of 

vocalizations well, exhibiting very long ‘non-active’ periods that were occasionally interspersed 

with very short vocally active periods. In the top panel (a) in Figure 41, one of the time series of 

DEUO vocalizations collected in the JAX study area is provided as an example, with the bottom 

panel (b) showing a time series simulated from the model fitted to the JAX DEUO data. In this 

case, we still obtained roughly the same total number of vocalizations for simulated and real 

data, but the model clearly failed to adequately capture the durations of ‘vocally active’ periods. 

This is due to the heavy tail of the distribution of these durations found for the empirical data, a 

feature that cannot be captured by basic HMMs due to the implicit assumption of geometric 

distributions for the state dwell times (i.e., the duration of time the Markov chain spends in a 

state before switching to a different state). So-called hidden semi-Markov models (Langrock and 

Zucchini 2011) allow for the specification of any distribution on the positive integers for the state 

dwell times (e.g., a shifted negative binomial), and hence constitute an obvious alternative class 

of models that are likely to substantially improve the fit in this respect. However, in the given 

scenario it is computationally infeasible to fit such models, due to the fine time resolution 

considered and the resulting very large support of the dwell-time distributions.  

6.3 HMMs Incorporating Sonar-related Covariates 

6.3.1 Model Formulation 

In this section we extend the model by allowing sonar-related covariates to affect state-

switching probabilities. This was done in order to investigate, for example, if sonar exposure led 

to a decreased probability of the animals occupying the ‘vocally active’ state. For any given 

series of covariates, 𝑧1, 𝑧2, 𝑧3, … , the model described in Section 6.2.1 was modified by letting 

the state transition probabilities depend on the covariate values, as follows: 
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𝛾12
𝑡 = Pr(𝑆𝑡+1 = 2|𝑆𝑡 = 1) = logit−1(𝛽1,0 + 𝛽1,1𝑧𝑡) 

𝛾21
𝑡 = Pr(𝑆𝑡+1 = 1|𝑆𝑡 = 2) = logit−1(𝛽2,0 + 𝛽2,1𝑧𝑡) 

The diagonal elements of the t.p.m. are then obtained as 𝛾11
𝑡 = 1 − 𝛾12

𝑡  and as 𝛾22
𝑡 = 1 − 𝛾21

𝑡 . We 

note that in this model, the transition probabilities depend on time since the covariates vary over 

time. We considered several covariates, one at a time, in separate models: Sonar, Anysonar, 

Sonarlag, Mean repetition rate and SDEV ping interval. In the case of Sonar, which is a 

categorical covariate, the above equations were modified in the standard way. It should be 

noted here that since model fitting is much more computer-intensive for HMMs than it is for 

GEEs, we did not consider all possible covariates listed in Section 5.1.3. Model fitting was 

again performed via numerical likelihood maximization. 

6.3.2 Model Fitting Results and Model Selection 

Table 11 lists the values of the Akaike Information Criterion (AIC) for the different models 

considered, for each of the four different combinations of species and study area. For pilot 

whales, very few vocalizations (and hence also state transitions) occurred during the 

observation period (cf. Figure 40). This makes it very difficult to make inference on the factors 

driving the state-switching dynamics. In particular, the estimation was numerically unstable in 

terms of local maxima of the likelihood. Furthermore, no clear pattern was found in the AIC 

values for the fitted models, likely due to the limited amount of information contained in these 

time series. For pilot whales in the JAX study area, the model with the SDEV ping interval 

covariate was favored by the AIC, whereas in the OB study area the model without any 

covariates was favored. 

In view of the caveats of the data collected on pilot whale vocalizations, we discuss in more 

detail only the results obtained for the DEUO species group vocalization models. For the DEUO 

species group (excluding pilot whales), the model with the Sonar covariate affecting the state 

transition probabilities was deemed best by the AIC, for both the JAX and the OB study areas. 

Moreover, according to the AIC this was the only covariate of those considered that affected the 

state-switching dynamics. 

For the DEUO species in the JAX study area, the t.p.m.s of the model selected by the AIC, 

associated with the four different levels of the categorical covariate Sonar, were 

𝚪(before) =  (
0.997 0.003
0.047 0.953

), 

𝚪(during) =  (
0.994 0.006
0.048 0.952

), 

𝚪(between) =  (
0.995 0.005
0.063 0.937

)  and 

𝚪(after) =  (
0.993 0.007
0.052 0.948

). 

The associated stationary (or steady-state) distributions, which indicated the expected 

proportion of time spent in the two states (for a given covariate level), were given by 
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𝜹(before) = (0.933,0.067), 

𝜹(during) = (0.894,0.105), 

𝜹(between) = (0.922,0.078) and 

𝜹(after) = (0.887,0.113). 

In both states, the persistence was highest before the sonar exposure. In other words, the fitted 

model indicated that sonar exposure leads to a higher probability of transitioning between the 

states, in both directions (i.e., from ‘vocally active’ to ‘silent’ and vice versa). The probability of 

leaving the ‘vocally active’ state was highest in the ‘between’ periods. In the ‘during’ and ‘after’ 

periods, animals spent more time being vocally active than in the ‘before’ and ‘between’ periods, 

according to the fitted model. 

For the OB study area, the t.p.m.s of the selected model, associated with the four different 

levels of the covariate Sonar, were 

𝚪(before) =  (
0.998 0.002
0.059 0.941

), 

𝚪(during) =  (
0.998 0.002
0.036 0.964

), 

𝚪(between) =  (
0.996 0.004
0.029 0.971

)  and 

𝚪(after) =  (
0.999 0.001
0.064 0.936

). 

The associated stationary distributions were given by  

𝜹(before) = (0.964,0.036), 

𝜹(during) = (0.939,0.061), 

𝜹(between) = (0.871,0.129) and 

𝜹(after) = (0.982,0.018). 

In this case, the probability of leaving the ‘vocally active’ state, and of occupying the ‘silent’ 

state, was highest in the ‘after’ periods. The model further indicated that in the ‘between’ periods 

more time was spent in the ‘vocally active’ state than during any other phase of the sonar 

exposure experiment. 

6.4 Discussion 

For the DEUO species group, there was some indication that the categorical covariate Sonar 

affects the state-switching dynamics, and as a result, the number of vocalizations detected. This 

could be an indication that sonar exposure alters the behavioral dynamics. However, the pattern 

identified by the HMM regarding the exact effect of Sonar on the state process was not 

consistent across the two study areas, JAX and OB. In the case of the pilot whales, the data set 
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did not allow for a detailed investigation of the effect of sonar exposure on vocalization activity, 

since there were too few vocalizations present in the data. Because these results do not draw a 

clear picture, and in particular do not provide a clear outcome of the effects of sonar on vocal 

activity, we recommend conducting extensive simulation studies in order to investigate how 

much data would be required to accurately infer the effect of sonar using HMMs or related 

stochastic processes. 

6.4.1 Comparison with GEE Approach 

In order to compare whether inference from the HMM approach was similar to that from the 

GEE approach, we conducted additional GEE analyses where the data from the different study 

areas (JAX and OB) were analyzed separately and where model selection was limited to those 

covariates used in the HMM analyses. Due to time constraints, we could not use all the 

available covariates listed Section 5.1.3 for the HMM analyses. This section solely serves the 

purpose of determining whether the same covariates would be retained in the best fitting 

presence of vocalization models using GEEs as were retained in the best fitting HMM under the 

same circumstances. Hence, we do not elaborate on the details of the GEE modelling results.  

For this purpose, we applied the GEE methods described in Section 5.1 to the data structured 

as in this section (i.e., in four different analyses): 1) pilot whales at the JAX location; 2) pilot 

whales at the OB location; 3) DEUO at the JAX location and 4) DEUO at the OB location. This is 

different from the data format for Section 5 where all locations were analyzed together for both 

pilot whales and the DEUO species group. For these GEE analyses, we applied the three-step 

model-selection procedure described in Section 5.1.4.1 limited to the same covariates listed in 

Table 11 (Anysonar, Sonar, Sonarlag, Mean rep. rate and SDEV ping interval). For analyses 1–

3, the same covariates were retained in the best fitting GEE analyses as in the HMM analyses 

(Table 11). The best fitting GEE model for analysis 1 contained the covariate SDEV ping 

interval. The best fitting model for analysis 2 contained no covariates. The best fitting GEE 

model for analysis 3 contained the covariate Sonar. The inference from the GEE model on this 

covariate was similar to that from the HMM. From the GEE model, we inferred that the odds of 

observing presences of vocalizations were highest for levels ‘after’ and ‘during’ of covariate 

Sonar and lowest for level ‘before’. From the HMM we inferred, that in the ‘during’ and ‘after’ 

periods, animals spent more time being vocally active than in the ‘before’ and ‘between’ periods. 

However, for analysis 4, a discrepancy in the inference between the GEE and HMM approaches 

existed in that the best fitting GEE model contained no covariate while the corresponding HMM 

contained covariate Sonar.  

One of the potential benefits of the HMM approach compared to the GEE approach is that the 

HMM approach explicitly models the correlation pattern, thus acknowledging the time-series 

nature of the data, whereas in a GEE approach the correlation is treated as nuisance. As a 

consequence, HMMs allow for more detailed inference on the dynamics of the process 

observed, and in many cases will lead to a better understanding of the data-generating system. 

Furthermore, while information criteria can be used for selecting the best HMM from a suite of 

candidate models, model selection methods are an area of ongoing research for GEEs. On the 

other hand, GEEs are less time consuming and more user-friendly to fit due to the availability of 

model-fitting functions in e.g., the geepack R package. 
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7. Conclusions and Recommendations for Future 

Work 

The statistical analyses in this project address three main questions: 1) Does the probability of 

detecting delphinid acoustic encounters change during or after periods in which MFA sonar is 

being broadcast?; 2) Does the probability of detecting whistles, clicks or buzzes within a 

delphinid acoustic encounter change during or after periods in which MFA sonar is being 

broadcast?; and 3) Given that a whistle encounter is detected, do whistle characteristics change 

during or after periods in which MFA sonar is being broadcast? For each of these research 

questions we developed models fitted with GEEs to accommodate potential over-dispersion and 

correlated errors. In addition, we fitted HMMs to address research question 1 (potential changes 

in the probability of detecting vocalizations in the presence of sonar). HMMs have the benefit 

over GEEs in that they model the dynamics of switching between different states (as opposed to 

only modeling the expected state). Inference on which covariates were retained in the final 

models was similar between the two approaches. An additional potential benefit of the HMM 

approach compared to the GEE approach is that the HMM approach explicitly models the 

correlation pattern, thus acknowledging the time-series nature of the data, whereas in a GEE 

approach the correlation is treated as nuisance. Furthermore, while information criteria can be 

used for selecting the best HMM from a suite of candidate models, model-selection methods are 

an area of ongoing research for GEEs. We propose a three-step model-selection procedure to 

determine the best fitting GEE, which is a combination of determining important covariates 

based on marginal p-values, eliminating collinear covariates and inspecting partial fit plots 

(including 95 percent confidence intervals) for plausible no-effect of each of the respective 

covariates. 

The results presented in this report provide a good foundation for the further development of 

statistical methods for evaluating changes in delphinid acoustic behavior in response to MFA 

sonar, however larger sample sizes and the inclusion of covariates representing a cumulative 

effect of sonar on vocalization behaviors (e.g., the number of sonar pings detected in certain 

time periods preceding a 1 min vocalization encounter) are necessary to make these analyses 

more robust. A larger number of both independent sonar events and delphinid acoustic 

encounters should be analyzed in order to improve statistical power. For our study, the 

predictive power of the presence models was relatively poor: less than 60% of all predictions 

were correct (Table 6). With only two possible outcomes – 1 for presence or 0 for absence —we 

expect to obtain 50 percent correct predictions by chance alone. The low proportion of correct 

predictions may be due to small percentage of observed presences (1 percent and 6 percent for 

the pilot whale and the DEUO species group models, respectively) and/or that the available 

covariates did not capture the underlying pattern. Similar problems were encountered when 

fitting the HMM to the presence of vocalization data in particular for the pilot whales, where 

larger proportions of presences are needed for more reliable modeling of the underlying 

processes. The predictive power improved for the signal-type-given-acoustic-encounter models. 

Here, the proportion of correct predictions by the fitted model was between 60 and 91 percent 

(Table 9).  
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The low predictive power of the models due to low sample sizes made it difficult to draw 

conclusions regarding the effects of sonar on acoustic behavior. Additional data that could be 

included in future analyses include archival acoustic recordings made with a variety of 

autonomous recorders such as MARUs, High-frequency Recording Packages (HARPs) and 

Ecological Acoustic Recorders (EARs). Many of these recordings contain sonar events and 

would be a valuable supplement to the analyses conducted here. We also recommend 

conducting simulation studies in order to investigate how much data would be required to 

accurately infer the effect of sonar using HMMs or related stochastic processes. 

For the statistical analyses, the data provided were limited to the resolution of delphinid acoustic 

sub-events. Each sub-event contained vocalizations that were separated by no more than 60 

seconds. Start times of individual vocalizations or other quantitative measures of vocalizations 

within the encounters (e.g., number of vocalizations per encounter) were not logged. More 

detailed logging that includes start times of individual sounds or total length of whistle fragments 

(Gillespie et al. 2012) would allow a more fine-scale or quantitative analysis of changes in vocal 

behavior and may reveal patterns that are not apparent when analyzing encounters that are 

binned. 

Furthermore, it would be valuable to have the ability to examine responses to MFAS on a 

species-by-species basis. In order to do this, the performance of the classifier must be 

evaluated using recordings made at depth. The relatively poor classification results reported 

here were unexpected, based the high correct classification scores that occurred for similar 

whistle classification work conducted by Oswald (2013). Future work should examine whether 

classifications reported here were accurate and, if not, why. The classifier used in this analysis 

was trained using acoustic data recorded using towed hydrophone arrays at the sea surface. It 

is likely that propagation through the water column affects whistle variables extracted from 

deep-water recordings, and this could negatively impact classifier performance. The magnitude 

of these effects should be evaluated and if necessary, new classifiers should be developed 

specifically for seafloor-mounted recorder data. To accomplish these goals, vessel surveys 

should co-occur with autonomous recorder deployments. These vessel surveys should 

incorporate both visual effort and acoustic recordings made near the sea-surface. These data 

could be used to ground-truth classification results from autonomous-recorder data as well as 

examine changes in whistle structure with depth. The effects of recording depth on whistle 

features could also be examined with playback studies and propagation modelling work. 

Classifier performance could also be improved by adding more species to the classification 

algorithm. Currently, ROCCA’s Atlantic classifier contains five species commonly encountered 

in some areas the Northwest Atlantic, but several species that produce whistles and are known 

to occur in the Northwest Atlantic (e.g., rough-toothed dolphin, false killer whale, etc.) are not 

included in the classifier due to sample size limitations. The addition of these species would 

improve the performance of ROCCA when applied to whistles recorded in this region. Effort 

should be made to collect visually validated, single species recordings of both the species that 

are not currently included in ROCCA and those that are currently included in ROCCA. 

Increasing the training data sample size for all species in the classifier would allow the classifier 

to capture more of the variability in the data and will likely lead to more accurate classification 

results. Archival, visually validated acoustic recordings exist that could be used towards 
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accomplishing these tasks. In addition, whistles from each time period related to sonar (i.e., the 

24 hours before, during, between and the 24 hours after sonar) should be included in training 

classifiers. This necessity became evident from our whistle-characteristics models, which 

showed that characteristics of whistles changed during and in the 24 hours after the emission of 

sonar compared to the control period, i.e., the 24 hours before sonar (see Section 5.3.4). More 

detailed examination of whistle characteristics should be conducted to determine which 

characteristics changed, in which manner they changed, how quickly changes occurred after the 

onset of sonar, and how long the changes persisted. 

Visual observation, tagging and localization capabilities would be valuable additions to the 

methods presented here. Currently, it is unknown whether increases in the probability of 

detection of whistles and buzzes in the presence of sonar are due to increases in the number of 

animals present, due to increases in the acoustic activity of the animals in the area, or due to 

some combination of these. Localization capabilities would allow us to track individuals as well 

as estimate density of delphinid vocalization cues around hydrophones. In addition, if 

hydrophones were located near enough to each other so that the same vocalization could be 

captured at more than one hydrophone, spatially explicit capture-recapture methods could also 

be used to estimate density of vocalizations. The ability to track animals, both visually and 

acoustically, will provide a means for better understanding their responses to MFA sonar.  

Finally, the analyses reported here did not include any attempt to account for or investigate the 

behavioral context of the animals during the periods of sound exposure. The behavioral state, 

motivation and experience level of animals exposed to sound is known to have an effect on how 

marine mammals respond to sound (Ellison et al. 2011). Behavioral data from individuals or 

groups was not available for the MARU recordings analyzed here. The addition of visual 

observations, tagging, and/or  localization and tracking capabilities would allow valuable context 

information to be collected during future efforts and would allow for a more comprehensive and 

context dependent evaluation of how and why acoustic behavior changes in response to MFA 

sonar.  
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10. Figures 

 

Figure 1. Map of MARUs off Jacksonville, Florida, and Onslow Bay, North Carolina.  
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Figure 2. Schematic diagram of two-stage random forest.  In stage one; whistles are classified as 
small dolphins (e.g., common and striped dolphins), medium dolphins (e.g., bottlenose and 
spotted dolphins) or pilot whales. Whistles are then classified to species in stage two. 

 

Figure 3. Percentage of delphinid acoustic encounters (n = 100) from OB MARU data classified as 
short-beaked common dolphin, short-finned pilot whale or striped dolphin using a random-forest 
classifier in PAMGuard’s ROCCA whistle classification module.  Note that no encounters were 
classified as bottlenose or Atlantic spotted dolphins. 

Medium dolphin 
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Figure 4. Percentage of delphinid acoustic encounters (n = 158) from JAX deployment 1 MARU 
data classified as short-beaked common dolphin, short-finned pilot whale or striped dolphin using 
a random-forest classifier in PAMGuard’s ROCCA whistle classification module. Note that no 
encounters were classified as bottlenose or Atlantic spotted dolphins. 

 

Figure 5. Percentage of delphinid acoustic encounters (n = 55) from JAX deployment 2 MARU data 
classified as short-beaked common dolphin, short-finned pilot whale or striped dolphin using a 
random-forest classifier in PAMGuard’s ROCCA whistle classification module. Note that no 
encounters were classified as bottlenose or Atlantic spotted dolphins. 
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Figure 6. All delphinid acoustic encounters and sonar events recorded with the OB MARUs, by time of day (y-axis) and date (x-axis). 
Delphinid acoustic encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are representative of 
event overlap (i.e., a sonar event occurring at multiple MARU sites). Black and white shading represents average periods of daylight 
(white) and darkness (black) for the deployment period. 
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Figure 7. Short-beaked common dolphin whistle encounters and sonar events recorded with the OB MARUs, by time of day (y-axis) and 
date (x-axis). Whistle encounters are shown in. Sonar events are shown in yellow. Bars with overlapping colors are representative of 
event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight (white) and 
darkness (black) for the deployment period. 
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Figure 8. Short-finned pilot whale whistle encounters and sonar events recorded with the OB MARUs, by time of day (y-axis) and date 
(x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are representative of 
event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight (white) and 
darkness (black) for the deployment period. 
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Figure 9. Striped dolphin whistle encounters and sonar events recorded with the OB MARUs, by time of day (y-axis) and date (x-axis). 
Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are representative of event 
overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight (white) and darkness 
(black) for the deployment period.  
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Figure 10. All delphinid acoustic encounters and sonar events recorded during JAX MARU deployment 1, by time of day (y-axis) and 
date (x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are representative 
of event overlap (i.e., an event occurring at multiple MARU sites). Shading represents average daylight (white) and darkness (black) for 
the deployment period.  
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Figure 11. Short-beaked common dolphin whistle encounters and sonar events recorded during JAX MARU deployment 1, by time of 
day (y-axis) and date (x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are 
representative of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight 
(white) and darkness (black) for the deployment period.  



NAVFAC LANT | Development of Statistical Methods for Examining Relationships  
Between Odontocete Vocal Behavior and Navy Sonar Signals 

 
 

March 2015 | 56 

 

Figure 12. Short-finned pilot whale whistle encounters and sonar events recorded during JAX MARU deployment 1, by time of day (y-
axis) and date (x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are 
representative of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight 
(white) and darkness (black) for the deployment period. 
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Figure 13. Striped dolphin whistle encounters and sonar events recorded during JAX MARU deployment 1, by time of day (y-axis) and 
date (x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are representative 
of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight (white) and 
darkness (black) for the deployment period. 
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Figure 14. All delphinid acoustic encounters and sonar events recorded during the JAX MARU deployment 2, by time of day (y-axis) and 
date (x-axis).  Delphinid acoustic encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are 
representative of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight 
(white) and darkness (black) for the deployment period. 
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Figure 15. Short-beaked common dolphin whistle encounters and sonar events recorded during JAX MARU deployment 2, by time of 
day (y-axis) and date (x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are 
representative of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight 
(white) and darkness (black) for the deployment period. 
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Figure 16. Short-finned pilot whale whistle encounters and sonar events recorded during JAX MARU deployment 2, by time of day (y-
axis) and date (x-axis). Whistle encounters are shown in. Sonar events are shown in yellow. Bars with overlapping colors are 
representative of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight 
(white) and darkness (black) for the deployment period. 
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Figure 17. Striped dolphin whistle encounters and sonar events recorded during JAX MARU deployment 2, by time of day (y-axis) and 
date (x-axis). Whistle encounters are shown in teal. Sonar events are shown in yellow. Bars with overlapping colors are representative 
of event overlap (i.e., an event occurring at multiple MARU sites). Black and white shading represents average daylight (white) and 
darkness (black) for the deployment period.
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Figure 18. Occurrence of acoustic sub-events color-coded in relation to their occurrence of sonar 
pings (black) for the JAX site 7. All sonar pings belonged to the same sonar exercise as no gaps 
in sonar pings longer than 48 hours occurred during the recording at this site.  

 

Figure 19. Autocorrelation of Pearson’s residuals from presence models for pilot whales (upper) 
and the DEUO species group (lower) including 95 percent confidence intervals around zero 
autocorrelation (blue dashed line). Note that the y-axes were limited to 0.2 for illustrative 
purposes.  
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Figure 20. Partial fit plots for presence model for pilot whales (note that the partial fit is given on 
the scale of the logit-link function). The covariate retained in the final model was Site.  

 

Figure 21. Partial fit plots for presence model for DEUO species group (note that the partial fit is 
given on the scale of the logit-link function). Covariates in the final model were Site and Time. For 
the smooth term, tick marks on the upper side of the x-axis indicate the observed values for the 
covariate.  
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Figure 22. Means of binned fitted values versus means of corresponding residuals from presence 
models for pilot whales (left) and the DEUO species group (right). Binning occurred by splitting 
the fitted values into 20 equally sized bins in ascending order of observation. 

 

Figure 23. Mean observed versus mean fitted values from presence-of-vocalizations models for 
pilot whale (left) and DEUO species group (right). Note that observations and fitted values were 
combined into 20 equally sized bins in ascending order of fitted values for which the mean was 
calculated. The red lines indicate a perfect fit of the model to the observed data.  
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Figure 24. Autocorrelation of Pearson’s residuals from presence of vocalization type given 
vocalization models including 95 percent confidence intervals around zero autocorrelation for 
pilot whales (left panels) and the DEUO species group (right panels). Vocalization types were 
whistles (top), clicks (middle) and buzzes (bottom).  
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Figure 25. Partial fit for each model term for presence-of-whistles-given-acoustic-encounter 
models for pilot whales (note that the partial fit is given on the scale of the logit-link function). 
Covariates retained in the best model were Site, Presence of clicks and the polynomial smooth for 
Time. For covariate Time, tick marks on the upper side of the x-axis indicate the observed values 
for the covariate.  
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Figure 26. Partial fit for each model term for presence-of-clicks-given-acoustic-encounters models 
for pilot whales (note that the partial fit is given on the scale of the logit-link function). Covariates 
retained in the best model were Site, Presence of whistles and Presence of buzzes.  

 

Figure 27. Partial fit for each model term for presence-of-buzzes-given-acoustic-encounter models 
for pilot whales (note that the partial fit is given on the scale of the logit-link function). Covariates 
retained in the best model were Site and Presence of clicks.  
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Figure 28. Partial fit for each model term for presence-of-whistles-given-acoustic-encounter 
models for the DEUO species group (note that the partial fit is given on the scale of the logit-link 
function). Covariates retained in the best model were Site, Sonar and Presence of clicks.  
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Figure 29. Partial fit for each model term for presence-of-clicks-given-acoustic-encounter models 
for the DEUO species group (note that the partial fit is given on the scale of the logit-link function). 
Covariates retained in the best models were Presence of buzzes, Presence of Type 1-short sonar 
pings and Presence of Type 3-medium sonar pings.  
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Figure 30. Partial fit for each model term for presence-of-buzzes-given-acoustic-encounter models 
for the DEUO species group (note that the partial fit is given on the scale of the logit-link function). 
Covariates retained in the best model were Site, Sonar and Presence of clicks. 
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Figure 31. Means of binned Person residuals in order of observation for presence-of-signal-type-
given-acoustic-encounter models: pilot whales (left panels) and the DEUO species group (right 
panels). types were whistles (top), clicks (middle) and buzzes (bottom).  
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Figure 32. Mean observed versus mean fitted values in ascending order of fitted values for which 
the mean was calculated from presence-of-signal-type-given-acoustic-encounter models: pilot 
whales (left panels) and the DEUO species group (right panels).  types were whistles (top), clicks 
(middle) and buzzes (bottom). The red lines indicate a perfect fit of the model to the observed 
data.  
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Figure 33. Autocorrelation of Pearson’s residuals from whistle characteristics models for pilot 
whales (left) and common/striped dolphins (right) including 95 percent confidence intervals 
around zero autocorrelation (blue dashed line). Note that the y-axis was limited to 0.2 for 
illustrative purposes.  

 

Figure 34. Partial fit plots for whistle characteristics model for pilot whales (note that the partial fit 
is given on the scale of the identity-link function). The covariate retained in the final model was 
Site. 

 

Figure 35. Partial fit plots for whistle-characteristics model for the common/striped dolphins (note 
that the partial fit is given on the scale of the identity-link function).  The covariates retained in the 
final model were Site and Sonar. 
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Figure 36. Residuals plots (top) and histograms (bottom) from whistle-characteristics models for 
pilot whales (left) and common/striped dolphins (right).  

 

Figure 37. Fitted values from whistle characteristics models for pilot whales (left) and the 
common/striped dolphins (right). The red lines indicate a perfect fit of the model to the observed 
data. Blue and green points respectively represent the median and mean of the observed values 
corresponding to the unique fitted values.  
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Figure 38. Sample autocorrelation functions for the time series of vocalization encounters 
recorded for pilot whales at sites 2,4,5,6,7,9 (JAX). 

 

Figure 39. Dependence structure of a basic HMM. In the given application to vocalization data, this 
means that it is assumed that the state (either ‘silent’ or ‘vocally active’) at time t depends on the 
state at time t-1, and that whether or not a vocalization is detected at time t depends on the 
current underlying state at time t. 
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Figure 40. Real and simulated data for pilot whales at OB; only one of the observed series (Site 
159) is shown. Horizontal axes indicate the time (with one unit corresponding to 60 seconds), and 
vertical axes indicate if a vocalization was detected (with the value 1 corresponding to a 
detection). 

 

Figure 41. Real and simulated data for DEUO at JAX; only one of the observed series (Site 6) is 
shown. Horizontal axes indicate the time (with one unit corresponding to 60 seconds), and vertical 
axes indicate if a vocalization was detected (with the value 1 corresponding to a detection). 
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11. Tables 

Table 1. Confusion matrix for the random-forest classifier model used to identify whistles 
recorded on the JAX and OB MARUs to species.  The percent of encounters in the test dataset 
classified correctly is in bold. Overall, 81 percent of encounters were correctly classified. Sample 
size (n) is the number of encounters in the test dataset. 

Actual species 

Percent classified as 

n 
Short-
beaked 

common 
dolphin 

Short-
finned 
pilot 

whale 

Striped 
dolphin 

Atlantic 
spotted 
dolphin 

Bottlenose 
dolphin 

Short-beaked common 
dolphin 75 0 0 13 13 8 

Short-finned pilot whale 0 81 13 0 6 16 

Striped dolphin 0 0 73 9 18 11 

Atlantic spotted dolphin 0 6 0 94 0 31 

Bottlenose dolphin 0 13 2 2 83 47 

 

Table 2. Number of delphinid acoustic encounters and sub-events for JAX and OB deployments.  
Acoustic encounters are defined as a series of whistles, clicks and/or buzzes with no more than 
30 min between vocalizations. Sub-events are a series of whistles, clicks and/or buzzes with no 
more than 1 min between vocalizations. 

Deployment Number of Encounters  
(30 min resolution) 

Number of Sub-Events 
(1 min resolution) 

OB 265 933 

JAX deployment 1 550 1,738 

JAX deployment 2 444 NA 

Total 1,259 2,671 
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Table 3. Dates of all MFA sonar events recorded by six MARUs deployed off JAX deployment 1 
and five MARUs deployed off OB. For a visual display of the times of the sonar events refer to 
Figures 6–13.  

Site Dates 

JAX 2 14–20 Sept. 2009, 1 Oct 2009 

JAX 4 14, 16–20 Sept. 2009, 1 Oct. 2009 

JAX 5 14–20 Sept. 2009, 1 Oct 2009 

JAX 6 14–20 Sept. 2009, 1 Oct 2009 

JAX 7 15–20 Sept. 2009 

JAX 9 14, 16–19 Sept. 2009, 1 Oct 2009 

OB 152 13, 16, 17, 22, 24–27 July 2008 

OB 154 13, 16, 17, 22, 24–27 July 2008 

OB 159 13, 16, 17, 22, 24–27 July 2008 

OB 161 10, 16, 17, 22, 24, 27 July 2008 

 

Table 4. Covariates available for analyses. 

Covariate Description Unit 

Sonar  Relation to sonar exercise -- 

Anysonar  1 for Sonar = During,  else 0 -- 

Time  Time of day Seconds 

Site  Site numbers -- 

Sonarlag Time lag since last sonar Number of 1 min segments or seconds 

Location  JAX or OB -- 

Type and duration of sonar ping  See text Section 2.4 -- 

Sound pressure level  dB re 1 µPa 

Peak frequency  -- Hz 

Length of sonar event  -- Minutes 

Number of sonar detections  -- -- 

Mean ping interval  -- Seconds 

SDEV ping interval  -- Seconds 

Mean repetition rate  -- Pings/second 

SDEV repetition rate  -- Pings/second 

Mean peak frequency  -- Hz 

SDEV peak frequency  -- Hz 

Mean minimum frequency  -- Hz 

SDEV minimum frequency  -- Hz 

Mean maximum frequency  -- Hz 

SDEV maximum frequency  -- Hz 

Mean bandwidth  -- Hz 

SDEV bandwidth  -- Hz 
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Table 5. Models for the presence of vocalizations: parameter estimates (MLE) on the logit-link 
scale and standard errors (SE) from best fitting models with significance codes related to p-values 
(1 ’ ’ 0.1 ’.’ 0.05 ’*’ 0.01 ’**’ 0.001 ’***’ 0). The interaction terms with Anysonar allowed setting the 
respective covariate value to 0 for those segments other than ’During’ a sonar exercise. DEUO = 
striped dolphins, common dolphins and unidentified odontocetes combined.  

 Pilot Whale DEUO 

Max. block size 150 1050 

Linear and factor terms MLE SE MLE SE 

Intercept -4.14 0.61*** -1.64 0.30*** 

Site 4 0.02 0.79 -0.81 0.27** 

Site 5 -0.90 0.79 -0.72 0.40 

Site 6 -0.68 0.78 -0.07 0.30 

Site 7 -0.06 0.78 -0.99 0.44* 

Site 9 -0.27 0.81 -0.54 0.29 

Site 152 -1.17 0.88 -0.08 0.53 

Site 154 -2.62 1.17* -1.78 0.35*** 

Site 159 -0.03 0.79 -0.41 0.56 

Site 161 -3.27 1.17** -2.76 0.43*** 

Smooth terms 

bs(time)1 -- -- 0.39 0.66 

bs(time)2 -- -- -2.72 0.74*** 

bs(time)3 -- -- 0.18 0.30 

Addition. parameters 

Scale parameters (SE) 1.00 6.07 1.03 0.90 

 

Table 6. Observed versus predicted presences (1) and absences (0) for the pilot whale and the 
DEUO species group presence of acoustic encounters models. Numbers in black are correct 
predictions, numbers in red and blue represent falsely predicted absences or presences, 
respectively. 

  

  

Observed 

Pilot whale DEUO 

Predicted 0 1 0 1 

0 0.55 0.00 0.53 0.02 

1 0.44 0.01 0.41 0.05 
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Table 7. Models for the presence of signal type (whistles, clicks or buzzes) given acoustic 
encounter for pilot whales: parameter estimates (PE) on the logit-link scale and standard errors 
(SE) from best fitting models with significance codes related to p-values from (1 ’ ’ 0.1 ’.’ 0.05 ’*’ 
0.01 ’**’ 0.001 ’***’ 0).  

 Whistles Clicks Buzzes 

Max. group size 1 3 2 

Linear and factor terms PE SE PE SE PE SE 

Intercept 1.74 1.13 4.49 1.43** -3.79 1.04*** 

Site 4 -7.09 2.68** -1.31 0.67* 0.20 1.03 

Site 5 -7.04 3.16* -1.06 0.75 41.46 0.97*** 

Site 6 34.01 3.33*** -43.27 0.56*** 40.78 1.08*** 

Site 7 36.81 3.24*** -2.07 0.84* 0.09 1.36 

Site 9 34.49 3.51*** -3.19 1.04** 2.30 1.11 

Site 152 38.01 3.26*** -1.09 0.75 1.73 1.06 

Site 154 32.39 3.85*** -43.96 0.70*** 2.40 1.39. 

Site 159 -4.92 2.40* -1.37 0.72 1.67 0.99. 

Site 161 32.83 3.60*** -43.27 0.64*** 40.78 1.16*** 

Presence of whistles  -- -- -4.79 1.19*** -- -- 

Presence of clicks -4.84 0.84*** -- -- 1.58 0.60** 

Presence of buzzes -- -- 2.00 0.62** -- -- 

Smooth terms 

bs(time)1 22.73 8.91* -- -- -- -- 

bs(time)2 6.77 4.35 -- -- -- -- 

bs(time)3 9.89 3.87* -- -- -- -- 

Additional parameters 

Scale parameter 0.22 0.09 3.32 114 0.84 1.49 
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Table 8. Models for the presence of signal type (whistles, clicks or buzzes) given acoustic 
encounter for the DEUO species group including striped dolphin, short-beaked common dolphin 
and unidentified odontocetes: parameter estimates (PE, on the logit-link scale) and standard 
errors (SE) from best fitting models with significance codes related to p-values from (1 ’ ’ 0.1 ’.’ 
0.05 ’*’ 0.01 ’**’ 0.001 ’***’ 0).  

 Whistles Clicks Buzzes 

Max. group size 6 6 7 

Linear and factor terms PE SE PE SE PE SE 

Intercept 2.57 0.30*** 2.53 0.27*** -5.39 0.43*** 

Sonar During 0.53 0.25* -- -- 1.13 0.30*** 

Sonar Between 0.39 0.33 -- -- 0.34 0.34 

Sonar After -0.01 0.27 -- -- 0.74 0.29* 

Site 4 0.42 0.28 0.37 0.26. 1.28 0.42** 

Site 5 0.62 0.34. 0.32 0.29 1.06 0.39** 

Site 6 0.07 0.26 -0.50 0.26. 3.16 0.37*** 

Site 7 1.32 0.62* -2.27 0.46*** 2.07 0.43*** 

Site 9 1.42 0.36*** -1.75 0.30*** 4.21 0.43*** 

Site 152 1.60 0.50** -1.98 0.28*** 2.90 0.47*** 

Site 154 0.58 0.60 -2.70 0.41*** 3.10 0.44*** 

Site 159 0.90 0.43* -1.59 0.30*** 3.08 0.40*** 

Site 161 39.22 0.41*** -2.98 0.66*** 1.49 1.00 

Presence of whistles  -- -- -3.00 0.27*** -- -- 

Presence of clicks -2.98 0.23*** -- -- 1.46 0.19*** 

Presence of buzzes -- -- 1.25 0.21*** -- -- 

Type 1 - short -- -- 0.49 0.24** -- -- 

Type 3 medium -- -- 0.78 0.23* 0.69 0.23** 

Additional parameters 

Scale parameter 1.00 1.24 1.08 0.61 0.94 0.29 
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Table 9. Observed versus predicted presences (1) and absences (0) for the pilot whale and the 
DEUO species group presence-of-signal-type-given-acoustic encounter models. Numbers in black 
are correct predictions, numbers in red and blue represent falsely predicted absences or 
presences, respectively. 

  Observed 

Whistles Clicks  Buzzes 

Pilot whales 

Predicted 0 1 0 1 0 1 

0 0.12 0.09 0.69 0.07 0.51 0.01 

1 0.00 0.79 0.05 0.19 0.39 0.09 

DEUO species group  

0 0.15 0.19 0.51 0.08 0.59 0.05 

1 0.02 0.65 0.15 0.26 0.22 0.15 

 

Table 10. Models for the whistle characteristics: parameter estimates (PE, on the identity-link 
scale) and standard errors (SE) from best fitting models with significance codes related to p-
values (1 ’ ’ 0.1 ’.’ 0.05 ’*’ 0.01 ’**’ 0.001 ’***’ 0). DEUO = species group including striped dolphins, 
common dolphins and unidentified odontocetes. 

 Pilot whale DEUO 

Max. block size 3 12 

Linear and factor terms PE SE PE SE 

Intercept 3.50 0.34*** 2.47 0.14*** 

Sonar During -- -- 0.35 0.17* 

Sonar Between -- -- 0.14 0.14 

Sonar After -- -- 0.70 0.23** 

Site 4 -0.29 0.40 0.02 0.15 

Site 5 -0.61 0.41 0.10 0.15 

Site 6 -0.98 0.36** 1.17 0.72 

Site 7 -0.21 0.61 -0.22 0.17 

Site 9 -0.72 0.37* -0.17 0.16 

Site 152 -0.46 0.43 0.54 0.16*** 

Site 154 -0.04 0.45 0.54 0.18** 

Site 159 -0.14 0.38 0.36 0.15* 

Site 161 -0.66 0.42 0.33 0.17. 

Addition. parameters 

Scale parameters 0.34 0.07 4.42 2.16 
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Table 11. AIC values for the different models considered. Lowest AIC values are underlined and 
bold. The DEUO species group refers to delphinid species, not including pilot whales. 

 
Model 

Without 
Covariates 

Model  
With  

Anysonar 

Model  
With 

Sonar 

Model  
With 

Sonarlag 

Model With 
Mean Rep. 

Rate 

Model With 
SDEV Ping 

Interval 

Pilot whales, 
Jacksonville 

2417.36 2420.99 2397.84 2418.86 2416.82 2379.62 

Pilot whales, 
Onslow Bay 

667.40 670.74 675.67 670.75 670.75 670.68 

DEUO, 
Jacksonville 

14381.58 14383.87 14375.67 14383.05 14384.80 14382.58 

DEUO, 
Onslow Bay 

8094.76 8098.75 8049.28 8098.52 8098.09 8096.36 
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Appendix A:  Variables Measured by ROCCA 

 

Variable Explanation 

Begsweep slope of the beginning sweep (1 = positive, -1 = negative, 0 = zero) 

Begup binary variable: 1 = beginning slope is positive, 0 = beginning slope is negative 

Begdwn binary variable:  1 = beginning slope is negative, 0 = beginning slope is positive 

Endsweep slope of the end sweep (1 = positive, -1 = negative, = 0 zero) 

Endup binary variable: 1 = ending slope is positive, 0 = ending slope is negative 

Enddwn binary variable: 1 = ending slope is negative, 0 = ending slope is positive 

Beg beginning frequency (Hertz [Hz]) 

End ending frequency (Hz) 

Min minimum frequency (Hz) 

Dur duration (seconds) 

Range maximum frequency - minimum frequency (Hz) 

Max maximum frequency (Hz) 

mean freq mean frequency (Hz) 

median freq median frequency (Hz) 

std freq standard deviation of the frequency (Hz) 

Spread difference between the 75th and the 25th percentiles of the frequency 

quart freq frequency at one-quarter of the duration (Hz) 

half freq frequency at one-half of the duration (Hz) 

Threequart frequency at three-quarters of the duration (Hz) 

Centerfreq (minimum frequency + (maximum frequency-minimum frequency))/2 

rel bw relative bandwidth: (maximum frequency - minimum frequency)/center frequency 

Maxmin maximum frequency/minimum frequency 

Begend beginning frequency/end frequency 

Cofm coefficient of frequency modulation (COFM): take 20 frequency measurements 
equally spaced in time, then subtract each frequency value from the one before it. 
COFM is the sum of the absolute values of these differences, all divided by 10,000 

tot step number of steps (10 percent or greater increase or decrease in frequency over two 
contour points) 

tot inflect number of inflection points (changes from positive to negative or negative to 
positive slope) 

max delta maximum time between inflection points 

min delta minimum time between inflection points 

maxmin delta maximum delta/minimum delta 

mean delta mean time between inflection points 

std delta standard deviation of the time between inflection points 

median delta median of the time between inflection points 

mean slope overall mean slope 

mean pos slope mean positive slope 

mean neg slope mean negative slope 

mean absslope mean absolute value of the slope 
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Variable Explanation 

Posneg mean positive slope/mean negative slope 

perc up percent of the whistle that has a positive slope 

perc dwn percent of the whistle that has a negative slope 

perc flt percent of the whistle that has zero slope 

up dwn number of inflection points that go from positive slope to negative slope 

dwn up number of inflection points that go from negative slope to positive slope 

up flt number of times the slope changes from positive to zero 

dwn flt number of times the slope changes from negative to zero 

flt dwn number of times the slope changes from zero to negative 

flt up number of times the slope changes from zero to positive 

step up number of steps that have increasing frequency 

step dwn number of steps that have decreasing frequency 

step.dur number of steps/duration 

inflect.dur number of inflection points/duration 

 

 


